COLLOQUIUM MATHEMATICUM

an example of a simple derivation in two variables

BY
ANDRZEJ NOWICKI (Toruń)

Abstract

Let k be a field of characteristic zero. We prove that the derivation $D=$ $\partial / \partial x+\left(y^{s}+p x\right)(\partial / \partial y)$, where $s \geq 2,0 \neq p \in k$, of the polynomial ring $k[x, y]$ is simple.

1. Introduction. Throughout the paper k is a field of characteristic zero. Assume that d is a derivation of a commutative k-algebra R. We say that d is simple if R has no d-invariant ideals other than 0 and R.

Simple derivations are useful for constructions of simple noncommutative rings which are not fields. It is well known ([2]) that if $R[t, d]$ is the Ore extension of R with respect to $d([11],[5])$, then $R[t, d]$ is a simple ring (that is, $R[t, d]$ has no two-sided ideals other than 0 and $R[t, d])$ if and only if the derivation d is simple.

We can use simple derivations to construct simple Lie rings. Recall that a Lie ring L is said to be simple if it has no Lie ideals other than 0 and L. Denote by R_{0} the Lie ring whose elements are the elements of R, with the product $[a, b]=a d(b)-d(a) b$ for all $a, b \in R_{0}$. It is known ([4], [9]) that R_{0} is simple if and only if d is simple.
A. Seidenberg [13] showed that if R is a finitely generated domain and d is simple, then R is regular. R. Hart [3] showed that if R is a finitely generated local domain, then R is regular if and only if there exists a simple derivation of R.

Examples, applications and various properties of simple derivations can be found in many other papers (see, for example, [12], [7], [6], [10], [8], [1]).

Let $R=k\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring over k in n variables and let $d\left(x_{1}\right)=f_{1}, \ldots, d\left(x_{n}\right)=f_{n}$. It would be of considerable interest to find necessary and sufficient conditions on f_{1}, \ldots, f_{n} for d to be simple. The answer is obvious only for $n=1$.

If $n=2$, then only some sporadic examples of simple derivations of $R=$ $k[x, y]$ are known.

The problem seems to be difficult even if we assume that $d(x)=1$. In [10] and [1], there is a description of all simple derivations d of $k[x, y]$ such that

[^0]$d(x)=1$ and $d(y)=a(x) y+b(x)$, where $a(x), b(x) \in k[x]$. A. Maciejewski, J. Moulin-Ollagnier and the author [8] gave an algebraic characterization of simple derivations d of $k[x, y]$ such that $d(x)=1$ and $d(y)=y^{2}+a(x) y+b(x)$, where $a(x), b(x) \in k[x]$. Analytic proofs of our results with more precise characterizations of simple derivations of such forms were given by H. Żołądek in [14].

Recently, P. Brumatti, Y. Lequain and D. Levcovitz [1] constructed examples of simple derivations d of the local ring $k[x, y]_{(x, y)}$ such that $d(x)=1$ and $\operatorname{deg}_{y} d(y)=s$, where s is an arbitrary positive integer. Most of the published examples of simple derivations d of $k[x, y]$ with $d(x)=1$ are of the type $d=\partial / \partial x+F(x, y)(\partial / \partial y)$, where $F(x, y) \in k[x, y]$ and $\operatorname{deg}_{y} F(x, y) \leq 2$. In particular, there does not seem to be any example with $\operatorname{deg}_{y} F(x, y)$ an arbitrary positive integer. The aim of this paper is to provide such an example. We prove, in an elementary way, that if $s \geq 2$ and $0 \neq p \in k$, then the derivation $\partial / \partial x+\left(y^{s}+p x\right)(\partial / \partial y)$ is simple.
2. Preliminaries and notations. Let d be a derivation of $k[x, y]$. We say (as in [8]) that a polynomial $F \in k[x, y]$ is a Darboux polynomial of d if $F \notin k$ and $d(F)=\Lambda F$ for some $\Lambda \in k[x, y]$, or equivalently (F) is a proper d-invariant ideal of $k[x, y]$. Note the following easy observation.

