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REGULAR ORBITAL MEASURES ON LIE ALGEBRAS

BY

ALEX WRIGHT (Waterloo, ON)

Abstract. Let H0 be a regular element of an irreducible Lie algebra g, and let µH0

be the orbital measure supported on OH0 . We show that bµk
H0 ∈ L2(g) if and only if

k > dim g/(dim g− rank g).

1. Introduction. Let G be a compact, connected, simple Lie group and
g its Lie algebra. It is well known that the non-trivial adjoint orbits in g are
compact submanifolds of proper dimension, but geometric properties ensure
that they generate g. Consequently, if H0 6= 0 is in the torus t of g, and µH0

is the orbital measure supported on the orbit OH0 containing H0, i.e., µH0

is the unique (up to normalization) G-invariant measure on OH0 , then some
convolution power of µH0 is absolutely continuous with respect to Lebesgue
measure on g and even belongs to L1+ε for some ε > 0 (see [8]). In [6],
Ragozin showed that the dimension of g convolution powers sufficed, and
this was improved in a series of papers culminating in [2] with the minimal
number of convolution powers being kG = rankG for the classical simple
Lie algebras of type Bn, Cn and Dn and kG = rankG+1 for type An. There
it was also shown that if µh was the orbital measure supported on the con-
jugacy class in G containing the non-central element h, then µkG

h ∈ L
2(G).

In the simplest case G = SU(2), we have g = R3 and the adjoint orbits
are (two-dimensional) spheres centred at the origin. The sum of two such
spheres contains an open set and consequently the convolution of any two
orbital measures is absolutely continuous [7]. In general, the generic orbits
(the so-called regular orbits defined below) have codimension rankG and
two convolution powers of such an orbital measure are absolutely continuous
(in either the group or algebra case). Furthermore, for the generic orbital
measure µh on the group, one can use the Weyl character formula to see
that µk2h ∈ L

2(G) for k2 = 1 + rankG/(dimG − rankG) (see [4]) and this
fact can be transferred to the Lie algebra setting as well [3].
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In this note we give a direct proof that if µH0 is any generic orbital
measure on g, then µ̂kH0

∈ L2(g) if and only if k > 1 + rank g/(dim g −
rank g). The novelty of our approach is our geometric method, involving the
root systems, of handling the singularities which arise in the integral of the
Fourier transform of the measure.

Products of generic orbital measures are also studied in [1] and [9]; our
approach recovers some of what was proven in [9].

2. Definitions and lemmas. Let T be a maximal torus of G and t
be the corresponding subalgebra of g, also called the torus. Let Φ be the
root system of g with Weyl group W and positive roots Φ+. Choose a base
∆ = {β1, . . . , βn} for Φ and let t+ be the associated fundamental Weyl
chamber :

t+ = {H ∈ t : (H,βj) > 0 for j = 1, . . . , n}
Given H0 ∈ t, the adjoint orbit of H0 is given by

OH0 = {Ad(g)H0 : g ∈ G} ⊆ g.

If H0 ∈ t+, then H0 is called regular and OH0 is a called a regular orbit .
The regular orbital measure, µH0 , is the G-invariant measure supported

on the regular orbit OH0 , normalized so the Harish-Chandra formula gives

µ̂H0(H) =
AH0(H)∏
α∈Φ+(α,H)

for H ∈ t+,

where
AH0(H) =

∑
σ∈W

sgn(σ)ei(σ(H),H0).

As µH0 is G-invariant, the Weyl integration formula implies that µ̂kH0
∈

L2(g) if and only if
�

t+

|AH0(H)|2k

|
∏
α∈Φ+(α,H)|2k−2

dH <∞.

In this integral some of the inner products (α,H) represent removable sin-
gularities on some walls of the Weyl chamber. This is the primary obstacle
in studying this integral and we are able to deal with these singularities
using geometry and an induction argument.

