VOL. 113

2008

NO. 1

AN EXAMPLE OF A SIMPLE DERIVATION IN TWO VARIABLES

BҮ

ANDRZEJ NOWICKI (Toruń)

Abstract. Let k be a field of characteristic zero. We prove that the derivation $D = \partial/\partial x + (y^s + px)(\partial/\partial y)$, where $s \ge 2, 0 \ne p \in k$, of the polynomial ring k[x, y] is simple.

1. Introduction. Throughout the paper k is a field of characteristic zero. Assume that d is a derivation of a commutative k-algebra R. We say that d is simple if R has no d-invariant ideals other than 0 and R.

Simple derivations are useful for constructions of simple noncommutative rings which are not fields. It is well known ([2]) that if R[t,d] is the Ore extension of R with respect to d ([11], [5]), then R[t,d] is a simple ring (that is, R[t,d] has no two-sided ideals other than 0 and R[t,d]) if and only if the derivation d is simple.

We can use simple derivations to construct simple Lie rings. Recall that a Lie ring L is said to be *simple* if it has no Lie ideals other than 0 and L. Denote by R_0 the Lie ring whose elements are the elements of R, with the product [a, b] = ad(b) - d(a)b for all $a, b \in R_0$. It is known ([4], [9]) that R_0 is simple if and only if d is simple.

A. Seidenberg [13] showed that if R is a finitely generated domain and d is simple, then R is regular. R. Hart [3] showed that if R is a finitely generated local domain, then R is regular if and only if there exists a simple derivation of R.

Examples, applications and various properties of simple derivations can be found in many other papers (see, for example, [12], [7], [6], [10], [8], [1]).

Let $R = k[x_1, \ldots, x_n]$ be the polynomial ring over k in n variables and let $d(x_1) = f_1, \ldots, d(x_n) = f_n$. It would be of considerable interest to find necessary and sufficient conditions on f_1, \ldots, f_n for d to be simple. The answer is obvious only for n = 1.

If n = 2, then only some sporadic examples of simple derivations of R = k[x, y] are known.

The problem seems to be difficult even if we assume that d(x) = 1. In [10] and [1], there is a description of all simple derivations d of k[x, y] such that

²⁰⁰⁰ Mathematics Subject Classification: Primary 12H05; Secondary 13N05.

Key words and phrases: simple derivation, polynomial ring.

d(x) = 1 and d(y) = a(x)y + b(x), where $a(x), b(x) \in k[x]$. A. Maciejewski, J. Moulin-Ollagnier and the author [8] gave an algebraic characterization of simple derivations d of k[x, y] such that d(x) = 1 and $d(y) = y^2 + a(x)y + b(x)$, where $a(x), b(x) \in k[x]$. Analytic proofs of our results with more precise characterizations of simple derivations of such forms were given by H. Żołądek in [14].

Recently, P. Brumatti, Y. Lequain and D. Levcovitz [1] constructed examples of simple derivations d of the local ring $k[x, y]_{(x,y)}$ such that d(x) = 1 and $\deg_y d(y) = s$, where s is an arbitrary positive integer. Most of the published examples of simple derivations d of k[x, y] with d(x) = 1 are of the type $d = \partial/\partial x + F(x, y)(\partial/\partial y)$, where $F(x, y) \in k[x, y]$ and $\deg_y F(x, y) \leq 2$. In particular, there does not seem to be any example with $\deg_y F(x, y)$ an arbitrary positive integer. The aim of this paper is to provide such an example. We prove, in an elementary way, that if $s \geq 2$ and $0 \neq p \in k$, then the derivation $\partial/\partial x + (y^s + px)(\partial/\partial y)$ is simple.

2. Preliminaries and notations. Let d be a derivation of k[x, y]. We say (as in [8]) that a polynomial $F \in k[x, y]$ is a *Darboux polynomial* of d if $F \notin k$ and $d(F) = \Lambda F$ for some $\Lambda \in k[x, y]$, or equivalently (F) is a proper d-invariant ideal of k[x, y]. Note the following easy observation.

PROPOSITION 1. If $d: k[x, y] \to k[x, y]$ is a derivation such that d(x) = 1, then d is simple if and only if d has no Darboux polynomials.

Proof. This is well known (see, for example, Proposition 2.1 in [8]) if the field k is algebraically closed. In the general case we use standard arguments (see [10]).

