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ABSOLUTE CONTINUITY FOR JACOBI MATRICESWITH POWER-LIKE WEIGHTSBYWOJCIECH MOTYKA (Kraków)Abstra
t. This work deals with a 
lass of Ja
obi matri
es with power-like weights.The main theme is spe
tral analysis of matri
es with zero diagonal and weights λn :=
nα(1 + ∆n) where α ∈ (0, 1]. Asymptoti
 formulas for generalized eigenve
tors are givenand absolute 
ontinuity of the matri
es 
onsidered is proved. The last se
tion is devotedto spe
tral analysis of Ja
obi matri
es with qn = n + 1 + (−1)n and λn =

√
qn−1qn.1. Introdu
tion. Ja
obi matri
es with power-like weights have beenstudied in several papers (for example [4, 3, 2℄). We 
ontinue the studyof [3℄ 
on
erning Ja
obi matri
es with zero diagonal and weights of the form

nα(1+∆n), where 1/2 < α < 1. Our main 
on
ern is to extend the results of[3℄ to α ranging over the whole interval (0, 1]. If (∆n)n∈N satis�es some spe-
ial assumptions, whi
h depend on α, then the Ja
obi matri
es have purelyabsolutely 
ontinuous spe
trum.A Ja
obi matrix is a tridiagonal in�nite matrix of the form
J =



















q1 λ1 0 0 · · ·
λ1 q2 λ2 0 · · ·
0 λ2 q3 λ3 · · ·
0 0 λ3 q4 · · ·... ... ... ... . . .



















whi
h indu
es an operator J a
ting in l2(N; C). This operator is de�ned onits maximal domain
D(J ) := {u ∈ l2(N; C) : J u ∈ l2(N; C)}by the formula(1) (J u)n := λn−1un−1 + qnun + λnun+1, u ∈ D(J );we put un = λn := 0 for n < 1. We always assume that the weights (λn)n∈N2000 Mathemati
s Subje
t Classi�
ation: 47B36, 47A75.Key words and phrases: Ja
obi matri
es, asymptoti
s of solutions, spe
tral analysis,absolutely 
ontinuous spe
trum, subordina
y theory, transfer matri
es.[179℄
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and the diagonal (qn)n∈N satisfy

qn, λn ∈ R, λn > 0, n ∈ N.In this work we 
onsider the operators of the above form with zero diag-onal and the weights given by(2) λn := nα(1 + ∆n), α ∈ (0, 1], n ∈ N.We are interested in spe
tral properties of su
h operators, depending onthe perturbation (∆n). In [3℄ J. Janas and S. Naboko proved that for (∆n)ful�lling two 
onditions:(3) (εn∆n) ∈ l1,(4) (ε2n − ε2n−1) ∈ l1 ∨ (ε2n+1 − ε2n) ∈ l1,where εn := ∆n − ∆n−1, the asso
iated Ja
obi operator J has absolutely
ontinuous spe
trum 
overing the whole real line. They used the so 
alledgrouping in blo
ks approa
h and the subordina
y theory of Khan and Pear-son. Thanks to the grouping in blo
ks method they were able to �nd theasymptoti
s of the solution of the generalized eigenequation(5) λn−1un−1 + qnun + λnun+1 = λun, n ∈ N, λ ∈ C.More pre
isely, let(6) ~un :=

(

un−1

un

) and Bn :=

(

0 1

−λn−1/λn (λ − qn)/λn

)

.

