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ABSOLUTELY CONVERGENT FOURIER SERIES
AND GENERALIZED LIPSCHITZ CLASSES OF FUNCTIONS

BY

FERENC MORICZ (Szeged)

Abstract. We investigate the order of magnitude of the modulus of continuity of a
function f with absolutely convergent Fourier series. We give sufficient conditions in terms
of the Fourier coefficients in order that f belong to one of the generalized Lipschitz classes
Lip(a, L) and Lip(e,1/L), where 0 < o < 1 and L = L(z) is a positive, nondecreasing,
slowly varying function such that L(z) — oo as ¢ — oo. For example, a 27-periodic
function f is said to belong to the class Lip(a, L) if

|f(z+h) — f(x)] < Ch“L(1/h) forallz €T, h >0,

where the constant C' does not depend on x and h. The above sufficient conditions are
also necessary in the case of a certain subclass of Fourier coefficients. As a corollary, we
deduce that if a function f with Fourier coefficients in this subclass belongs to one of
these generalized Lipschitz classes, then the conjugate function f also belongs to the same
generalized Lipschitz class.

1. Introduction. Let {cj : k € Z} be a sequence of complex numbers
(in symbols, {cx} C C) such that

(1.1) D ex| < oo

keZ

Then the trigonometric series

(1.2) > oret = f(a)

converges uniformly in x and it is the Fourier series of its sum f.

We recall (see, e.g., [1, p. 6]) that a positive measurable function L
defined on some neighborhood [a, o) of infinity is said to be slowly varying
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(in Karamata’s sense) if
L(\x)
L(z)
The neighborhood [a, 00) is of little importance. One may suppose that L is
defined on (0, 00), for instance, by setting L(x) := L(a) on (0,a). A typical
slowly varying function is

(1.3)

—1 asxz — oo forevery A > 0.

1 for0 <z <2,
L(x) :=

logz for x > 2,

where the logarithm is to base 2.

In this paper, we consider positive, nondecreasing, slowly varying func-
tions. In this case, it is enough to require (1.3) only for the single value
A := 2. To be more specific, condition (%) below will be required in our
theorems and lemmas.

CONDITION (). L is a positive nondecreasing function defined on (0, 00)
and satisfying the limit relations
L(2z)
L(z)

(1.4) L(xz) - oo and —1 asz— oo.

Given a > 0 and a function L satisfying condition (*), a periodic function
f is said to belong to the generalized Lipschitz class Lip(«, L) if its modulus
of continuity satisfies

(1.5)  w(f;h):=sup|f(z+h)— f(z)] < Ch*L(1/h) for all h >0,
z€T

where the constant C' = C(f) does not depend on h. Given a > 0 and
L with condition (x), f is said to belong to the generalized Lipschitz class
Lip(a,1/L) if

(67

(1.6) w(f;h) <C

for all h .
<CTam or a. >0

REMARK 1. Clearly, a function f satisfying (1.5) for some « > 0, or
(1.6) for some « > 0, is continuous. Furthermore, if f € Lip(«, L) for some
a > 1, or if f € Lip(a,1/L) for some o > 1, then f = constant (cf. [7,
p. 42)).

REMARK 2. Various kinds of “generalized” Lipschitz classes of periodic
functions were introduced in [2, 3, 4], where necessary and sufficient condi-
tions were proved in order that the sum of an absolutely convergent sine or
cosine series with nonnegative coefficients belong to a generalized Lipschitz
class of order « for some 0 < o < 1.



ABSOLUTELY CONVERGENT FOURIER SERIES 107

2. New results
THEOREM 1. Suppose {c,} C C satisfies (1.1), f is defined in (1.2), and
L satisfies condition (x).

(i) If for some 0 < a <1,

(2.1) > |kex| = O(n'*L(n)), neN,
|k|<n
then f € Lip(a, L).
(ii) Conversely, if {cr} is a sequence of real numbers such that kci > 0
for all k, and if f € Lip(a, L) for some 0 < a < 1, then (2.1) holds.

REMARK 3. Due to Lemma 3 in Section 3, in case 0 < a < 1 condition
(2.1) is equivalent to

(2.2) > Jeel =0(n~*L(n)), neN.
[k|>n

REMARK 4. In a certain sense, Theorem 1 is a generalization of [6, The-
orems 1 and 2] by Németh. Furthermore, in case L = 1, Theorem 1 was
proved in [5, Theorem 1].