Throughout the paper, D denotes the derivation of k[x, y] defined by

$$D = \partial/\partial x + (y^s + px)(\partial/\partial y),$$

where $s \ge 0$ and $p \in k \setminus \{0\}$. If s = 0, then this derivation is not simple, because $D(y - x - \frac{1}{2}px^2) = 0$. If s = 1, then D is not simple either, because D(y + px + p) = y + px + p. We will assume that $s \ge 2$. Note that if s = 2, then we know ([8, Theorem 6.2]) that D is simple. We will prove that the same is true for any $s \ge 2$. For the proof we need to show (by Proposition 1) that D has no Darboux polynomials.

Suppose that D has a Darboux polynomial. Let F and Λ be fixed polynomials from k[x, y] such that $F \notin k$ and $D(F) = \Lambda F$. Using these notations we have:

LEMMA 1. $\Lambda \in k[y] \setminus \{0\}$, deg $\Lambda = s - 1$ and $\Lambda = ny^{s-1} + \lambda$, where $n = \deg_y F$, $\lambda \in k[y]$ with deg $\lambda < s - 1$.

Proof. First suppose that $\Lambda = 0$, that is, D(F) = 0. Let $F = Ay^n + G$, where $0 \neq A \in k[x]$, $n \geq 0$ and $G \in k[x, y]$ with $\deg_y G < n$. If n = 0,

then $F = A \in k[x]$ and 0 = D(F) = A', where A' is the derivative of A with respect to x. So, if n = 0, then $F \in k$, and we have a contradiction. If n > 0, then $0 = D(F) = nAy^{(n-1)+s} + H$ for some $H \in k[x, y]$ with $\deg_n H < n + s - 1$, and again we have a contradiction. Therefore, $A \neq 0$.

Let $F = a(y)x^m + G$ and $\Lambda = b(y)x^r + H$, where $a(y), b(y) \in k[y] \setminus \{0\}$, $m, r \geq 0, G, H \in k[x, y], \deg_x G < m$ and $\deg_x H < r$. Then $D(F) = pa(y)'x^{m+1} + U$ and $\Lambda F = a(y)b(y)x^{m+r} + V$ for some $U, V \in k[x, y]$ with $\deg_x U < m+1$ and $\deg_x V < m+r$, where a(y)' is the derivative of a(y) with respect to y. But $D(F) = \Lambda F$. So, if r > 1 then we have the contradiction $0 = a(y)b(y) \neq 0$, and if r = 1 then we have the equality pa(y)' = a(y)b(y), which is also an evident contradiction. Hence, r = 0 (and a(y)' = 0), which means that $\Lambda = b(y) \in k[y]$.

Now, comparing in $D(F) = \Lambda F$ the leading terms with respect to powers of y, we see that $\deg_y \Lambda = s - 1$ and that the leading coefficient of Λ is equal to $\deg_y F$.

By the above lemma we may fix the following notations. Assume that $n = \deg_u F$,

$$F = A_0 y^n + A_1 y^{n-1} + \dots + A_n,$$

where $A_0, \ldots, A_n \in k[x]$ with $A_0 \neq 0$, and

$$\Lambda = ny^{s-1} - a_1y^{s-2} - a_2y^{s-3} + \dots + a_{s-2}y + a_{s-1},$$

where $a_1, \ldots, a_{s-1} \in k$. It is obvious that $n \ge 1$. Since every polynomial of the form cF, where $0 \ne c \in k$, is also a Darboux polynomial of D, we may assume that A_0 is monic. Assume also that $A_i = 0$ if i > n or i < 0.

If u is a polynomial from k[x], then we denote by u' the derivative du/dx, by |u| the degree of u, and by u^* the leading monomial of u. Moreover, if u and v are polynomials from k[x], then we write $u \sim v$ if there exists a positive rational number q such that u = qv. Let r be the degree of A_0 . Thus, $|A_0| = r \geq 0$ and $A_0^* = x^r$.