Bn is 
alled the transfer matrix. Then we 
an write the equation J u = λuas(7) ~un+1 = Bn~un, n = 2, 3, . . . .As a 
onsequen
e we also have
~un+1 = BnBn−1 · · ·BNs+1−1 · · ·BNs

· · ·Bn0
~un0

, n = 2, 3, . . . .In [4, 3℄ one 
an �nd a detailed analysis of produ
ts BNs+1−1 · · ·BNs
overthe blo
ks Ωs = [Ns, Ns+1) of natural numbers su
h that N \ {1} =

⋃

s Ωs.The length of the blo
k Ωs is determined by the requirement(8) ∑

t∈Ωs

1

λt
= 2 + O(s−α/(1−α)).This is for
ed by the ne
essity to obtain Fourier series with frequen
iesinsigni�
antly di�erent from integer numbers. For α ∈ (1/2, 1) the term

O(s−α/(1−α)) is in l1, so it 
an be negle
ted in further 
al
ulations. In [3℄there are asymptoti
 formulas for generalized eigenve
tors (~un)n∈N, whi
himply the absolute 
ontinuity of the spe
trum of the relevant Ja
obi matri-
es on the whole real line.
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For α ∈ (0, 1], the right hand side of (8) 
annot be approximated by 2,be
ause the term O(s−α/(1−α)) is no longer in l1, for every α. That is whythe spe
tral analysis of the Ja
obi matri
es with zero diagonal and weights(2) requires a di�erent approa
h than that in [4, 3℄. Just like there, weanalyse (see the proof of Theorem 1) a produ
t of transfer matri
es to �ndthe asymptoti
s of generalized eigenve
tors, and applying the subordina
ytheory we are able to show that σac(J ) = R. The main di�eren
e is thatwe analyse only a pair of transfer matri
es, not the whole blo
k. In our 
ase(Theorem 1) the spe
tral analysis of J 
an be obtained by using Levinson-type theorems found in [2℄, whi
h apply to systems of linear equations of theform x(n + 1) = A(n)x(n) where A(n) are d × d nonsingular matri
es, for
n ≥ n0.The organization of the paper is as follows. In Se
tion 2 we quote thede�nition of the Stolz 
lasses Dk and prove Lemma 1 whi
h will be used inthe next se
tion.Se
tion 3 
ontains two theorems whi
h are our main results. The �rsttheorem gives the asymptoti
s of the solutions of the generalized eigenequa-tion for a 
lass of Ja
obi matri
es with qn = 0 and λn = nα(1 + ∆n) where
α ∈ (0, 1] and n ≥ 1. Some assumptions on the strength of the perturbationallow us to prove a result whi
h holds for all α in (0, 1].In Se
tion 4 we dis
uss Remark 2.4 from [8℄. Using a Levinson-typetheorem from [2℄ we prove the absolute 
ontinuity of the Ja
obi operators
onsidered there.2. Assumptions on the perturbation (∆n)n∈N. First, we re
all thede�nition of the Stolz 
lasses Dk. It will often be 
onvenient to use thisnotion to state 
onditions on the weights and the diagonal of a Ja
obi matrix.Günter Stolz introdu
ed the Dk 
lasses in [7℄ to investigate a dis
rete versionof the S
hrödinger operator. In what follows we always assume that X is oneof the spa
es R, C, Rd, Cd, Md(R) or Md(C).Definition 1. Let ∆ be the forward di�eren
e operator, i.e.

(∆a)(n) := a(n + 1) − a(n), a ∈ l(N; X), n = 1, 2, . . . .For every k ∈ N let Dk be the set of bounded sequen
es a ∈ l(N; X) su
hthat
∆ja ∈ lk/j(N; X), j = 1, . . . , k.We �nally set D :=

⋃

k∈N
Dk.Stolz introdu
ed the Dk 
lasses for numeri
al sequen
es only. We use theabove general form to simplify some notations.To use Khan and Pearson's theory we need to know the asymptoti
 be-havior of the solutions of the generalized eigenequation. That behavior 
an
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be obtained by applying Theorem 1.7 of [2℄ 
on
erning asymptoti
 behaviorfor systems of linear di�eren
e equations of the form

~u(n + 1) = A(n)~u(n), n ≥ n0.The idea is to apply that result to the system (7) but not in its original form.Namely (see the proof of Theorem 1), we will analyse the system
~u(2n + 1) = B2nB2n−1~u(2n − 1), n ∈ N.Of 
ourse the sequen
e B2nB2n−1 must satisfy the assumptions of Theorem1.7 in [2℄. This requires some restri
tions on the sequen
e (∆n)n∈N, des
ribedby the following lemma.Lemma 1. Let (λn)n∈N be a sequen
e as in (2) with |∆n| ≤ r < 1 for

n ∈ N. Then
(i)

(

∆n−1 − ∆n

nα

)

n∈N

∈ l1 ⇒
(

1

λn

)

n∈N

∈ D1,

(ii) (∆n)n∈N ∈ D2 ⇒
(

λn−1

λn

)

n∈N

∈ D1.