Specifically, we will relate the integrand near a collection of walls to
the integrand for a subroot system. The power of our induction is hidden
in the fact that the integrand is continuous, and so is bounded on any
neighborhood of the origin. Several technical problems arise; in fact they
are necessary complements to the proof of a weaker result (Cor. 1), where
the technical results are not necessary. The case of a Lie algebra of type A2
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is surprisingly representative, and the geometric motivation for the results
presented here comes exclusively from this case.

The notation will get slightly tedious, so we list it all here in advance.
Note that from now on we assume Φ is irreducible, but we will consider
reducible subroot systems of Φ that are “simple”; these are simply those
subroot systems for which a subset of ∆ can be chosen as a base.

g An irreducible Lie algebra

Φ The root system of g

∆ = {β1, . . . , βn} The simple roots of Φ

Φ+ The positive roots of Φ

n The rank of g

W The Weyl group of Φ

t+ = {H ∈ g : (H,βi) > 0 for all i} The fundamental Weyl chamber of g

Ψ A simple subroot system of Φ

V The Weyl group of Ψ

{γ1, . . . , γm} ⊂ ∆ A base for Ψ

Ψ+ The positive roots of Ψ

m The number of simple roots in Ψ

s+ = {H ∈ spanΨ : (H, γi) > 0 for i > 1} The fundamental Weyl chamber of Ψ

Recall that every H ∈ s+ can be written as a non-negative linear com-
bination of the simple roots γi. This follows from the fact that, in the ir-
reducible case, all entries of the inverse of the Cartan matrix are positive
numbers. (See [5, Section 13.4, Exercise 8].)

We will need to break s+ up into the regions

Ri = {H ∈ s+ : ‖H‖ ≥ 1, (γi, H) ≥ (γj , H) for all j}.
So s+ \B1 =

⋃m
i=1Ri. Now if

Ψ1 = spanZ{γ2, . . . , γm} ∩ Ψ
then the roots of Ψ1 will correspond to removable singularities on the walls
of cl(R1) when we calculate the above integral with root system Ψ . Now let
V1 be the Weyl group of Ψ1, and

c+ = {H ∈ spanΨ1 : (H, γi) > 0 for i = 2, . . . ,m}
be the fundamental Weyl chamber of Ψ1. Finally, we define

P : spanΨ → spanΨ : H 7→ 1
|V1|

∑
σ∈V1

σ(H).

Lemma 1. Let P be as above. Then:

(i) σ(P (H)) = P (H) for all σ ∈ V1.
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(ii) P is the projection from spanΨ onto (spanΨ1)⊥. So I − P is the
projection from spanΨ onto spanΨ1.

(iii) I − P in fact maps s+ to c+.
(iv) There are constants a, b > 0 such that ‖P (H)‖ ≥ a‖H‖ and

‖(I − P )H‖ ≤ b‖P (H)‖ if H ∈ R1.

Before reading the proof of this result, the reader is encouraged to graph-
ically verify part (ii) for the case Φ = A2.

Proof. (i) If σ1 ∈ V1 then

σ1(P (H)) =
1
|V1|

∑
σ∈V1

σ1(σ(H)) =
1
|V1|

∑
σ∈σ1V1

σ(H) = P (H).

(ii) Write H = s + r, where s ∈ spanΨ1 and r ∈ (spanΨ1)⊥. If α ∈ Ψ1

then

σα(r) = r − 2(r, α)
(α, α)

α = r.

Since V1 is generated by reflections of the form σα, α ∈ Ψ1, it follows that
σ(r) = r for all σ ∈ V1. Hence

P (H) = P (r) + P (s) = r + P (s).

If α ∈ Ψ1 then, by (i), σα(P (s)) = P (s). Since we also have

σα(P (s)) = P (s)− 2(P (s), α)
(α, α)

α

we get P (s) ∈ (spanΨ1)⊥. But P (s) ∈ spanΨ1 so P (s) = 0. Putting all this
together, we find that P (H) = r is the projection of H onto (spanΨ1)⊥.

