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ABSOLUTE CONTINUITY FOR JACOBI MATRICESWITH POWER-LIKE WEIGHTSBYWOJCIECH MOTYKA (Kraków)Abstrat. This work deals with a lass of Jaobi matries with power-like weights.The main theme is spetral analysis of matries with zero diagonal and weights λn :=
nα(1 + ∆n) where α ∈ (0, 1]. Asymptoti formulas for generalized eigenvetors are givenand absolute ontinuity of the matries onsidered is proved. The last setion is devotedto spetral analysis of Jaobi matries with qn = n + 1 + (−1)n and λn =

√
qn−1qn.1. Introdution. Jaobi matries with power-like weights have beenstudied in several papers (for example [4, 3, 2℄). We ontinue the studyof [3℄ onerning Jaobi matries with zero diagonal and weights of the form

nα(1+∆n), where 1/2 < α < 1. Our main onern is to extend the results of[3℄ to α ranging over the whole interval (0, 1]. If (∆n)n∈N satis�es some spe-ial assumptions, whih depend on α, then the Jaobi matries have purelyabsolutely ontinuous spetrum.A Jaobi matrix is a tridiagonal in�nite matrix of the form
J =



















q1 λ1 0 0 · · ·
λ1 q2 λ2 0 · · ·
0 λ2 q3 λ3 · · ·
0 0 λ3 q4 · · ·... ... ... ... . . .



















whih indues an operator J ating in l2(N; C). This operator is de�ned onits maximal domain
D(J ) := {u ∈ l2(N; C) : J u ∈ l2(N; C)}by the formula(1) (J u)n := λn−1un−1 + qnun + λnun+1, u ∈ D(J );we put un = λn := 0 for n < 1. We always assume that the weights (λn)n∈N2000 Mathematis Subjet Classi�ation: 47B36, 47A75.Key words and phrases: Jaobi matries, asymptotis of solutions, spetral analysis,absolutely ontinuous spetrum, subordinay theory, transfer matries.[179℄
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and the diagonal (qn)n∈N satisfy

qn, λn ∈ R, λn > 0, n ∈ N.In this work we onsider the operators of the above form with zero diag-onal and the weights given by(2) λn := nα(1 + ∆n), α ∈ (0, 1], n ∈ N.We are interested in spetral properties of suh operators, depending onthe perturbation (∆n). In [3℄ J. Janas and S. Naboko proved that for (∆n)ful�lling two onditions:(3) (εn∆n) ∈ l1,(4) (ε2n − ε2n−1) ∈ l1 ∨ (ε2n+1 − ε2n) ∈ l1,where εn := ∆n − ∆n−1, the assoiated Jaobi operator J has absolutelyontinuous spetrum overing the whole real line. They used the so alledgrouping in bloks approah and the subordinay theory of Khan and Pear-son. Thanks to the grouping in bloks method they were able to �nd theasymptotis of the solution of the generalized eigenequation(5) λn−1un−1 + qnun + λnun+1 = λun, n ∈ N, λ ∈ C.More preisely, let(6) ~un :=

(

un−1

un

) and Bn :=

(

0 1

−λn−1/λn (λ − qn)/λn

)

.

Bn is alled the transfer matrix. Then we an write the equation J u = λuas(7) ~un+1 = Bn~un, n = 2, 3, . . . .As a onsequene we also have
~un+1 = BnBn−1 · · ·BNs+1−1 · · ·BNs

· · ·Bn0
~un0

, n = 2, 3, . . . .In [4, 3℄ one an �nd a detailed analysis of produts BNs+1−1 · · ·BNs
overthe bloks Ωs = [Ns, Ns+1) of natural numbers suh that N \ {1} =

⋃

s Ωs.The length of the blok Ωs is determined by the requirement(8) ∑

t∈Ωs

1

λt
= 2 + O(s−α/(1−α)).This is fored by the neessity to obtain Fourier series with frequeniesinsigni�antly di�erent from integer numbers. For α ∈ (1/2, 1) the term

O(s−α/(1−α)) is in l1, so it an be negleted in further alulations. In [3℄there are asymptoti formulas for generalized eigenvetors (~un)n∈N, whihimply the absolute ontinuity of the spetrum of the relevant Jaobi matri-es on the whole real line.
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For α ∈ (0, 1], the right hand side of (8) annot be approximated by 2,beause the term O(s−α/(1−α)) is no longer in l1, for every α. That is whythe spetral analysis of the Jaobi matries with zero diagonal and weights(2) requires a di�erent approah than that in [4, 3℄. Just like there, weanalyse (see the proof of Theorem 1) a produt of transfer matries to �ndthe asymptotis of generalized eigenvetors, and applying the subordinaytheory we are able to show that σac(J ) = R. The main di�erene is thatwe analyse only a pair of transfer matries, not the whole blok. In our ase(Theorem 1) the spetral analysis of J an be obtained by using Levinson-type theorems found in [2℄, whih apply to systems of linear equations of theform x(n + 1) = A(n)x(n) where A(n) are d × d nonsingular matries, for
n ≥ n0.The organization of the paper is as follows. In Setion 2 we quote thede�nition of the Stolz lasses Dk and prove Lemma 1 whih will be used inthe next setion.Setion 3 ontains two theorems whih are our main results. The �rsttheorem gives the asymptotis of the solutions of the generalized eigenequa-tion for a lass of Jaobi matries with qn = 0 and λn = nα(1 + ∆n) where
α ∈ (0, 1] and n ≥ 1. Some assumptions on the strength of the perturbationallow us to prove a result whih holds for all α in (0, 1].In Setion 4 we disuss Remark 2.4 from [8℄. Using a Levinson-typetheorem from [2℄ we prove the absolute ontinuity of the Jaobi operatorsonsidered there.2. Assumptions on the perturbation (∆n)n∈N. First, we reall thede�nition of the Stolz lasses Dk. It will often be onvenient to use thisnotion to state onditions on the weights and the diagonal of a Jaobi matrix.Günter Stolz introdued the Dk lasses in [7℄ to investigate a disrete versionof the Shrödinger operator. In what follows we always assume that X is oneof the spaes R, C, Rd, Cd, Md(R) or Md(C).Definition 1. Let ∆ be the forward di�erene operator, i.e.

