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ABSOLUTE CONTINUITY FOR JACOBI MATRICES
WITH POWER-LIKE WEIGHTS

BY

WOJCIECH MOTYKA (Krakéw)

Abstract. This work deals with a class of Jacobi matrices with power-like weights.
The main theme is spectral analysis of matrices with zero diagonal and weights \,, :=
n*(1 + A,) where o € (0,1]. Asymptotic formulas for generalized eigenvectors are given
and absolute continuity of the matrices considered is proved. The last section is devoted
to spectral analysis of Jacobi matrices with ¢, =n 414 (=1)" and A\p, = \/Gn—1qn.

1. Introduction. Jacobi matrices with power-like weights have been
studied in several papers (for example [4, 3, 2]). We continue the study
of [3] concerning Jacobi matrices with zero diagonal and weights of the form
n®(1+A4,), where 1/2 < a < 1. Our main concern is to extend the results of
[3] to « ranging over the whole interval (0, 1]. If (A,,),en satisfies some spe-
cial assumptions, which depend on «, then the Jacobi matrices have purely
absolutely continuous spectrum.

A Jacobi matriz is a tridiagonal infinite matrix of the form

q1 )\1 0 0
Atog@ A 0
J=1 0 X2 @ A3

0 0 X3 @4

which induces an operator J acting in [?(N; C). This operator is defined on
its maximal domain

D(J) :={u € ’(N;C) : Ju € I*(N;C)}
by the formula
(1) (JTu)pn = Ap—1Un—1 + Gnln + Aplnt1, u € D(J);
we put u, = A, := 0 for n < 1. We always assume that the weights (A, )nen
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and the diagonal (g, )nen satisfy
Gn,\n €R, Ay >0, mneN.
In this work we consider the operators of the above form with zero diag-
onal and the weights given by
(2) A i=n%(1+4,), «ac(0,1],neN.

We are interested in spectral properties of such operators, depending on
the perturbation (4,,). In [3] J. Janas and S. Naboko proved that for (A,)
fulfilling two conditions:

(3) (endy) € A
(4) (5211 - 82n—1) S ll \ (52n+1 - 82n) S lla
where ¢, := A, — A,,_1, the associated Jacobi operator J has absolutely

continuous spectrum covering the whole real line. They used the so called
grouping in blocks approach and the subordinacy theory of Khan and Pear-
son. Thanks to the grouping in blocks method they were able to find the
asymptotics of the solution of the generalized eigenequation

(5) An—1Un—1 + Gnn + ApUnt1 = Aun, n €N, XeC.

More precisely, let

6) = <u2:> and By, = (-Anol/xn (A — qln)/An >

By, is called the transfer matriz. Then we can write the equation Ju = Au
as

(7) ﬂnJrl = Bnﬁn, n = 2, 3, e
As a consequence we also have
Up+1 = BpBp-1+-BN, -1 BN, -+ Brgling, n=2,3,....

In [4, 3] one can find a detailed analysis of products By,,,—1--- By, over
the blocks 2, = [Ny, Ne11) of natural numbers such that N\ {1} = (J, f2.
The length of the block (2, is determined by the requirement

(8) > 1 24 O(s~/(1=)),
At
tef2s

This is forced by the necessity to obtain Fourier series with frequencies
insignificantly different from integer numbers. For o« € (1/2,1) the term
O(s~/(1=)) is in ', so it can be neglected in further calculations. In [3]
there are asymptotic formulas for generalized eigenvectors (i, )nen, Which
imply the absolute continuity of the spectrum of the relevant Jacobi matri-
ces on the whole real line.
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For o € (0, 1], the right hand side of (8) cannot be approximated by 2,
because the term 0(5_0‘/(1_0‘)) is no longer in 1!, for every «. That is why
the spectral analysis of the Jacobi matrices with zero diagonal and weights
(2) requires a different approach than that in [4, 3]. Just like there, we
analyse (see the proof of Theorem 1) a product of transfer matrices to find
the asymptotics of generalized eigenvectors, and applying the subordinacy
theory we are able to show that 0,.(J) = R. The main difference is that
we analyse only a pair of transfer matrices, not the whole block. In our case
(Theorem 1) the spectral analysis of J can be obtained by using Levinson-
type theorems found in [2], which apply to systems of linear equations of the
form x(n + 1) = A(n)z(n) where A(n) are d x d nonsingular matrices, for
n > no.