3. The proof of the main result. Comparing in D(F) = AF the coefficients (belonging to k[x]) of y^j for j = n + s - 1, ..., 2, 1, 0, we obtain

(1)
$$\sigma A_{\sigma} = a_1 A_{\sigma-1} + a_2 A_{\sigma-2} + \dots + a_{s-1} A_{\sigma-(s-1)} + A'_{\sigma-(s-1)} + (n+s-\sigma) A_{\sigma-s} px$$

for all $\sigma = 1, \ldots, n + s - 1$. Putting $\sigma = \tau + s$ we obtain

(2)
$$(\tau + s)A_{\tau+s} = a_1A_{\tau+s-1} + a_2A_{\tau+s-2} + \dots + a_{s-1}A_{\tau+1} + A'_{\tau+1} + (n-\tau)A_{\tau}px$$

for all $\tau = -(s-1), -(s-2), \dots, -1, 0, 1, \dots, n-1.$

The above equalities will play an important role in our proof. Observe that we have the following sequence of equalities:

$$(3) \begin{cases} A_{1} = a_{1}A_{0}, \\ 2A_{2} = a_{1}A_{1} + a_{2}A_{0}, \\ 3A_{3} = a_{1}A_{2} + a_{2}A_{1} + a_{3}A_{0}, \\ \vdots \\ (s-2)A_{s-2} = a_{1}A_{s-3} + a_{2}A_{s-4} + \dots + a_{s-2}A_{0}, \\ (s-1)A_{s-1} = a_{1}A_{s-2} + a_{2}A_{s-3} + \dots + a_{s-1}A_{0} + A'_{0}, \\ sA_{s} = a_{1}A_{s-1} + a_{2}A_{s-2} + \dots + a_{s-1}A_{1} + A'_{1} + nA_{0}px, \\ (s+1)A_{s+1} = a_{1}A_{s} + a_{2}A_{s-1} + \dots + a_{s-1}A_{1} + A'_{2} + (n-1)A_{1}px, \\ \vdots \\ nA_{n} = a_{1}A_{n-1} + a_{2}A_{n-2} + \dots + a_{s-1}A_{n+1-s} + A'_{n+1-s} + sA_{n-s}px, \\ 0 = a_{1}A_{n} + a_{2}A_{n-1} + \dots + a_{s-1}A_{n+2-s} + A'_{n+2-s} + (s-1)A_{n+1-s}px, \\ 0 = a_{2}A_{n} + a_{3}A_{n-1} + \dots + a_{s-1}A_{n+3-s} + A'_{n+3-s} + (s-2)A_{n+2-s}px, \\ \vdots \\ 0 = a_{s-2}A_{n} + a_{s-1}A_{n-1} + A'_{n-1} + 2A_{n-2}px, \\ 0 = a_{s-1}A_{n} + A'_{n} + A_{n-1}px. \end{cases}$$

for $\sigma = 1, ..., s - 1$.

LEMMA 2. (a) If i is an integer such that $0 \leq is \leq n$, then

 $A_{is} \neq 0, \quad |A_{is}| = r + i \quad and \quad A_{is}^* \sim p^i x^{r+i}.$

(b) If i, j are integers such that $0 \le is + j \le n$ and 0 < j < s, then $|A_{is+j}| \le r+i$.

Proof. Since $A_0 \neq 0$ and $A_0^* = x^r$, statement (a) is true for i = 0. Since $a_1, \ldots, a_{s-1} \in k$, the initial equalities of (3) imply that for i = 0 statement (b) is also true.

Assume now that both (a) and (b) hold for some $i \ge 0$. Assume also that $(i+1)s \le n$. Then, by (2), $A_{(i+1)s} = A_{is+s} \sim B$, where

$$B = a_1 A_{is+s-1} + a_2 A_{is+s-2} + \dots + a_{s-1} A_{is+1} + A'_{is+1} + (n-is) A_{is} px.$$

So, by induction, $A^*_{(i+1)s} \sim (n-is)A^*_{is}px \sim p^i x^{r+i}pi = p^{i+1}x^{r+(i+1)}$. This means that (a) holds for i+1.

Let j be an integer such that 0 < j < s and $(i+1)s + j \leq n$. If j = 1 then, by (2), $A_{(i+1)s+1} = A_{(is+1)+s} \sim B$, where

$$B = a_1 A_{(i+1)s} + a_2 A_{is+(s-1)} + \dots + a_{s-1} A_{is+2} + A'_{is+2} + (n - (is+1))A_{is+1}px.$$

We already know that $|A_{(i+1)s}| = r + (i+1)$, so $|a_1A_{(i+1)s}| \le r + (i+1)$. We also know that the degrees $|a_2A_{is+(s-1)}|, \ldots, |a_{s-1}A_{is+2}|$ are smaller than r + (i+1). Moreover, $|(n - (is+1))A_{is+1}px| = |A_{is+1}| + 1 \le (r+i) + 1 = r + (i+1)$. Hence, $|A_{(i+1)s+1}| \le r + (i+1)$. Repeating the same argument successively for $j = 2, \ldots, s - 1$ (using a new induction) we deduce that $|A_{(i+1)s+j}| \le r + (i+1)$. This completes the proof.