Proof. A

ording to the assumption |∆n| ≤ r < 1 for n ∈ N, all thedenominators of the terms below are di�erent from zero and the sequen
e
(1 + ∆n) is bounded for all n ∈ N. We will use the Taylor expansion for xαrepeatedly in this proof.(i) We have to show that

∆
1

λn
=

(n − 1)α(1 + ∆n−1) − nα(1 + ∆n)

nα(1 + ∆n)(n − 1)α(1 + ∆n−1)
(9)

=
(n − 1)α − nα

nα(n − 1)α(1 + ∆n−1)
+

∆n−1 − ∆n

nα(1 + ∆n)(1 + ∆n−1)is in l1. By assumption the se
ond term on the right hand side in (9) belongsto l1, and sin
e
(n − 1)α − nα

nα(n − 1)α(1 + ∆n−1)
=

nα − αnα−1 + O(nα−2) − nα

nα(n − 1)α(1 + ∆n−1)

=
−α

n(n − 1)α(1 + ∆n−1)
+ O(n−2),so does the �rst term.(ii) By de�nition we have(10) (∆n)n∈N ∈ D2 ⇔ (∆∆n)n∈N ∈ l2 ∧ (∆2∆n)n∈N ∈ l1.
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Obviously, the �rst 
ondition in (10) is equivalent to (∆∆n)2 ∈ l1. Now
∆

λn−1

λn
=

n2α(1 + ∆n)2 − (n2 − 1)α(1 + ∆n−1)(1 + ∆n+1)

nα(n + 1)α(1 + ∆n)(1 + ∆n+1)

=
n2α

(

(1 + ∆n)2 − (1 + ∆n−1)(1 + ∆n+1)
)

nα(n + 1)α(1 + ∆n)(1 + ∆n+1)

+
αn2α−2(1 + ∆n−1)(1 + ∆n+1) + O(n2α−4)

nα(n + 1)α(1 + ∆n)(1 + ∆n+1)

=
(1 + ∆n)2 − (1 + ∆n−1)(1 + ∆n+1)

(1 + 1
n)α(1 + ∆n)(1 + ∆n+1)

+ O(n−2)

=
(∆∆n)2

(1 + 1/n)α(1 + ∆n)(1 + ∆n+1)
− ∆2∆n−1

(1 + 1/n)α(1 + ∆n)
+ O(n−2).The sequen
es in the above two denominators are bounded. Now using (10)we have (λn−1/λn)n∈N ∈ D1.This lemma will be used to prove Theorem 1 below. The 
onditions (i)and (ii) from Lemma 1 are su�
ient for a Ja
obi matrix with zero diago-nal and weights (2) to be absolutely 
ontinuous. Those 
onditions are quitedi�erent from the 
onditions (3) and (4) used in [4℄ and [3℄, and there areno impli
ations between them, despite the fa
t that the 
lass of matri
es
onsidered here is larger than the 
lass analysed in [4℄ and [3℄.3. Absolute 
ontinuity of Ja
obi matri
es. This se
tion 
ontainstwo theorems on the asymptoti
s of the solutions of the system (7), and onthe spe
tral properties of the operator de�ned by (1) and (2). To state thesetheorems we need some preparations. Let(11) S(n) :=

(

0 λ

−λλ2n−2/λ2n λ2/λ2n−1λ2n

)