Proposition 1. If $d: k[x, y] \rightarrow k[x, y]$ is a derivation such that $d(x)=1$, then d is simple if and only if d has no Darboux polynomials.

Proof. This is well known (see, for example, Proposition 2.1 in [8]) if the field k is algebraically closed. In the general case we use standard arguments (see [10]).

Throughout the paper, D denotes the derivation of $k[x, y]$ defined by

$$
D=\partial / \partial x+\left(y^{s}+p x\right)(\partial / \partial y)
$$

where $s \geq 0$ and $p \in k \backslash\{0\}$. If $s=0$, then this derivation is not simple, because $D\left(y-x-\frac{1}{2} p x^{2}\right)=0$. If $s=1$, then D is not simple either, because $D(y+p x+p)=y+p x+p$. We will assume that $s \geq 2$. Note that if $s=2$, then we know ([8, Theorem 6.2]) that D is simple. We will prove that the same is true for any $s \geq 2$. For the proof we need to show (by Proposition 1) that D has no Darboux polynomials.

Suppose that D has a Darboux polynomial. Let F and Λ be fixed polynomials from $k[x, y]$ such that $F \notin k$ and $D(F)=\Lambda F$. Using these notations we have:

Lemma 1. $\Lambda \in k[y] \backslash\{0\}$, $\operatorname{deg} \Lambda=s-1$ and $\Lambda=n y^{s-1}+\lambda$, where $n=\operatorname{deg}_{y} F, \lambda \in k[y]$ with $\operatorname{deg} \lambda<s-1$.

Proof. First suppose that $\Lambda=0$, that is, $D(F)=0$. Let $F=A y^{n}+G$, where $0 \neq A \in k[x], n \geq 0$ and $G \in k[x, y]$ with $\operatorname{deg}_{y} G<n$. If $n=0$,
then $F=A \in k[x]$ and $0=D(F)=A^{\prime}$, where A^{\prime} is the derivative of A with respect to x. So, if $n=0$, then $F \in k$, and we have a contradiction. If $n>0$, then $0=D(F)=n A y^{(n-1)+s}+H$ for some $H \in k[x, y]$ with $\operatorname{deg}_{y} H<n+s-1$, and again we have a contradiction. Therefore, $\Lambda \neq 0$.

Let $F=a(y) x^{m}+G$ and $\Lambda=b(y) x^{r}+H$, where $a(y), b(y) \in k[y] \backslash\{0\}$, $m, r \geq 0, G, H \in k[x, y], \operatorname{deg}_{x} G<m$ and $\operatorname{deg}_{x} H<r$. Then $D(F)=$ $p a(y)^{\prime} x^{m+1}+U$ and $\Lambda F=a(y) b(y) x^{m+r}+V$ for some $U, V \in k[x, y]$ with $\operatorname{deg}_{x} U<m+1$ and $\operatorname{deg}_{x} V<m+r$, where $a(y)^{\prime}$ is the derivative of $a(y)$ with respect to y. But $D(F)=\Lambda F$. So, if $r>1$ then we have the contradiction $0=a(y) b(y) \neq 0$, and if $r=1$ then we have the equality $p a(y)^{\prime}=a(y) b(y)$, which is also an evident contradiction. Hence, $r=0\left(\right.$ and $\left.a(y)^{\prime}=0\right)$, which means that $\Lambda=b(y) \in k[y]$.

Now, comparing in $D(F)=\Lambda F$ the leading terms with respect to powers of y, we see that $\operatorname{deg}_{y} \Lambda=s-1$ and that the leading coefficient of Λ is equal to $\operatorname{deg}_{y} F$.

By the above lemma we may fix the following notations. Assume that $n=\operatorname{deg}_{y} F$,

$$
F=A_{0} y^{n}+A_{1} y^{n-1}+\cdots+A_{n},
$$

where $A_{0}, \ldots, A_{n} \in k[x]$ with $A_{0} \neq 0$, and

$$
\Lambda=n y^{s-1}-a_{1} y^{s-2}-a_{2} y^{s-3}+\cdots+a_{s-2} y+a_{s-1},
$$

where $a_{1}, \ldots, a_{s-1} \in k$. It is obvious that $n \geq 1$. Since every polynomial of the form $c F$, where $0 \neq c \in k$, is also a Darboux polynomial of D, we may assume that A_{0} is monic. Assume also that $A_{i}=0$ if $i>n$ or $i<0$.