LEMMA 3. The number s divides n.

Proof. Suppose that n = is + j, where $i \ge 0$ and 0 < j < s, and consider the equality (4) for $\sigma = j$. We have

$$0 = a_{s-j}A_{is+j} + a_{(s-j)+1}A_{is+(j-1)} + \dots + a_{s-1}A_{is+1} + A'_{is+1} + jA_{si}px$$

By Lemma 2, $jA_{si}px$ is a nonzero polynomial of degree r + (i+1). Moreover, also by that lemma, the remaining terms of the right have degrees smaller than r + (i+1). So, we have a contradiction.

It follows from the above lemma that

$$(5) n = ts,$$

where t is a positive integer.

LEMMA 4. The coefficient a_1 is equal to zero.

Proof. Suppose that $a_1 \neq 0$. Then, by (2), $A_1^* = a_1 x^r$ (because, as we assumed, $A_0^* = x^r$). We will show, by induction, that if $is + 1 \leq n$, then

For i = 0, this is clear. Let $(i + 1)s + 1 \leq n$. Then, by (2), $A_{(i+1)s+1} = A_{(is+1)+s} \sim B$, where

$$B = a_1 A_{(i+1)s} + a_2 A_{is+(s-1)} + \dots + a_{s-1} A_{is+2} + A'_{is+2} + (n - (is+1))A_{is+1}px.$$

Observe that, by Lemma 2, $(a_1 A_{(i+1)s})^* \sim a_1 p^{i+1} x^{r+(i+1)}$ and, by induction,

$$((n - (is + 1))A_{is+1}px)^* \sim a_1 p^i x^{r+i} px = a_1 p^{i+1} x^{r+(i+1)}.$$

The degrees of the remaining components of B are, by Lemma 2, smaller than r + (i + 1). So, $A^*_{(i+1)s+1} \sim B^* \sim a_1 p^{i+1} x^{r+(i+1)} + a_1 p^{i+1} x^{r+(i+1)} \sim a_1 p^{i+1} x^{r+(i+1)}$. Thus, (6) is proven.

Consider now the equality (4) for $\sigma = s - 1$. We have

 $0 = a_1 A_{ts} + a_2 A_{(t-1)s+(s-1)} + \dots + a_{s-1} A_{(t-1)s+2} + A'_{(t-1)s+2} + (s-1) A_{(t-1)s+1} px.$ But $(a_1 A_{ts})^* \sim a_1 p^t x^{r+t}$ (Lemma 2) and, by (6), $((s-1) A_{(t-1)s+1} px)^* \sim a_1 p^t x^{r+t}$; moreover, the degrees of all the remaining terms are (by Lemma 2) smaller than r + t. So, we have the contradiction $0 = a_1 p^t \neq 0$.

LEMMA 5. All the coefficients a_1, \ldots, a_{s-1} are equal to zero.

Proof. Suppose otherwise, and let $m \in \{1, \ldots, s-1\}$ be smallest such that $a_m \neq 0$. Then, by Lemma 4, m > 1 and $a_1 = \cdots = a_{m-1} = 0$. Moreover, by (2), $A_m^* \sim a_m x^r$, and repeating the same arguments as in the proof of Lemma 4, we get

(7)
$$A_{is+m}^* \sim a_m p^i x^{r+i}$$

for all i with $is + m \leq n$. Consider the equality (4) for $\sigma = s - m$. We have

$$0 = a_m A_{ts} + a_{m+1} A_{ts-1} + \dots + a_{s-1} A_{(t-1)s+m+1} + A'_{(t-1)s+m+1} + (s-m) A_{(t-1)s+m} px.$$

But $(a_m A_{ts})^* \sim a_m p^t x^{r+t}$ (Lemma 2) and, by (7), $((s-m)A_{(t-1)s+m}px)^* \sim a_m p^t x^{r+t}$; moreover, the degrees of all remaining components are (by Lemma 2) smaller than r+t. So, we have the contradiction $0 = a_m p^t \neq 0$.