, S∞ := lim
n→∞

S(n),and µm(j) and µm∞ be the eigenvalues of S(j) and S∞, m = 1, 2.Theorem 1. Let J be a Ja
obi operator of the form (1) with zero diag-onal and weights (2) for whi
h we have(i) |∆n| ≤ r < 1, n ∈ N;(ii) ((∆n−1 − ∆n)/nα)n∈N ∈ l1;(iii) (∆n)n∈N ∈ D2.Then for any λ ∈ R \ {0} there exists a basis ~x1 = ~x1(n, λ), ~x2 = ~x2(n, λ) ofthe spa
e of solutions of (7) of the form
~xm(n, λ) =

(n−1
∏

j=1

(

−λ2j−1

λ2j
+

1

λ2j−1
µm(j)

))

(~sm∞ + o(1)), m = 1, 2,
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where µm(j) → µm∞, ~sm∞ is an eigenve
tor of S∞ for µm∞, and o(1) is a
C2 ve
tor with o(1) norm.Computing all the eigenvalues and eigenve
tors mentioned in this theo-rem we get formulas for the basis ve
tors of the spa
e of solutions of (7):
(12) ~x1(n, λ) =

n−1
∏

j=1

(

−λ2j−1

λ2j
+

λ2

2λ2
2j−1λ2j

+
1

2λ2j−1

√

λ4

λ2
2j−1λ

2
2j

− 4
λ2λ2j−2

λ2j

)

(~s1∞ + o(1)),

(13) ~x2(n, λ) =
n−1
∏

j=1

(

−λ2j−1

λ2j
+

λ2

2λ2
2j−1λ2j

− 1

2λ2j−1

√

λ4

λ2
2j−1λ

2
2j

− 4
λ2λ2j−2

λ2j

)

(~s2∞ + o(1)),where
~s1∞ =

(

1

i

)

, ~s2∞ =

( −1

i

)

,Proof. The idea of the proof is to represent the produ
t of the transfermatri
es B2nB2n−1, given by the formula (6), as a(n)I + p(n)S(n) + R(n),where I is the identity matrix, (S(n))n∈N ∈ D1, (R(n))n∈N ∈ l1, a(n) =
−λ2n−1/λ2n and p(n) = 1/λ2n−1. Next, using Theorem 1.7 in [2℄ we will getour theorem.Sin
e (λn−1/λn)n∈N ∈ D1, using Lemma 1 we have(14) λ2n−2

λ2n−1
− λ2n−1

λ2n
= rn and (rn)n∈N ∈ l1.By (6) we obtain

B2nB2n−1 =

( −λ2n−2

λ2n−1

λ
λ2n−1

− λ
λ2n

λ2n−2

λ2n−1

λ2

λ2n−1λ2n
− λ2n−1

λ2n

)

.

Using (14) we 
an write the above matrix as
B2nB2n−1 = −λ2n−1

λ2n
I +

1

λ2n−1
S(n) + R(n),where S(n) is as in (11) and

R(n) =

( −rn 0

0 0

)

.
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By (14) we have (R(n))n∈N ∈ l1. A produ
t of two sequen
es in D1 is againin D1, so sin
e
−λ · λ2n−2

λ2n
= −λ · λ2n−2

λ2n−1
· λ2n−1

λ2n
,

λ2

λ2n−1λ2n
= λ2 · 1

λ2n−1
· 1

λ2n
,Lemma 1 implies (S(n))n∈N ∈ D1. Now, by assumption (i) it follows that

detB2nB2n−1 =
λ2n−2

λ2n
6= 0, n ∈ N,

det

(

−λ2n−1

λ2n
I +

1

λ2n−1
S(n)

)

=

(

λ2n−1

λ2n

)2

6= 0, n ∈ N.Using the form of the weights λn, we obtain
lim

n→∞
−λ2n−1

λ2n
= 1, lim

n→∞

1

λ2n−1
= 0.The matrix S∞ is

S∞ =

(

0 λ

−λ 0

)