If u is a polynomial from $k[x]$, then we denote by u^{\prime} the derivative $d u / d x$, by $|u|$ the degree of u, and by u^{*} the leading monomial of u. Moreover, if u and v are polynomials from $k[x]$, then we write $u \sim v$ if there exists a positive rational number q such that $u=q v$. Let r be the degree of A_{0}. Thus, $\left|A_{0}\right|=r \geq 0$ and $A_{0}^{*}=x^{r}$.
3. The proof of the main result. Comparing in $D(F)=\Lambda F$ the coefficients (belonging to $k[x]$) of y^{j} for $j=n+s-1, \ldots, 2,1,0$, we obtain

$$
\begin{align*}
\sigma A_{\sigma}= & a_{1} A_{\sigma-1}+a_{2} A_{\sigma-2}+\cdots+a_{s-1} A_{\sigma-(s-1)} \tag{1}\\
& +A_{\sigma-(s-1)}^{\prime}+(n+s-\sigma) A_{\sigma-s} p x
\end{align*}
$$

for all $\sigma=1, \ldots, n+s-1$. Putting $\sigma=\tau+s$ we obtain

$$
\begin{align*}
(\tau+s) A_{\tau+s}= & a_{1} A_{\tau+s-1}+a_{2} A_{\tau+s-2}+\cdots+a_{s-1} A_{\tau+1} \tag{2}\\
& +A_{\tau+1}^{\prime}+(n-\tau) A_{\tau} p x
\end{align*}
$$

for all $\tau=-(s-1),-(s-2), \ldots,-1,0,1, \ldots, n-1$.

The above equalities will play an important role in our proof. Observe that we have the following sequence of equalities:

$$
\left\{\begin{align*}
A_{1} & =a_{1} A_{0}, \tag{3}\\
2 A_{2} & =a_{1} A_{1}+a_{2} A_{0}, \\
3 A_{3} & =a_{1} A_{2}+a_{2} A_{1}+a_{3} A_{0}, \\
& \vdots \\
(s-2) A_{s-2} & =a_{1} A_{s-3}+a_{2} A_{s-4}+\cdots+a_{s-2} A_{0}, \\
(s-1) A_{s-1} & =a_{1} A_{s-2}+a_{2} A_{s-3}+\cdots+a_{s-1} A_{0}+A_{0}^{\prime}, \\
s A_{s} & =a_{1} A_{s-1}+a_{2} A_{s-2}+\cdots+a_{s-1} A_{1}+A_{1}^{\prime}+n A_{0} p x, \\
(s+1) A_{s+1} & =a_{1} A_{s}+a_{2} A_{s-1}+\cdots+a_{s-1} A_{2}+A_{2}^{\prime}+(n-1) A_{1} p x, \\
& \vdots \\
n A_{n} & =a_{1} A_{n-1}+a_{2} A_{n-2}+\cdots+a_{s-1} A_{n+1-s}+A_{n+1-s}^{\prime}+s A_{n-s} p x, \\
0 & =a_{1} A_{n}+a_{2} A_{n-1}+\cdots+a_{s-1} A_{n+2-s}+A_{n+2-s}^{\prime}+(s-1) A_{n+1-s} p x, \\
0 & =a_{2} A_{n}+a_{3} A_{n-1}+\cdots+a_{s-1} A_{n+3-s}+A_{n+3-s}^{\prime}+(s-2) A_{n+2-s} p x, \\
& \vdots \\
0 & =a_{s-2} A_{n}+a_{s-1} A_{n-1}+A_{n-1}^{\prime}+2 A_{n-2} p x, \\
0 & =a_{s-1} A_{n}+A_{n}^{\prime}+A_{n-1} p x .
\end{align*}\right.
$$

for $\sigma=1, \ldots, s-1$.
LEMMA 2. (a) If i is an integer such that $0 \leq i s \leq n$, then

$$
A_{i s} \neq 0, \quad\left|A_{i s}\right|=r+i \quad \text { and } \quad A_{i s}^{*} \sim p^{i} x^{r+i}
$$

(b) If i, j are integers such that $0 \leq i s+j \leq n$ and $0<j<s$, then $\left|A_{i s+j}\right| \leq r+i$.
Proof. Since $A_{0} \neq 0$ and $A_{0}^{*}=x^{r}$, statement (a) is true for $i=0$. Since $a_{1}, \ldots, a_{s-1} \in k$, the initial equalities of (3) imply that for $i=0$ statement (b) is also true.