The organization of the paper is as follows. In Section 2 we quote the
definition of the Stolz classes D* and prove Lemma 1 which will be used in
the next section.

Section 3 contains two theorems which are our main results. The first
theorem gives the asymptotics of the solutions of the generalized eigenequa-
tion for a class of Jacobi matrices with ¢, = 0 and \,, = n®*(1 + A,) where
a € (0,1] and n > 1. Some assumptions on the strength of the perturbation
allow us to prove a result which holds for all « in (0, 1].

In Section 4 we discuss Remark 2.4 from [8]. Using a Levinson-type
theorem from [2] we prove the absolute continuity of the Jacobi operators
considered there.

2. Assumptions on the perturbation (A,),cy. First, we recall the
definition of the Stolz classes DF. It will often be convenient to use this
notion to state conditions on the weights and the diagonal of a Jacobi matrix.
Giinter Stolz introduced the DF classes in [7] to investigate a discrete version
of the Schrédinger operator. In what follows we always assume that X is one

of the spaces R, C,R%, C?¢, My(R) or My(C).
DEFINITION 1. Let A be the forward difference operator, i.e.
(Aa)(n) :=a(n+1) —a(n), acl(N;X),n=1,2,....
For every k € N let D* be the set of bounded sequences a € I(N;X) such

that ‘ ‘
Nael!V(N;X), j=1,... .,k

We finally set D := J,y D

Stolz introduced the DF classes for numerical sequences only. We use the
above general form to simplify some notations.

To use Khan and Pearson’s theory we need to know the asymptotic be-
havior of the solutions of the generalized eigenequation. That behavior can
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be obtained by applying Theorem 1.7 of [2] concerning asymptotic behavior
for systems of linear difference equations of the form

i(n+1) = A(n)d(n), n > ny.

The idea is to apply that result to the system (7) but not in its original form.
Namely (see the proof of Theorem 1), we will analyse the system

17(271 + 1) = BQnBQTL_l'L_I:(zn — 1), n € N.

Of course the sequence Bs,, Ba,_1 must satisfy the assumptions of Theorem
1.7 in [2]. This requires some restrictions on the sequence (A,,),en, described
by the following lemma.

LEMMA 1. Let (Ap)nen be a sequence as in (2) with |A,| < r < 1 for
n € N. Then

A1 — A, 1
o (S s (1) em
n neN A/ nen

An_
(i) (Ap)nen € D? = ( 1) e DL
)‘" neN

Proof. According to the assumption |A,| < r < 1 for n € N, all the
denominators of the terms below are different from zero and the sequence
(1+ A,) is bounded for all n € N. We will use the Taylor expansion for z¢
repeatedly in this proof.

(i) We have to show that
(9) Ai _ (n—1D%1+ A1) —n*(1+A4,)

An n*(1+ Ay)(n— 1)1+ A,—1)

(n—1)% —n® n A1 — A,

n*(n—1%1+A,-1) n*(1+A4,)(1+ A,_1)

is in [!. By assumption the second term on the right hand side in (9) belongs
to I, and since

(n—1)*—n“ ~n®—an® '+ 0(n*?%) —n®
no‘(n— 1)“(1+An_1) - no‘(n— 1)“(1+An_1)
= — +On?),

nin—1)*(1+ A,-1)

so does the first term.

(ii) By definition we have
(10) (A )nen €D? & (AAp)nen €12 A (A2A,)pen € 11
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Obviously, the first condition in (10) is equivalent to (AA,)? € I*. Now
Aot _ (14 An)® — (02 = 1)*(1+ Ap—1) (1 + Any1)
» 7 (¥ VAT A (LT Ane)
n2a ((1 + An)2 - (1 + Anfl)(l + An+1))
w0 D+ A1+ Brrr)
an®*2(14+ A, 1)1+ Apgr) + O(n** %)
wo (D A1+ Argr)
1+A4,)2 = (1+4,-1)1+ A4,
_ ( + )1 ( + 1)( + +1) + O(’I’L_Q)
(1 + H)a(l + An)(l + An-H)
2 2
_ (AA,) B AN, + o).
1+1/n)*(14+A,)1+Apt1) (1+1/n)*(1+ A4A,)

The sequences in the above two denominators are bounded. Now using (10)
we have (A,—1/An)neny € D' =

A

This lemma will be used to prove Theorem 1 below. The conditions (i)
and (i) from Lemma 1 are sufficient for a Jacobi matrix with zero diago-
nal and weights (2) to be absolutely continuous. Those conditions are quite
different from the conditions (3) and (4) used in [4] and [3], and there are
no implications between them, despite the fact that the class of matrices
considered here is larger than the class analysed in [4] and [3].