,for whi
h we have discrS∞ = −4λ2 < 0, with λ ∈ R \ {0}.Now all that needs to be done is to apply Theorem 1.7 of [2℄ for A(n) =
B2nB2n−1 and V (n) = −a(n)I + p(n)S(n), where a(n) = −λ2n−1/λ2n and
p(n) = 1/λ2n−1 for all n ∈ N. This 
ompletes the proof.Thanks to the asymptoti
 formulas (12) and (13) we are able to des
ribespe
tral properties of the operators 
onsidered. By the analysis of (12) and(13) we show as in [4, 3℄ that for any real λ there are no subordinate solutions.The subordina
y theory shows that the absolutely 
ontinuous spe
trum ofthe operator J 
overs the whole R.Applying Lemma 1 and Theorem 1 we obtainTheorem 2. The operator J as in Theorem 1 is absolutely 
ontinuousand σac(J ) = R.Proof. We need to show that there are no subordinate solutions. UsingTheorem 3 of [6℄ will then 
omplete the (folklore) proof.Any solution of (7) with λ 6= 0 is a linear 
ombination of the ve
tors(12) and (13). In those formulas, for n large enough, the s
alar fa
tors are
onjugate. We 
an thus rewrite them as

~x1(n) =
n−1
∏

j=1

(aj + bji)(~s1∞ + o(1)) = RneiΦn(~s1∞ + o(1)),

~x2(n) =

n−1
∏

j=1

(aj − bji)(~s2∞ + o(1)) = Rne−iΦn(~s2∞ + o(1)).
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So, the solutions of (7) are as follows:

~u(n) = c1~x1(n) + c2~x2(n) = Rn(c1e
iΦn~s1,n + c2e

−iΦn~s2,n),

~v(n) = d1~x1(n) + d2~x2(n) = Rn(d1e
iΦn~s1,n + d2e

−iΦn~s2,n),where we put ~si,n for ~si∞ + o(1) for i = 1, 2.To show that there are no subordinate solutions we will prove that(15) ∑N
n=1 ‖~u(n)‖2

∑N
n=1 ‖~v(n)‖2

≥ ̺ > 0.Indeed,
∑N

n=1 ‖~u(n)‖2

∑N
n=1 ‖~v(n)‖2

=

∑N
n=1 |Rn|2‖c1e

iΦn~s1,n + c2e
−iΦn~s2,n‖2

∑N
n=1 |Rn|2‖d1eiΦn~s1,n + d2e−iΦn~s2,n‖2

(16)
=

∑N
n=1 |Rn|2‖c1~s1,n + c2e

−2iΦn~s2,n‖2

∑N
n=1 |Rn|2‖d1~s1,n + d2e−2iΦn~s2,n‖2

.The sequen
e (e−2iΦn)n∈N ⊂ {z ∈ C : |z| = 1} has a 
onvergent subsequen
e
(e−2iΦnk )k∈N. Hen
e there are numbers Φ and Φ su
h that for any 
omplexnumbers a and b we have

lim inf
n→∞

‖a~s1,n + be−2iΦn~s2,n‖ = ‖a~s1∞ + be−2iΦ~s2∞‖,

lim sup
n→∞

‖a~s1,n + be−2iΦn~s2,n‖ = ‖a~s1∞ + be−2iΦ~s2∞‖.It follows that for any ε > 0 there is n0 ∈ N su
h that for n ≥ n0,
‖c1~s1,n + c2e

−2iΦn~s2,n‖2 ≥ (‖c1~s1∞ + c2e
−2iΦ~s2∞‖ − ε)2,(17)

‖d1~s1,n + d2e
−2iΦn~s2,n‖2 ≤ (‖d1~s1∞ + d2e

−2iΦ~s2∞‖ + ε)2.(18)Now using (17) and (18) we 
an estimate the quotient in (15). First,
(19)