Assume now that both (a) and (b) hold for some $i \geq 0$. Assume also that $(i+1) s \leq n$. Then, by $(2), A_{(i+1) s}=A_{i s+s} \sim B$, where

$$
B=a_{1} A_{i s+s-1}+a_{2} A_{i s+s-2}+\cdots+a_{s-1} A_{i s+1}+A_{i s+1}^{\prime}+(n-i s) A_{i s} p x
$$

So, by induction, $A_{(i+1) s}^{*} \sim(n-i s) A_{i s}^{*} p x \sim p^{i} x^{r+i} p i=p^{i+1} x^{r+(i+1)}$. This means that (a) holds for $i+1$.

Let j be an integer such that $0<j<s$ and $(i+1) s+j \leq n$. If $j=1$ then, by (2), $A_{(i+1) s+1}=A_{(i s+1)+s} \sim B$, where $B=a_{1} A_{(i+1) s}+a_{2} A_{i s+(s-1)}+\cdots+a_{s-1} A_{i s+2}+A_{i s+2}^{\prime}+(n-(i s+1)) A_{i s+1} p x$.

We already know that $\left|A_{(i+1) s}\right|=r+(i+1)$, so $\left|a_{1} A_{(i+1) s}\right| \leq r+(i+1)$. We also know that the degrees $\left|a_{2} A_{i s+(s-1)}\right|, \ldots,\left|a_{s-1} A_{i s+2}\right|$ are smaller than $r+(i+1)$. Moreover, $\left|(n-(i s+1)) A_{i s+1} p x\right|=\left|A_{i s+1}\right|+1 \leq(r+i)+1=$ $r+(i+1)$. Hence, $\left|A_{(i+1) s+1}\right| \leq r+(i+1)$. Repeating the same argument successively for $j=2, \ldots, s-1$ (using a new induction) we deduce that $\left|A_{(i+1) s+j}\right| \leq r+(i+1)$. This completes the proof.

Lemma 3. The number s divides n.
Proof. Suppose that $n=i s+j$, where $i \geq 0$ and $0<j<s$, and consider the equality (4) for $\sigma=j$. We have

$$
0=a_{s-j} A_{i s+j}+a_{(s-j)+1} A_{i s+(j-1)}+\cdots+a_{s-1} A_{i s+1}+A_{i s+1}^{\prime}+j A_{s i} p x .
$$

By Lemma $2, j A_{s i} p x$ is a nonzero polynomial of degree $r+(i+1)$. Moreover, also by that lemma, the remaining terms of the right side have degrees smaller than $r+(i+1)$. So, we have a contradiction.

It follows from the above lemma that

$$
\begin{equation*}
n=t s \tag{5}
\end{equation*}
$$

where t is a positive integer.
Lemma 4. The coefficient a_{1} is equal to zero.
Proof. Suppose that $a_{1} \neq 0$. Then, by (2), $A_{1}^{*}=a_{1} x^{r}$ (because, as we assumed, $A_{0}^{*}=x^{r}$). We will show, by induction, that if is $+1 \leq n$, then

$$
\begin{equation*}
A_{i s+1}^{*} \sim a_{1} p^{i} x^{r+i} . \tag{6}
\end{equation*}
$$