Of course, it follows that H −P (H) is the projection of H onto spanΨ1.
(iii) If k > 1 and H ∈ s+ then

(γk, H − P (H)) = (γk, H) > 0

since P (H) ∈ span{γ2, . . . , γm}⊥.
(iv) Suppose, in order to obtain a contradiction, that H ∈ cl(R1) and

P (H) = 0. Then H ∈ spanΨ1 and H ∈ cl(s+) so we can write

H = c2γ2 + · · ·+ cmγm

with all ci ≥ 0. Thus

(H, γ1) = c2(γ2, γ1) + · · ·+ cm(γm, γ1).

We also have (γi, γj) ≤ 0 if i 6= j, so in fact (H, γ1) ≤ 0. Since H ∈ s+,
we see that (H, γ1) ≥ 0. Combining these we get (H, γ1) = 0. From the
definition of R1 we get, for each i = 1, . . . ,m,

0 ≤ (H, γi) ≤ (H, γ1) = 0,
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which contradicts the fact that ‖H‖ ≥ 1. Thus P (H) 6= 0 on cl(R1). In
particular, P (H) is non-zero on the compact set cl(R1)∩{H : ‖H‖ = 1}, so
there is an a > 0 such that a ≤ ‖P (H)‖ if ‖H‖ = 1, H ∈ R1. Thus we see
that a‖H‖ ≤ ‖P (H)‖ on R1. Finally, we can take b = 1/a+ 1.

We commented earlier that the roots of Ψ1 will cause problems in R1

when integrating. As it turns out, all the other roots of Ψ are very well
behaved on R1. (It is quite helpful to think of the roots of Ψ1 as the “good”
roots on R1, and the roots of Ψ \ Ψ1 as the “bad” roots.)

Lemma 2. There exists C > 0 such that for all α ∈ Ψ+ \ Ψ+
1 and for all

H ∈ R1,
(H,α) ≥ C‖H‖.

Proof. Take α ∈ Ψ+ \ Ψ+
1 . Write α =

∑
aiγi with all ai ≥ 0. Since

α /∈ Ψ1, we have a1 > 0. Now if H ∈ cl(R1) then

(H,α) =
∑

ai(H, γi) ≥ a1(H, γ1) > 0.

Thus the function
f(H) = (H,α)

is non-zero on the compact set cl(R1) ∩ {H : ‖H‖ = 1}. Hence it attains a
positive minimum Mα. We can take C = minα∈Ψ+\Ψ+

1
Mα.

We will be interested in subroot systems of Φ of the form

{a1α1 + · · ·+ amαm : ai ∈ Z for all i} ∩ Φ,
where {α1, . . . , αm} ⊂ ∆. We will call these simple subroot systems. Note
that Ψ1 is a simple subroot system of Φ. Simple subroot systems are the only
type of subroot systems that will come up in our induction. Restricting our
attention to simple subroot systems makes the verification of the following
technical lemma easier.

Lemma 3. Suppose Φ is an irreducible root system with simple subroot
system Ψ with m simple roots, where m < n. Then

n

|Φ|
<

m

|Ψ |
.

Proof. When we look at this result for a particular m, it is clearly suffi-
cient to prove it for the largest Ψ with m simple roots. We list these subroot
systems in Table 1, along with the ratios in question. See [5] for basic facts
needed about subroot systems.

It is worth noting that this lemma is not true if we allow Φ to be reducible.
For example, consider a subroot system of Lie type B3 (with m/|Ψ | = 1/6)
in a root system of Lie type B3 ×A1 ×A1 ×A1 (with n/|Φ| = 1/4).
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Table 1

Φ n/|Φ| Ψ m/|Ψ |

An 1/(n+ 1) Am, m < n 1/(m+ 1)

Bn 1/2n Bm, m < n 1/(2m)

Cn 1/2n Cm, m < n 1/2m

Dn 1/2(n− 1) Dm, m < n 1/2(m− 1)

E6 1/12 Dm, m < 6 1/2(m− 1)

E7 1/18 Dm, m < 7 1/2(m− 1)

E7 1/18 E6 1/12

E8 1/30 Dm, m < 8 1/2(m− 1)

E8 1/30 E6 1/12

E8 1/30 E7 1/18

F4 1/12 Bm, m < 4 1/2m

G2 1/6 A1 1/2

We now set ε0 > 0 to be any number with ε0 < m/|Ψ | − n/|Φ| for all
proper simple subroot systems Ψ of Φ. We will need this ε0 later for technical
reasons.