∑N
n=n0

|Rn|2‖c1~s1,n + c2e
−2iΦn~s2,n‖2

∑N
n=n0

|Rn|2‖d1~s1,n + d2e−2iΦn~s2,n‖2

≥ (‖c1~s1∞ + c2e
−2iΦ~s2∞‖ − ε)2

(‖d1~s1∞ + d2e−2iΦ~s2∞‖ + ε)2
> 0.If n < n0 then 
learly(20) ∑n0−1

n=1 |Rn|2‖c1~s1,n + c2e
−2iΦn~s2,n‖2

∑n0−1
n=1 |Rn|2‖d1~s1,n + d2e−2iΦn~s2,n‖2

> 0.by the linear independen
e of ~s1∞ and ~s2∞. To show that (15) is true, weneed one more fa
t:(21) ∀a, b, c, d > 0
a + b

c + d
≥ min

{

a

c
,
b

d

}

.
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Now using (16), (19), (20) and (21) we 
an prove (15):
(22) ∑N

n=1 ‖~u(n)‖2

∑N
n=1 ‖~v(n)‖2

≥ min{ζ, ξ} > 0,

where
ζ :=

∑n0−1
n=1 |Rn|2‖c1~s1,n + c2e

−2iΦn~s2,n‖2

∑n0−1
n=1 |Rn|2‖d1~s1,n + d2e−2iΦn~s2,n‖2

,

ξ :=
(‖c1~s1∞ + c2e

−2iΦ~s2∞‖ − ε)2

(‖d1~s1∞ + d2e−2iΦ~s2∞‖ + ε)2
.

(22) implies that for any λ ∈ R \ {0} there are no subordinate solutions ofthe generalized eigenequation.If λ = 0, then we have expli
it formulas for the norms of solutions of thegeneralized eigenequation with the boundary 
onditions (u(1), u(2)) = (0, 1)or (1, 0):
(23) ‖~x1(n)‖ =

⌊n/2⌋−1
∏

j=1

∣

∣

∣

∣

λ2j

λ2j+1

∣

∣

∣

∣

, ‖~x2(n)‖ =

⌊(n−1)/2⌋
∏

j=1

∣

∣

∣

∣

λ2j−1

λ2j

∣

∣

∣

∣

.

We will show that every solution ~u(n) (being a linear 
ombination of ~x1(n)and ~x2(n) given by (23)) satis�es(24) ‖~u(n)‖2 ≤ C

λn−1
.(24) implies that there are no subordinate solutions (for details see Lemma2.2 in [3℄) and this yields λ = 0 ∈ σac(J ). To prove (24), we will show that(25) λn

λn+1
=

λn−1

λn
(1 + rn), n ≥ 2,where (rn)n∈N ∈ l1.Assuming that (25) holds, we prove (24) for ~u(n) = ~x1(n), the proof for

~x2(n) being similar:
‖~x1(n)‖2 =

⌊n/2⌋−1
∏

j=1

∣

∣

∣

∣

λ2j

λ2j+1

∣

∣

∣

∣

2

=

⌊n/2⌋−1
∏

j=1

∣

∣

∣

∣

λ2j

λ2j+1

∣

∣

∣

∣

∣

∣

∣

∣

λ2j−1

λ2j

∣

∣

∣

∣

∣

∣

∣

∣

1 + rn

∣

∣

∣

∣

=
λ1

λn−1

⌊n/2⌋−1
∏

j=1

|1 + rn| ≤
λ1

λn−1
e‖(rn)‖

l1 =
C

λn−1
.
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To end the proof we show (25) (omitting some details):

λn

λn+1
=

(n − 1)α
(

1 + 1
n−1

)α
(1 + ∆n)

nα
(

1 + 1
n

)α
(1 + ∆n)

(26)
=

λn−1

λn

(

1 +
1

n2 − 1

)α (1 + ∆n)2

(1 + ∆n−1)(1 + ∆n+1)
.The se
ond fa
tor of this produ
t is equal to(27) 1 +

α

n2 + 1
+ O(n−4) = 1 + r(1)

n ,where (r
(1)
n ) ∈ l1. The third fa
tor equals(28) (

1 +
∆n − ∆n−1

1 + ∆n−1

)(

1 +
∆n − ∆n+1

1 + ∆n+1

)