The next theorem is a natural counterpart of Theorem 1.

THEOREM 2. Suppose {c;} C C satisfies (1.1), f is defined in (1.2), and
L satisfies condition (x).

(i) If for some 0 < o < 1,
nfa
(2.3) kz>n lek| = O<L(n)>’ neN,

then f € Lip(c,1/L).
(ii) Conwversely, if {ck} is a sequence of nonnegative real numbers and if
f € Lip(a,1/L) for some 0 < a < 1, then (2.3) holds.

REMARK 5. Due to Lemma 4 in Section 3, in case 0 < a < 1 condition
(2.3) is equivalent to

11—«

(2.4) 3 |kck]:0<7£(n)>, neN.

|k|<n

REMARK 6. In case a = 0, Theorem 2 may be considered as a general-
ization of [6, Theorem 5] by Németh.

3. Auxiliary results. To prove Theorems 1 and 2, we will need six
lemmas, which may be useful in other investigations.
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LEMMA 1. Suppose L satisfies condition (). If n < —1, then

(3.1) i E"L(k) = O(n"™L(n)), neN.
k=n

Proof. Clearly, it is enough to prove (3.1) in the special case n := 2™,
m € N. We fix a constant C such that

(3.2) l<C<2m !

which is possible since —n — 1 > 0. It follows from (1.4) that there exists
mgo € N such that

(3.3) L™ < CLE2™)  for m > my.
By forming dyadic sums, an elementary estimation gives
o0 oo 211
(34) > K'L(k) =Y > k'L(k Z 2l (n+1) (2141
k=2m l=m k=2
o
< L(2m) Z 2l(n+1)Cl—m+1
l=m

= 02D L(2M)[1 + 270 + 22D o2 .

Due to (3.2), the geometric series in brackets is convergent. Consequently,
(3.4) results in

Z K"L(k) = O(2mH) L (2m)y),
k=2m
whence (making use of (1.4) again) (3.1) follows. =
LEMMA 2. Suppose L satisfies condition (x). If n > —1, then

n

kN nn+1
(3.5) ZL(k):0<L(n)>, n e N.

k=1

Proof. Clearly, it is enough to prove (3.5) in the special case n := 2™.
This time we fix another constant C' for which

(3.6) 1<C <2t

which is possible since n+1 > 0. By (1.4), there exists another my € N such
that (3.3) holds. Let m > myg; then we may write

2m 2™mo

o o
(3.7) kZIL(k {Z+ Z }m::AmO—FBm,

=270 41
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say. We form dyadic sums again and making use of (3.3) gives

m ol(n+1)-1

(3.8) Z Z < >

L(Qlfl)
l=mo+1 k=2l— 1+1 I=mo+1
om(n+1)-1 C C2

<
=TI 0[1+2n+1 T 5 T }

provided that n > 0. Due to (3.6), the geometric series in brackets is con-
vergent. Consequently, (3.8) results in

B o om(n+1) N
(39) m = <L(2m)>, m e N,

provided that n > 0.

In the remaining case when —1 < 7 < 0, we make use of the inequality
(analogous to one in (3.8))

m o o(-1)(n+1)
By, < 2

< TSI
l=mo+1 L(2 )

where By, is defined in (3.7). Then an estimation similar to the one which
led to (3.8) gives (3.9) in the case —1 < n < 0 as well.

Taking into account that the ratio in parentheses on the right-hand side
of (3.9) tends to co as m — oo (since n + 1 > 0), by (3.7) and (3.9) we
conclude that

2m
7

Making use of (1.4) again, we deduce (3.5). m

<2m(77+1)

Taw) men

LEMMA 3. Suppose {ay, : k € N} is a sequence of nonnegative real num-
bers (in symbols, {ar} C Ry) with Y ar < oo, and L satisfies condition
(%)

(i) If for some 6 >~ >0,

(3.10) > Kap = O0(n"L(n)),
k=1
then
(3.11) i ar = O °L(n)), mneN.
k=n

(ii) Conversely, if (3.11) holds for some § > ~v > 0, then (3.10) also holds.
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REMARK 7. Clearly, in case 6 > v > 0 conditions (3.10) and (3.11) are
equivalent, while in case § = v > 0 both are trivially satisfied, due to the
assumption Y ap < 0o.