3. The main result

Theorem. Let Φ be an irreducible root system. Then µ̂kH0
∈ L2(g) if

and only if k > 1 + n/|Φ| = dim g/(dim g− rank g).

Corollary 1. If µ is a regular orbital measure, then µ̂3/2 ∈ L2(g).

Corollary 2. If µ is a regular orbital measure then µ2 ∈ Lp(g) for all
p < dim g/rank g.

Proof. Our arguments show that µ̂2 ∈ Lp
′

for p′ < 1 + n/|Φ|. By the
Hausdorff–Young inequality, µ2 ∈ Lp for all p < dim g/rank g.

It is worth noting that Corollary 2 is sharp when g = su(2) by a result
of Ragozin (see [7, Prop. A.5]).

Proof of the Theorem. We prove a related result for all simple subroot
systems Ψ of Φ. All the notation will be as before, including the definition
of ε0.

Our induction hypothesis: For all simple proper subroot systems Ψ of Φ,
if k < 1 + n/|Φ|+ ε0 then

�

s+∩Br

|AH0(H)|2k dH
|
∏

α∈Ψ+(α,H)|2k−2
= O(rn−(k−1)|Ψ |).
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By this we mean that this integral is bounded above, as a function of r, by
Crn−(k−1)|Ψ | for some C > 0.

For m = 1, Ψ is of Lie type A1 and we get
r�

1

|eitH0 − e−itH0 |2k

|t|2k−2
dt.

Hence when k < 1 + 1/2 the integrand is O(r2−2k) and 2 − 2k > −1. So if
k < 1 + 1/2 the integral is O(r1−2(k−1)). Lemma 3 tells us that 1 + 1/2 =
1 + n/|Φ|+ (1/2− n/|Φ|) > 1 + n/|Φ|+ ε0.

Now we assume the result for all simple subroot systems of rank m− 1.
Consider a subroot system Ψ of rank m. We will describe the growth of

the integral on R1. Since we have not specified any particular order among
the Ri, and the integrand is continuous, this is sufficient.

Let σ1, . . . , σt be representatives from the left cosets of V1 ≤ V. We break
up |AH0 | into cosets of Ψ1:

�

R1∩Br

|
∑t

j=1

∑
σ∈V1

sgn(σjσ)ei(σjσ(H),H0)|2k dH
|
∏

α∈Ψ+(α,H)|2k−2

≤ 22k
t∑

j=1

�

R1∩Br

|
∑

σ∈V1
sgn(σjσ)ei(σjσ(H),H0)|2k dH
|
∏

α∈Ψ+(α,H)|2k−2
.

For convenience we forget about the constant, and just write the term of
the σj coset. We start by factoring out |sgn(σj)ei(σj(P (H)),H0)| = 1 to get

�

R1∩Br

|
∑

σ∈V1
sgn(σ)ei(σjσ(H),H0)−i(σj(P (H)),H0)|2k dH

|
∏

α∈Ψ+(α,H)|2k−2
.

Since P (H) = σ(P (H)) (for σ ∈ V1) and (σ(v), w) = (v, σ(w)) this integral
equals

�

R1∩Br

|
∑

σ∈V1
sgn(σ)ei(σ(H−P (H)),σj(H0))|2k dH

|
∏

α∈Ψ+\Ψ+
1

(α,H)|2k−2|
∏

α∈Ψ+
1

(α,H)|2k−2
.