3. Absolute continuity of Jacobi matrices. This section contains
two theorems on the asymptotics of the solutions of the system (7), and on
the spectral properties of the operator defined by (1) and (2). To state these
theorems we need some preparations. Let

0 A
(11)  S(n) := ( ) >, Soo := lim S(n),
—Man—2/Aan A%/ Aon—1A2n n—oo
and i, (7) and fimeo be the eigenvalues of S(j) and So, m =1, 2.

THEOREM 1. Let J be a Jacobi operator of the form (1) with zero diag-
onal and weights (2) for which we have
(i) |Apl <r<1l,neN;
(i) ((An-1—An)/n)nen € 1
(iii) (An)nen € D2
Then for any A € R\ {0} there exists a basis ¥1 = T1(n, ), T2 = T2(n, \) of
the space of solutions of (7) of the form

Fon(1, ) = (ﬁ(—ﬁgl # b)) ) e 01, =12

i A2j—1
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where pim(J) — moos Smoo 18 an eigenvector of Seo for fimeo, and o(1) is a
C? vector with o(1) norm.

Computing all the eigenvalues and eigenvectors mentioned in this theo-
rem we get formulas for the basis vectors of the space of solutions of (7):

(12)  Fi(n,A) = jHI(—AiZl - 2A§;_21A2j

* 2A21jl \/ Agijgj B 4A2;Z—2) (8100 + 0(1)),
(13)  @a(n,\) = E(—Aigl +3 A%ﬁA%

- 2A21j_1 \/ AgjilAgj - 4A2§Z_2> (5200 +0(1)),
where

. 1 S -1
Sloo = A 5200 = . s
(3 1

Proof. The idea of the proof is to represent the product of the transfer
matrices Ba,Ba,—1, given by the formula (6), as a(n)I + p(n)S(n) + R(n),
where [ is the identity matrix, (S(n))nen € DY, (R(n))nen € I}, a(n) =
—A2n—1/A2pn and p(n) = 1/Ag,—1. Next, using Theorem 1.7 in [2] we will get
our theorem.

Since (An_1/An)nen € D!, using Lemma 1 we have

Aon—2  Aop—1

14 — = d el
( ) Nom 1 Ao 'n an (Tn)nEN
By (6) we obtain
_ A2p—2 A
Ao pv—
BonBan—1 = ( A 2)\2:—2 2 o A2n—1 >
T Xon Azn1 Azn—1den  Aen
Using (14) we can write the above matrix as
Aop— 1
BopBon1 = — =21 T + S(n) + R(n),
A2n A2n—1

where S(n) is as in (11) and
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By (14) we have (R(n))nen € I1. A product of two sequences in D! is again
in D!, so since

i N —)\2. L
A2n Aoan—1 Aan | Agn—1don Aon—1 Ao’

Lemma 1 implies (S(n))nen € D. Now, by assumption (i) it follows that

). Aon—2 Azn—1 A2, 1 1

-2

Aop—
det By, Bop—1 = 2n—2 #0, n €N,

)\Qn
Aon—1 1 > <)\2n1 ) ?
det| — I+ S(n) | = 0, mneN.
< )\2n )\2n—1 ( ) )\Qn ?é
Using the form of the weights \,,, we obtain
. Aon—1 : B

The matrix S is

-2 0

for which we have discr Soo = —4A2 < 0, with A € R\ {0}.

Now all that needs to be done is to apply Theorem 1.7 of [2] for A(n) =
By, Bap—1 and V(n) = —a(n)I + p(n)S(n), where a(n) = —Aap—1/A2y, and
p(n) = 1/Aap—1 for all n € N. This completes the proof. =

Thanks to the asymptotic formulas (12) and (13) we are able to describe
spectral properties of the operators considered. By the analysis of (12) and
(13) we show as in [4, 3| that for any real A there are no subordinate solutions.
The subordinacy theory shows that the absolutely continuous spectrum of
the operator J covers the whole R.