.After some 
al
ulations we 
an rewrite (28) as(29) 1 +
(∆∆n−1)

2 − (1 + ∆n−1)(∆
2∆n−1)

(1 + ∆n−1)(1 + ∆n+1)
= 1 + r(2)

n .Using the assumptions of the theorem we �nd that (r
(2)
n )n∈N is an l1 sequen
e.Combining (26) with (27) and (29) one 
an see that (25) holds. It impliesthat there are no subordinate solutions for λ = 0.Con
luding our 
onsiderations, we have proved that there 
an be nosubordinate solutions for all λ ∈ R, whi
h �nishes the proof.4. An example of Ja
obi matri
es with irregular entries. In thisse
tion we 
onsider a Ja
obi matrix de�ned by(30) qn = n + 1 + (−1)n, λn =

√
qn−1qn, n ≥ 1.whi
h was introdu
ed by R. Szwar
 in [8℄ (Remark 2.4). Be
ause the sequen
e

(qn/λn)n∈N does not belong to D1, the author 
laims that the Levinson-typetheorems in [2℄ are not valid in this 
ase. On the 
ontrary, Theorem 1.6 in[2℄ does apply to this example. To see this, we re
all that theorem below. It
on
erns systems of equations of the form(31) u(n + 1) = A(n)u(n), (A(n))n≥n0
∈ l(M2(C)).Theorem 3. Assume that A(n) = V (n) + R(n) for n ≥ n0 and(i) detA(n), detV (n) 6= 0 for n ≥ n0,(ii) (V (n))n≥n0

∈ D1,(iii) (R(n))n≥n0
∈ l1.If (V (n)) ∈ M2(R) for n ≥ n0 and discrV∞ < 0, where V∞ := limn→∞V (n),
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then there exists a basis x1, x2 of the spa
e of solutions of (31) of the form
xm =

(

n−1
∏

j=n0

λm(j)
)

(vm∞ + o(1)),

where λm(j) → λm∞, λm(j) is an eigenvalue of V (n), and vm∞ is an eigen-ve
tor of V (n) for λm∞, for m = 1, 2; o(1) is a C2 ve
tor with o(1) norm.In Szwar
's example we have
B2nB2n−1 =

( −1 −1

1 0

)

+
1

n

(

1/2 (1 + 2λ)/4

(1 − 2λ)/4 1 − λ

)

+ R(n)with (R(n)) ∈ l(N; M2(R)). In this 
ase
V (n) :=

( −1 −1

1 0

)

+
1

n

(

1/2 (1 + 2λ)/4

(1 − 2λ)/4 1 − λ

)

and it belongs to D1 be
ause it is the sum of a 
onstant matrix and another
onstant matrix multiplied by a sequen
e in D1. This is true for all λ ∈ R.It remains to 
ompute the dis
riminant of the matrix
V∞ =

( −1 −1

1 0

)

,whi
h is equal to (trV∞)2 − 4 detV∞ = 1 − 4 = −3 < 0, for all λ ∈ R.Now we 
an apply Theorem 3. We obtain the asymptoti
 behavior of thesolutions of (7) whi
h is determined by the produ
t of the eigenvalues of V (j)matri
es. Next, by subordina
y theory we prove that σ(J ) = σac(J ) = R.The eigenvalues of V (j) are
λ1(j) = −1

2
+

3 − 2λ

4j
+

1

2

√
3i

(

1 − 1 + 2λ

6j

)

+ O(n−2),

λ2(j) = −1

2
+

3 − 2λ

4j
− 1

2

√
3i

(

1 − 1 + 2λ

6j

)

+ O(n−2).Just as in the proof of Theorem 2, the eigenvalues are 
onjugate. So the proofof absolute 
ontinuity of the Ja
obi operator given by (30) is essentially thesame as that of Theorem 2.
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