Proof of Lemma 3. (i) Suppose (3.10) is satisfied for some § > v > 0.
Then there exists a constant C such that

n
Sp = Z ka, < Cn"L(n), neN.
k=1
A summation by parts gives

(3.12) 1, = Zak = Z L(fkl

k=n
0o

_ S ot
ST *;(w (l<:+1)5)sk

o [0.9]
<y %CML(IC) =0C> KT'L(k), nEN, s :=0.
k=n k=n
Applying Lemma 1 (with n:=~ —§ — 1) yields (3.11).

It is worth observing that the assumption ) | a; < oo follows from (3.10)
holding for some 6 > v > 0. Indeed, this can be immediately seen if in (3.12)
the summation by parts is performed for the finite sum Zév:n ay, in place of
> re,, ar and then we let N — oo.

(ii) Conversely, if (3.11) is satisfied for some § > = > 0, then there exists
another constant C' such that

rm < Cn°L(n), neN.

Again, a summation by parts gives

(3.13) sy = Z Kaj, = Z K (re = i)
k= -1

= E(ké — (k- 1)6)7% - nérn+1
k=1

n
< 7y +max{1,2'7%} Z 87y
k=2

<+ max{1,2' 7} "6k CRT O L(k)
k=2

< 11+ max{1,2'°}6CL(n) Zk'y L= 0m L(n)),

which is (3.10). =
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LEMMA 4. Suppose {ar} C Ry with ) ar < 0o, and L satisfies condition
(%)
(i) If for some 6 >~ > 0,

(3.14) En: Kag =0 (Lﬂ(b:l))

then

(3.15) Zak (m j) neN.

(ii) Conversely, if (3.15) holds for some § > v > 0, then (3.14) also holds.

REMARK 8. Clearly, in case § > v > 0 conditions (3.14) and (3.15) are
equivalent.

Proof of Lemma 4. (i) Suppose (3.14) is satisfied for some § > v > 0.
Then there exists a constant C such that

sn::ZkéakSCi, n € N.
pat L(n)

Similarly to (3.12), we conclude that

k7 6-1 5C & nY=9
= < 7—5—1: -
I Z“’“ 502 7 T 2 O<L<n>>’

which is (3.15).

It is worth observing again that Y ar < oo follows from (3.14) holding
for some ¢ > v > 0.

(i) Conversely, if (3.15) is satisfied for some 6 > 7 > 0, then there exists
another constant C' such that

rnSCL

Similarly to (3.13), we find that
'y—l

LK)’

sn < 71 +max{1,2!" 6}56’2

Applying Lemma 2 (with n:=~ — 1) yields (3.14). =

The last two lemmas may be considered as nondiscrete versions of Lem-
mas 1 and 2.
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LEMMA 5. If L satisfies condition (x) and n > —1, then
h
(3.16) 2"L(1/z)dz = O(h"™L(1/h)), 0<h<1.
0
Proof. Clearly, it is enough to prove (3.16) in the special case h := 27",
where m € N. We fix a constant C' for which (3.6) is satisfied. By (1.4),
there exists my € N such that (3.3) holds.
Let m > mg. In case n > 0, we estimate as follows:

2—m 00 2~k 00
317) | 2"L(/x)de= > | 2"L(1/z)dw < Y 27Dk
0 k=m 9—k—1 k=m
C C?
—m(n+1)=1p (gm Y
< 2~mnt)=11(9 )[1+2n+1+22(n+1)+ ]

Due to (3.6), the geometric series in brackets is convergent. Thus, from
(3.17) it follows that

9—m
(3.18) | 2"L(1/x)dz = 0@ ™"DL@2™), meN.
0
In case —1 < < 0 an analogous estimation gives
2—m 00
| 2"L(1/z)de < Y 27 B-DOrI Lkt
0 k=m

which also results in the same estimate (3.18), as n + 1 is still positive.

By (1.4) again, (3.16) is a simple consequence of (3.18). m

LEMMA 6. If L satisfies condition (x) and n > —1, then

b it
(3.19) (X)L(l/x)dx:O<L(1/h)), 0<h<l.