Applying Lemma 1 and Theorem 1 we obtain

THEOREM 2. The operator J as in Theorem 1 is absolutely continuous
and 0ac(J) = R.

Proof. We need to show that there are no subordinate solutions. Using
Theorem 3 of [6] will then complete the (folklore) proof.

Any solution of (7) with A # 0 is a linear combination of the vectors
(12) and (13). In those formulas, for n large enough, the scalar factors are
conjugate. We can thus rewrite them as

n—1

F1(n) = [ [ (a; + bj1) (5100 + 0(1)) = Rpe’®" (5100 + 0(1)),
j=1
n—1

Za(n) = [ [ (a; = bji) (820 + (1)) = Rpe™**" (5200 + 0(1)).
j=1
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So, the solutions of (7) are as follows:

ﬁ(n) = 013?1(71) + Cgfg(n) = Rn(cle@” 51771 + 62671'45715»27”)7

(n) = di1Z1(n) + deZa(n) = Rn(dle@”E’Ln + dge_@”gg,n),

where we put §;,, for Sis + 0(1) for i =1, 2.
To show that there are no subordinate solutions we will prove that

15 n=1 1"
o) ZnNzl [(n )||2 =
Indeed,

(16) Saca @) S [RaPllere® 51 + coe™ P05y 0
SN B2 SN Rl diei®n 5y + doe=iPn 5y |2
N IR le1Sin 4 coe %P5 |2

Son | Rl 1510 + dae 220 5 |2
The sequence (e~ %), .y C {z€C: |z| =1} has a convergent subsequence

(6_2i¢”k) ren- Hence there are numbers @ and @ such that for any complex
numbers a and b we have

lim inf ||, + be 2P 5 || = [|aB1co + be F 20|,
lim sup ||aS} ,, + b6_2i¢"§27n‘| = ||a8100 + be™ 2@5'200”
n—oo
It follows that for any € > 0 there is ng € N such that for n > ny,
(17) llc151n + c2e —2itn g, n|| (lc18100 + co€ Z“‘DSQOOH — )2,
(18) |d151,0 + doe™ 205y |2 < (||d1 5100 + dae 2P Fan || + €).

Now using (17) and (18) we can estimate the quotient in (15). First,
Zn no |R ’ ”Clsln + coe 27;4571';2 ||2
Zn no |R | Hdlsln + dge~ 22@"52 ||2

(le18100 + c26™ 5050 || — €)
T (||d15100 4 doe2PF, || + €)2

(19)

—2iP 2

> 0.

If n < ng then clearly
Sor0 R ?[le181m + coe™ 2P0 5, 02
Zno 1’R ‘2Hd151n+d26 21@”82 HZ

by the linear independence of §1o, and Ss. To show that (15) is true, we
need one more fact:

b b
(21) Va,b,c,d > 0 Zidzmin{%,g}.

(20) > 0.
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Now using (16), (19), (20) and (21) we can prove (15):

Sy lii(n)|? .
(22) m > min{¢,{} > 0,
n=1
where
= Sony | R lle151,0 + coe” 2P0 5, |2
S om0 R 2| d1 51 + dae2Pn 5y |2
e 1= et + cae~ 5]

(||d1 5100 + doe=2% 35| + €)%

(22) implies that for any A € R\ {0} there are no subordinate solutions of
the generalized eigenequation.

If A =0, then we have explicit formulas for the norms of solutions of the
generalized eigenequation with the boundary conditions (u(1),u(2)) = (0,1)
or (1,0):

2=ty ln=v/2)y
(23) fl(n = J s .T_,"Q n = L .
@l =11 555} 1mei= I 52

We will show that every solution #(n) (being a linear combination of #(n)
and Z(n) given by (23)) satisfies

. C
(24) i) < 5

(24) implies that there are no subordinate solutions (for details see Lemma
2.2 in [3]) and this yields A = 0 € 0,.(J). To prove (24), we will show that