Now we apply Lemma 2 to get the upper bound

�

R1∩Br

C

‖H‖(k−1)(|Ψ |−|Ψ1|)
|
∑

σ∈V1
sgn(σ)ei(σ(H−P (H)),σj(H0))|2k dH
|
∏

α∈Ψ+
1

(α,H)|2k−2
.

At this point we can safely replace σj(H0) with H ′0 = (I − P )σj(H0).
Since P (H) is orthogonal to Ψ1, we can change the inner products from
(α,H) to (α,H − P (H)). If we also recall the bound ‖P (H)‖ ≥ a‖H‖ for
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all H ∈ R1 from Lemma 1, this gives
�

R1∩Br

C

‖H‖(k−1)(|Ψ |−|Ψ1|)
|
∑

σ∈V1
sgn(σ)ei(σ(H−P (H)),H′0)|2k dH

|
∏

α∈Ψ+
1

(α,H − P (H))|2k−2

≤
�

R1∩Br

C ′

‖P (H)‖(k−1)(|Ψ |−|Ψ1|)
|
∑

σ∈V1
sgn(σ)ei(σ(H−P (H)),H′0)|2k dH

|
∏

α∈Ψ+
1

(α,H − P (H))|2k−2
.

Observe that P maps onto a one-dimensional subspace, say span v1, ‖v1‖
= 1. We can do a change of variables so that we are integrating first with
respect to H ′ = H − P (H) ∈ c+ and then s, where P (H) = sv1. If a and
b are as in Lemma 1 then s ≥ a and ‖(I − P )H‖ ≤ b‖P (H)‖ for H ∈ R1.
Note that H 7→ (P (H), (I − P )H) is an orthogonal change of variables so
the Jacobian is a constant.

If we now use Fubini’s theorem to rewrite our integral (and forget the
constant) we get

r�

a

1
s(k−1)(|Ψ |−|Ψ1|)

�

c+∩Bbs

|
∑

σ∈V1
sgn(σ)ei(σ(H′),H′0)|2k dH ′

|
∏

α∈Ψ+
1

(α,H ′)|2k−2
ds.

Note that no element of Ψ annihilates σj(H0), so it is regular. It follows
that no element of Φ1 annihilates H ′0. Thus we can apply the induction
hypothesis. Since m < n,

1 +m/|Ψ | = 1 + n/|Φ|+ (m/|Ψ | − n/|Φ|) > 1 + n/Φ+ ε0.

So if k < 1 + n/|Φ|+ ε0 we see that the above integral is at most
r�

a

1
s(k−1)(|Ψ |−|Ψ1|)

O(sm−1−|Ψ1|(k−1)) ds = O(rm−|Ψ |(k−1)).

At some point in our induction we get n = m and Ψ = Φ. At this point
our full induction hypothesis does not hold, but we know that the actual
integral we are interested in is at most

r�

δ

O(sn−1−|Φ|(k−1)) ds

if k < 1 + n/|Φ|+ ε0. This integral converges if

1 + n/|Φ|+ ε0 > k > 1 + n/|Φ|.

Hence µ̂H0 ∈ L2(g) if k > 1 + n/|Φ|.
Now we show the necessity of the condition k > 1 + n/|Φ|.
We can rewrite

|
∑

σ∈W sgn(σ)ei(σ(H),H0)|2k

|
∏

α∈Φ+(α,H)|2k−2
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as
1

‖H‖|Φ|(k−1)

|
∑

σ∈W sgn(σ)ei‖H‖(σ(H/‖H‖),H0)|2k

|
∏

α∈Φ+(α,H/‖H‖)|2k−2

and consider this as r−|Φ|(k−1)f(r, φ1, . . . , φn−1), where f is a function in
polar coordinates,

f(r, φ1, . . . , φn−1) =
|
∑

σ∈W sgn(σ)eir((1,φ1,...,φn−1),H0)|2k

|
∏

α∈Φ+(α, (1, φ1, . . . , φn−1))|2k−2
.