Now the equalities (3) have simpler forms. We know that $A_1 = \cdots = A_{s-2} = 0$, $A_{s-1} \sim A'_0$ and, by (2),

(8)
$$A_{(j+1)s-1} = A_{(js-1)+s} \sim A'_{js} + ((t-j)s+1)A_{js-1}px$$

for all j with $0 \le (j+1)s - 1 \le ts$. Moreover, by (4) (for $\sigma = 1$), we have (9) $0 = A'_{ts} + A_{ts-1}px$.

Suppose t = 1. Then $0 = A'_s + A_{s-1}px$ and $(A'_s)^* = (r+1)px^r \sim px^r$. If r = 0, then $A_{s-1} = 0$ (because $A_{s-1} \sim A'_0$) and so $0 \sim p \neq 0$, a contradiction. If r > 0, then $(A_{s-1}px)^* \sim px^r$ and, in this case, $0 \sim px^r \neq 0$, a contradiction again.

Therefore, t > 1. Now, using induction and (8), we see that

$$(A_{(j+1)s-1})^* \sim p^j x^{r+j-1}$$

for all j such that $0 \leq (j+1)s - 1 \leq ts$. In particular, $(A_{ts-1}px)^* \sim p^{t-1}x^{r+t-2}px = p^tx^{r+t-1}$. Moreover, by Lemma 2, $(A'_{ts})^* \sim p^tx^{r+t-1}$. So, by (9), we obtain the contradiction $0 \sim p^tx^{r+t-1} \neq 0$.

We have proved the following theorem.

THEOREM 1. Let k be a field of characteristic zero and let D be a derivation of k[x, y] of the form

$$D = \frac{\partial}{\partial x} + (y^s + px)\frac{\partial}{\partial y},$$

where $s \ge 2$ and $0 \ne p \in k$. Then D is simple.

Note also the following fact.

THEOREM 2. Let k be a field of characteristic zero and let d be a derivation of k[x, y] of the form

$$d = \frac{\partial}{\partial x} + (y^s + px + q)\frac{\partial}{\partial y},$$

where $s \ge 2$, $p, q \in k$, $p \ne 0$. Then d is simple.

Proof. Let $\sigma: k[x, y] \to k[x, y]$ be the automorphism defined by $\sigma(x) = x + p^{-1}q$ and $\sigma(y) = y$. Then $d = \sigma D \sigma^{-1}$, where D is the derivation from Theorem 1. \bullet

REFERENCES

- P. Brumatti, Y. Lequain and D. Levcovitz, Differential simplicity in polynomial rings and algebraic independence of power series, J. London Math. Soc. 68 (2003), 615–630.
- [2] J. Cozzens and C. Faith, Simple Noetherian Rings, Cambridge Tracts in Math. 69, Cambridge Univ. Press, 1975.
- [3] R. Hart, Derivations on regular local rings of finitely generated type, J. London Math. Soc. 10 (1975), 292–294.
- [4] C. R. Jordan and D. A. Jordan, The Lie structure of a commutative ring with a derivation, J. London Math. Soc. 18 (1978), 39–49.
- [5] D. A. Jordan, Noetherian Ore extensions and Jacobson rings, ibid. 10 (1975), 281–291.
- [6] —, Differentially simple rings with no invertible derivatives, Quart. J. Math. Oxford 32 (1981), 417–424.
- Y. Lequain, Differential simplicity and extensions of a derivation, Pacific J. Math. 46 (1973), 215–224.
- [8] A. Maciejewski, J. Moulin Ollagnier and A. Nowicki, Simple quadratic derivations in two variables, Comm. Algebra 29 (2001), 5095–5113.
- [9] A. Nowicki, The Lie structure of a commutative ring with a derivation, Arch. Math. (Basel) 45 (1985), 328–335.
- [10] —, Polynomial Derivations and Their Rings of Constants, N. Copernicus Univ. Press, Toruń, 1994.
- [11] O. Ore, Theory of non-commutative polynomials, Ann. of Math. 34 (1933), 480–508.
- [12] E. C. Posner, Differentiably simple rings, Proc. Amer. Math. Soc. 11 (1960), 337–343.
- [13] A. Seidenberg, Differential ideals and rings of finitely generated type, Amer. J. Math. 89 (1967), 22–42.
- [14] H. Zołądek, Polynomial Riccati equations with algebraic solutions, in: Banach Center Publ. 58, Inst. Math., Polish Acad. Sci., 2002, 219–231.

Faculty of Mathematics and Computer Science Nicolaus Copernicus University 87-100 Toruń, Poland E-mail: anow@mat.uni.torun.pl

Received 3 September 2007

(4958)