For $i=0$, this is clear. Let $(i+1) s+1 \leq n$. Then, by $(2), A_{(i+1) s+1}=$ $A_{(i s+1)+s} \sim B$, where
$B=a_{1} A_{(i+1) s}+a_{2} A_{i s+(s-1)}+\cdots+a_{s-1} A_{i s+2}+A_{i s+2}^{\prime}+(n-(i s+1)) A_{i s+1} p x$.
Observe that, by Lemma $2,\left(a_{1} A_{(i+1) s}\right)^{*} \sim a_{1} p^{i+1} x^{r+(i+1)}$ and, by induction,

$$
\left((n-(i s+1)) A_{i s+1} p x\right)^{*} \sim a_{1} p^{i} x^{r+i} p x=a_{1} p^{i+1} x^{r+(i+1)} .
$$

The degrees of the remaining components of B are, by Lemma 2 , smaller than $r+(i+1)$. So, $A_{(i+1) s+1}^{*} \sim B^{*} \sim a_{1} p^{i+1} x^{r+(i+1)}+a_{1} p^{i+1} x^{r+(i+1)} \sim$ $a_{1} p^{i+1} x^{r+(i+1)}$. Thus, (6) is proven.

Consider now the equality (4) for $\sigma=s-1$. We have
$0=a_{1} A_{t s}+a_{2} A_{(t-1) s+(s-1)}+\cdots+a_{s-1} A_{(t-1) s+2}+A_{(t-1) s+2}^{\prime}+(s-1) A_{(t-1) s+1} p x$. But $\left(a_{1} A_{t s}\right)^{*} \sim a_{1} p^{t} x^{r+t}\left(\right.$ Lemma 2) and, by (6), $\left((s-1) A_{(t-1) s+1} p x\right)^{*} \sim$ $a_{1} p^{t} x^{r+t}$; moreover, the degrees of all the remaining terms are (by Lemma 2) smaller than $r+t$. So, we have the contradiction $0=a_{1} p^{t} \neq 0$.

Lemma 5. All the coefficients a_{1}, \ldots, a_{s-1} are equal to zero.

Proof. Suppose otherwise, and let $m \in\{1, \ldots, s-1\}$ be smallest such that $a_{m} \neq 0$. Then, by Lemma $4, m>1$ and $a_{1}=\cdots=a_{m-1}=0$. Moreover, by (2), $A_{m}^{*} \sim a_{m} x^{r}$, and repeating the same arguments as in the proof of Lemma 4, we get

$$
\begin{equation*}
A_{i s+m}^{*} \sim a_{m} p^{i} x^{r+i} \tag{7}
\end{equation*}
$$

for all i with $i s+m \leq n$. Consider the equality (4) for $\sigma=s-m$. We have

$$
\begin{aligned}
0= & a_{m} A_{t s}+a_{m+1} A_{t s-1}+\cdots+a_{s-1} A_{(t-1) s+m+1} \\
& +A_{(t-1) s+m+1}^{\prime}+(s-m) A_{(t-1) s+m} p x .
\end{aligned}
$$

But $\left(a_{m} A_{t s}\right)^{*} \sim a_{m} p^{t} x^{r+t}$ (Lemma 2) and, by (7), $\left((s-m) A_{(t-1) s+m} p x\right)^{*} \sim$ $a_{m} p^{t} x^{r+t}$; moreover, the degrees of all remaining components are (by Lemma 2) smaller than $r+t$. So, we have the contradiction $0=a_{m} p^{t} \neq 0$.

Now the equalities (3) have simpler forms. We know that $A_{1}=\cdots=$ $A_{s-2}=0, A_{s-1} \sim A_{0}^{\prime}$ and, by (2),

$$
\begin{equation*}
A_{(j+1) s-1}=A_{(j s-1)+s} \sim A_{j s}^{\prime}+((t-j) s+1) A_{j s-1} p x \tag{8}
\end{equation*}
$$

for all j with $0 \leq(j+1) s-1 \leq t s$. Moreover, by (4) (for $\sigma=1$), we have

$$
\begin{equation*}
0=A_{t s}^{\prime}+A_{t s-1} p x . \tag{9}
\end{equation*}
$$

Suppose $t=1$. Then $0=A_{s}^{\prime}+A_{s-1} p x$ and $\left(A_{s}^{\prime}\right)^{*}=(r+1) p x^{r} \sim p x^{r}$. If $r=0$, then $A_{s-1}=0$ (because $A_{s-1} \sim A_{0}^{\prime}$) and so $0 \sim p \neq 0$, a contradiction. If $r>0$, then $\left(A_{s-1} p x\right)^{*} \sim p x^{r}$ and, in this case, $0 \sim p x^{r} \neq 0$, a contradiction again.