Proof. Clearly, it is enough to prove (3.19) in the special case h := 27",
m € N. It is easy to check that

2—m oo 27k 00
2N 27 9—k(n+1)-1
2 dr = ———dx < -
G200 Y i 4 ,;m_i_ By = 2 @

9—m(n+1)
o—k(n+1) —
<oty 27 =0y )+ men

provided that n > 0 (the case —1 < n < 0 can be treated analogously). In
view of (1.4), ( 3.19) is a simple consequence of (3.20). m
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4. Proofs of Theorems 1 and 2

Proof of Theorem 1. (i) Suppose (2.1) is satisfied for some 0 < o < 1.
By (1.1) and (1.2), we may write

(A1) [f@+h) = f@)] = |3 ee (e~ 1))

kEZ

(T Tl = 5o

[k|<n  |k[>n
say, where
(4.2) n:=[1/h], h >0,
and [-] means the integer part.

We will use the inequality

(4.3) et 1) =

kh
2sin2‘ < min{2, |kh|}, k€ Z.
By (2.1) and (4.2), we obtain
(4.4) |Snl < h Z |ker| = hO(n*~“L(n)) = O(h®L(1/h)).
|k|<n
On the other hand, by (4.2) and Lemma 3 (applied with v := 1 — a and
0 :=1 in the case of (2.1)) we find that
(4.5) |R,| <2 Z lek| = 20(n"“L(n)) = O(h*L(1/h)).
|k|>n
Combining (4.1), (4.4) and (4.5) yields f € Lip(«, L).
(ii) Conversely, suppose that ke > 0 for all k£ and f € Lip(«, L) for some
0 < a < 1. Then there exists a constant C' such that
(4.6) If(z ‘ch ihe _ ‘ < Cx°L(1/z), > 0.
kEZ

Taking the imaginary part of the above series, we have

‘Z Ck sinkx‘ < Cz*L(1/xz), x>0.

keZ

By uniform convergence, due to (1.1), the series Y ¢k sin kz may be in-
tegrated term by term on any interval (0,h). By Lemma 5, we obtain

Zzzstkh chl_COSkh‘

|k|>1 |k|>1
= O(h**'L(1/h)), h>0.

(4.7)
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Making use of the well-known inequality

2
sint > —t for0<t<—
T 2’

and the fact that k:ck > 0 for all k, we conclude that

k:h
(48) 2> kck — < 2 Z % in2 ' = O(R®HIL(1/R)), k>0,
|k|<n |k:|>1

where n is defined in (4.2). Now, from (1.4) and (4.8) it follows that
> ke = O(h* 'L(1/h)) = O(n'~“L(n)),
|k|<n
which is (2.1). =
Proof of Theorem 2. (i) Suppose (2.2) is satisfied for some 0 < a < 1.
We start with (4.1), where n is defined in (4.2). Making use of the first

inequality in (4.4) and applying Lemma 4 (with v := 1 —a and 0 := 1 in
the case of (2.3)) yields

(4.9) Sal <h S x| = hO(Zl(;;) _ o(L(’f;h))

[k|<n

On the other hand, it follows from (2.3) and (4.2) that

(4.10) Rn| <2 ) Jex| = < )> :o(L(}leh)).

|k|>n

Combining (4.1), (4.9) and (4.10) yields f € Lip(«, 1/L).
(ii) Conversely, suppose that ¢; > 0 for all k and f € Lip(«a,1/L) for
some 0 < o < 1. Similarly to (4.6), this time we have

(4.11) |f(x) — f(0)] = )ch@“ﬂc — 1)] = o(L(”ijx)), x>0,

kEZ

Taking the real part of the above series, we have

S ex(1 = coska) = |3 exlcos ke — 1)| :0<L - >

et et (1/2)

where we took into account that ¢, > 0 for all k. By uniform convergence,
due to (1.1), the series Y cx(1 — cos kz) may be integrated term by term on
any interval (0,h). Applying Lemma 6 gives

sin kh Chotl
el h — > < , h >0,
2 (=) = o
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where C' is a constant. Substituting h := 1/n, we have

1 : —a—1
Z . <n B sm(k/n)> < Cn  neN.