)\n )\n—l
25 = L+7r,), n>2
( ) )\n-f—l )\n ( T ) "

where (7 )nen € 1L
Assuming that (25) holds, we prove (24) for @(n) = Z1(n), the proof for
Z2(n) being similar:

[n/2]-1 2 [n/2]-1

A9 Aos || Ao
. 2 27 27 27—-1
r1(n = —_— 147,
[zl ]11 A2j11 Jl;ll A2j1|] Agj
[n/2]-1
AL AL i)l ¢
- 14 7| < rallla = .
)\n—l H | tr | - )\n—le l >\n—l

j=1
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To end the proof we show (25) (omitting some details):

Ao (=114 49)7 1+ A
(26) At ne(1+ D)%+ A4,)

_ An-i <1+ 1 >a (1+4,)?
W n2—1) (14+A4A,1)(1+Ans1)’

The second factor of this product is equal to

(27) 14+ ——— + 0™ =1+,
where (n(Ll)) € [1. The third factor equals
An— Ay A, — A
(28) (1 + n n 1> <1 + n n+1).
1+ An,1 1+ AnJrl
After some calculations we can rewrite (28) as

(AAn—l)2 - (1 + An—l)(AQAn—l)

=142,
0+ 20 )+ A *

(29) 1+

Using the assumptions of the theorem we find that (T%Q))neN is an ! sequence.
Combining (26) with (27) and (29) one can see that (25) holds. It implies
that there are no subordinate solutions for A = 0.

Concluding our considerations, we have proved that there can be no
subordinate solutions for all A € R, which finishes the proof. =

4. An example of Jacobi matrices with irregular entries. In this
section we consider a Jacobi matrix defined by

(30) gn=n+14+(-1" A\ =+Gn-1qn, n>1

which was introduced by R. Szwarc in [8] (Remark 2.4). Because the sequence
(@n/An)nen does not belong to D!, the author claims that the Levinson-type
theorems in [2] are not valid in this case. On the contrary, Theorem 1.6 in
[2] does apply to this example. To see this, we recall that theorem below. It
concerns systems of equations of the form

(31) u(n +1) = A(n)u(n),  (A(n))n>n, € {(Ma(C)).
THEOREM 3. Assume that A(n) =V (n) 4+ R(n) for n > ng and

(i) det A(n),det V(n) # 0 for n > nyg,
(ii) (V(n))nzn, € DY,
(iii) (R(n))n>n, € I*.

If (V(n)) € Ma(R) forn > ng and discr Voo < 0, where Voo 1= limy, 00V (),
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then there exists a basis x1, xo of the space of solutions of (31) of the form

n—1
2 = (T An)) (0mos + (1)),
J=no
where A (7)) — Amooy Am(J) is an eigenvalue of V(n), and vmeo is an eigen-
vector of V(n) for Ameo, for m = 1,2; o(1) is a C? vector with o(1) norm.

In Szwarc’s example we have

BopBaop_1 = ( _11 _01 > + %( a jéi)ﬂl <1 IFEAA)/ZI) + R(n)

with (R(n)) € [(N; M2(R)). In this case

-1 —1> 1(( 1/2 (1+2>\)/4>

V(n):<1 0/ "n\(1-20/4 1-2

and it belongs to D! because it is the sum of a constant matrix and another
constant matrix multiplied by a sequence in D'. This is true for all A € R.
It remains to compute the discriminant of the matrix

V. — < -1 -1 )
N1 o)
which is equal to (tr V)2 —4det Voo =1 -4 = -3 <0, for all A € R.
Now we can apply Theorem 3. We obtain the asymptotic behavior of the
solutions of (7) which is determined by the product of the eigenvalues of V()

matrices. Next, by subordinacy theory we prove that o(J) = 0ac(J) = R.
The eigenvalues of V(j) are

, 1 3-2\ 1 ~ 142\ ,2
)\ = —— — 1—
1(4) 5+ 5 +2\/§z< 5 >—|—O(n ),

. 1 3-2x 1 .. 142X _9
A =—= —=V3ill— @) .
2(7) 5+ 1 5 \/_2< 6 > +0O(n™?)
Just as in the proof of Theorem 2, the eigenvalues are conjugate. So the proof

of absolute continuity of the Jacobi operator given by (30) is essentially the
same as that of Theorem 2.
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