As before, we will integrate in t+ with a ball around the origin removed, so
we will always assume r ≥ 1.

If we fix Φ = (φ1, . . . , φn−1), we see that fΦ(r) := f(r, φ1, . . . , φn−1) is
(the absolute value of) the sum of continuous functions that are periodic
in r. Thus f is almost periodic in r.

Since ‖µkH0
‖ 6= 0 and f is continuous, we can find a point (r0, ψ1,

. . . , ψn−1), a δ > 0 and an ε > 0 so that if

U = {(r, φ1, . . . , φn−1) : ‖φi − ψi‖ ≤ δ ∀i, |r − r0| ≤ δ} ⊂ t+

then f > 2ε > 0 on U .
We will have to change to polar coordinates to use this observation. The

Jacobian of this change of variables is

∆ = rn−1 sinn−2 φ1 · · · sinn−2 φn−1.

If necessary, we can modify U so that |∆| ≥ Crn−1 on U , for some con-
stant C. We then see that our integral is greater than or equal to

ψ1+δ�

ψ1−δ
. . .

ψn−1+δ�

ψn−1−δ

∞�

1

C
1

r|Φ|(k−1)
f(r, φ1, . . . , φn−1)r(n−1) dr dφn−1 · · · dφ1.

Say that fΦ has an ε almost period in every interval of size M . Pick N ≥
M + 2δ. We know that fΦ(r) ≥ 2ε on [r0 − δ, r0 + δ]. Pick τn, an ε almost
period of fΦ in the interval [nN − r0 + δ, (n + 1)N − r0 − δ], where n > 0.
Hence fΦ ≥ ε on [r0 + τn − δ, r0 + τn + δ] ⊂ [nN, (n + 1)N ]. If χF is the
indicator function of F =

⋃
n[r0 + τn− δ, r0 + τn+ δ], then the inner integral

is at least
∞�

1

CεχF r
−(k−1)|Φ|+n−1 dr ≥

∞�

1

CεχEr
−(k−1)|Φ|+n−1 dr,

where E =
⋃
n[nN, nN + 2δ]. This integral is at least

∞∑
n=1

2δCε(nN)−(k−1)|Φ|+n−1.
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If k ≤ 1 + n/|Φ|, this diverges. Thus the inner integral is infinite for all
φ1, . . . , φn−1 in the appropriate range. So if k ≤ 1 + n/|Φ|, our integral is
infinite and µk /∈ L2(g).

Remark 1. A similar result holds when Φ = Φ1× · · ·×Φm is reducible.
Say that the number of simple roots in Φi is ri, and the fundamental Weyl
chamber of Φi is t+i . In this case the integrand splits to give

�

t+1

. . .
�

t+m

|AH0(t1 + · · ·+ tm)|2k

|
∏

α∈Φ+(α, t1 + · · ·+ tm)|2k−2
dtm · · · dt1.

This factors as
�

t+1

AΦ1
H0

(t1)
|
∏
α∈Φ+

1
(α, t1)|

dt1 · · ·
�

t+m

AΦm
H0

(tm)
|
∏
α∈Φ+

m
(α, tm)|

dtm.

Since none of these factors can be zero, this is finite iff all the integrals
converge. Hence µH0 ∈ L2(g) iff

k > max{1 + r1/|Φ1|, . . . , 1 + rm/|Φm|}.

Remark 2. A measure µ is called Lp-improving if there is some p < 2
such that the operator Tµ : f 7→ µ ∗ f is bounded from Lp(g) to L2(g).
Using sophisticated arguments Ricci and Travaglini [9] prove that for a
regular, orbital measure µ, Tµ maps Lp(g) to L2(g) if and only if p ≥
1 + rank g/(2 dim g − rank g) = p(g). The same reasoning as given in [4,
Corollary 12] shows that our arguments give the weaker result: Tµ is bounded
from Lp(g) to L2(g) for any p > p(g).
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