Ik >2n K L(n)
Since
1 sin(k 1
(4.12) - Sm(k/n) > - forall [k = 2n,

it follows that

Due to (1.4), this inequality is equivalent to (2.3). =

5. Concluding remarks. We make the following supplements to parts
(ii) of our Theorems 1 and 2.

THEOREM 3. Suppose {cx} is a sequence of nonnegative real numbers
satisfying (1.1), and f is defined in (1.2). If f € Lip(«, L) for some ) < ae < 1
and L satisfying condition (x), then (2.1) holds.

THEOREM 4. Suppose {ci} is a sequence of real numbers satisfying (1.1)

and such that ke, > 0 for all k, and f is defined in (1.2). If f € Lip(a, 1/L)
for some 0 < o < 1 and L satisfying condition (x), then (2.3) holds.

Before proving Theorems 3 and 4, we recall that the series
(5.1) Z(—z sign k)cpe*?
keZ
is said to be the conjugate series of the trigonometric series in (1.2). It is
well known (see, e.g., [7, Ch. 7, §§1-2]) that if f € L1(T), then the conjugate
function f defined by
1T fla+t)— fla—1)

~x = lim ——
f(z) h—0+ 7T§L 2 tan 5t

dt

exists at almost every = € T. Furthermore, if (1.2) is the Fourier series of
f € LY(T) and if f € L*(T), then (5.1) is the Fourier series of f.

After these preliminaries, the following corollary can be immediately
deduced from the combination of Theorems 1 and 3, or Theorems 2 and 4,
respectively.

COROLLARY. Suppose {ci} is a sequence of real numbers satisfying (1.1)
and one of the following conditions:

c >0  forall keZ,

or
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ke >0 forall k €Z,
and let f be defined in (1.2). If f € Lip(a, L) or f ENLip(oz, 1/L) for some
0 < a < 1 and L satisfying condition (x), then f € Lip(a, L) or f €
Lip(a, 1/L), respectively, for the same o and L.

Now we turn to the proofs of Theorems 3 and 4.

Proof of Theorem 3. We begin with inequality (4.6) in the proof of The-
orem 1, with A in place of x. This time we take the real part of the relevant
series to obtain

Z ck(1 — coskh) = ‘ch(coskh—l)} < Ch*L(1/h), h >0,
kEZ keZ
where C' is a constant and we used the assumption that ¢; > 0 for all k.
Analogously to (4. 8) we conclude that

Zch <220ksm @<Cho‘ L(1/h),

|k|<n keZ

where n is defined in (4.2 ) Hence

(5.2) > K < ha 2L(1/h) = O(n*>~“L(n)).
|k|<n
Applying part (i) of Lemma 3 (with 6 = 2 and v = 1) shows that (5.2)
is equivalent to (2.2). Then part (ii) of Lemma 3 (withd =1 and vy =1—«)
implies that (2.2) is equivalent to (2.1), provided that 0 < a < 1 (because
v =1 — « must be positive). =

Proof of Theorem 4. We begin with inequality (4.11) in the proof of
Theorem 2. This time we take the imaginary part of the relevant series to

obtain .
’chsmkx‘ = ((1/53)> x> 0.

kEZ

By uniform convergence, due to (1.1), the series Y ¢i sin kx may be inte-
grated term by term on any interval (0,y). Applying Lemma 6 yields

Cj  eos _ ya—l-l
(5.3) |k|221k(1 ky) O(L(l/y))’ y >0,

where we have taken into account that kcg > 0 for all k.
Again we may integrate the series in (5.3) term by term on any interval
(0, h). Applying Lemma 6 one more time, we find that

ci (h —sinkh hot?
Ck(hzsmRR) o T,
2 k< k )-Cm/h)’ >0

|k|=>1
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where C' is a constant. Substituting h := 1/n, we have

: —a—2
Z ck<1sm(k/n)> <cm —
n n

k
|k[>2n

In view of inequality (4.12), it follows that

1 Ck n=o"2

k= Ln)

2n
|k|>2n

Due to (1.4), this is equivalent to

(5.4) ;%n % - o<”L_Z;>, neN,

Applying part (ii) of Lemma 4 (with 6 = 2 and v = o 4 1) shows that
(5.4) is equivalent to (2.4). Then part (i) of Lemma 4 (with 6 = 1 and
v = 1—«a) implies that (2.4) is equivalent to (2.3), provided that 0 < a < 1
(since v =1 — o must be less than 6 =1). =
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