Therefore, $t>1$. Now, using induction and (8), we see that

$$
\left(A_{(j+1) s-1}\right)^{*} \sim p^{j} x^{r+j-1}
$$

for all j such that $0 \leq(j+1) s-1 \leq t s$. In particular, $\left(A_{t s-1} p x\right)^{*} \sim$ $p^{t-1} x^{r+t-2} p x=p^{t} x^{r+t-1}$. Moreover, by Lemma 2, $\left(A_{t s}^{\prime}\right)^{*} \sim p^{t} x^{r+t-1}$. So, by (9), we obtain the contradiction $0 \sim p^{t} x^{r+t-1} \neq 0$.

We have proved the following theorem.
Theorem 1. Let k be a field of characteristic zero and let D be a derivation of $k[x, y]$ of the form

$$
D=\frac{\partial}{\partial x}+\left(y^{s}+p x\right) \frac{\partial}{\partial y},
$$

where $s \geq 2$ and $0 \neq p \in k$. Then D is simple.
Note also the following fact.
Theorem 2. Let k be a field of characteristic zero and let d be a derivation of $k[x, y]$ of the form

$$
d=\frac{\partial}{\partial x}+\left(y^{s}+p x+q\right) \frac{\partial}{\partial y},
$$

where $s \geq 2, p, q \in k, p \neq 0$. Then d is simple.

Proof. Let $\sigma: k[x, y] \rightarrow k[x, y]$ be the automorphism defined by $\sigma(x)=$ $x+p^{-1} q$ and $\sigma(y)=y$. Then $d=\sigma D \sigma^{-1}$, where D is the derivation from Theorem 1.

REFERENCES

[1] P. Brumatti, Y. Lequain and D. Levcovitz, Differential simplicity in polynomial rings and algebraic independence of power series, J. London Math. Soc. 68 (2003), 615-630.
[2] J. Cozzens and C. Faith, Simple Noetherian Rings, Cambridge Tracts in Math. 69, Cambridge Univ. Press, 1975.
[3] R. Hart, Derivations on regular local rings of finitely generated type, J. London Math. Soc. 10 (1975), 292-294.
[4] C. R. Jordan and D. A. Jordan, The Lie structure of a commutative ring with a derivation, J. London Math. Soc. 18 (1978), 39-49.
[5] D. A. Jordan, Noetherian Ore extensions and Jacobson rings, ibid. 10 (1975), 281-291.
[6] —, Differentially simple rings with no invertible derivatives, Quart. J. Math. Oxford 32 (1981), 417-424.
[7] Y. Lequain, Differential simplicity and extensions of a derivation, Pacific J. Math. 46 (1973), 215-224.
[8] A. Maciejewski, J. Moulin Ollagnier and A. Nowicki, Simple quadratic derivations in two variables, Comm. Algebra 29 (2001), 5095-5113.
[9] A. Nowicki, The Lie structure of a commutative ring with a derivation, Arch. Math. (Basel) 45 (1985), 328-335.
[10] -, Polynomial Derivations and Their Rings of Constants, N. Copernicus Univ. Press, Toruń, 1994.
[11] O. Ore, Theory of non-commutative polynomials, Ann. of Math. 34 (1933), 480-508.
[12] E. C. Posner, Differentiably simple rings, Proc. Amer. Math. Soc. 11 (1960), 337-343.
[13] A. Seidenberg, Differential ideals and rings of finitely generated type, Amer. J. Math. 89 (1967), 22-42.
[14] H. Żołądek, Polynomial Riccati equations with algebraic solutions, in: Banach Center Publ. 58, Inst. Math., Polish Acad. Sci., 2002, 219-231.

Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
87-100 Toruń, Poland
E-mail: anow@mat.uni.torun.pl

[^0]: 2000 Mathematics Subject Classification: Primary 12H05; Secondary 13N05.
 Key words and phrases: simple derivation, polynomial ring.