(∆a)(n) := a(n + 1) − a(n), a ∈ l(N; X), n = 1, 2, . . . .For every k ∈ N let Dk be the set of bounded sequenes a ∈ l(N; X) suhthat
∆ja ∈ lk/j(N; X), j = 1, . . . , k.We �nally set D :=

⋃

k∈N
Dk.Stolz introdued the Dk lasses for numerial sequenes only. We use theabove general form to simplify some notations.To use Khan and Pearson's theory we need to know the asymptoti be-havior of the solutions of the generalized eigenequation. That behavior an
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be obtained by applying Theorem 1.7 of [2℄ onerning asymptoti behaviorfor systems of linear di�erene equations of the form

~u(n + 1) = A(n)~u(n), n ≥ n0.The idea is to apply that result to the system (7) but not in its original form.Namely (see the proof of Theorem 1), we will analyse the system
~u(2n + 1) = B2nB2n−1~u(2n − 1), n ∈ N.Of ourse the sequene B2nB2n−1 must satisfy the assumptions of Theorem1.7 in [2℄. This requires some restritions on the sequene (∆n)n∈N, desribedby the following lemma.Lemma 1. Let (λn)n∈N be a sequene as in (2) with |∆n| ≤ r < 1 for

n ∈ N. Then
(i)

(

∆n−1 − ∆n

nα

)

n∈N

∈ l1 ⇒
(

1

λn

)

n∈N

∈ D1,

(ii) (∆n)n∈N ∈ D2 ⇒
(

λn−1

λn

)

n∈N

∈ D1.

Proof. Aording to the assumption |∆n| ≤ r < 1 for n ∈ N, all thedenominators of the terms below are di�erent from zero and the sequene
(1 + ∆n) is bounded for all n ∈ N. We will use the Taylor expansion for xαrepeatedly in this proof.(i) We have to show that

∆
1

λn
=

(n − 1)α(1 + ∆n−1) − nα(1 + ∆n)

nα(1 + ∆n)(n − 1)α(1 + ∆n−1)
(9)

=
(n − 1)α − nα

nα(n − 1)α(1 + ∆n−1)
+

∆n−1 − ∆n

nα(1 + ∆n)(1 + ∆n−1)is in l1. By assumption the seond term on the right hand side in (9) belongsto l1, and sine
(n − 1)α − nα

nα(n − 1)α(1 + ∆n−1)
=

nα − αnα−1 + O(nα−2) − nα

nα(n − 1)α(1 + ∆n−1)

=
−α

n(n − 1)α(1 + ∆n−1)
+ O(n−2),so does the �rst term.(ii) By de�nition we have(10) (∆n)n∈N ∈ D2 ⇔ (∆∆n)n∈N ∈ l2 ∧ (∆2∆n)n∈N ∈ l1.
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Obviously, the �rst ondition in (10) is equivalent to (∆∆n)2 ∈ l1. Now
∆

λn−1

λn
=

n2α(1 + ∆n)2 − (n2 − 1)α(1 + ∆n−1)(1 + ∆n+1)

nα(n + 1)α(1 + ∆n)(1 + ∆n+1)

=
n2α

(

(1 + ∆n)2 − (1 + ∆n−1)(1 + ∆n+1)
)

nα(n + 1)α(1 + ∆n)(1 + ∆n+1)

+
αn2α−2(1 + ∆n−1)(1 + ∆n+1) + O(n2α−4)

nα(n + 1)α(1 + ∆n)(1 + ∆n+1)

=
(1 + ∆n)2 − (1 + ∆n−1)(1 + ∆n+1)

(1 + 1
n)α(1 + ∆n)(1 + ∆n+1)

+ O(n−2)

=
(∆∆n)2

(1 + 1/n)α(1 + ∆n)(1 + ∆n+1)
− ∆2∆n−1

(1 + 1/n)α(1 + ∆n)
+ O(n−2).The sequenes in the above two denominators are bounded. Now using (10)we have (λn−1/λn)n∈N ∈ D1.This lemma will be used to prove Theorem 1 below. The onditions (i)and (ii) from Lemma 1 are su�ient for a Jaobi matrix with zero diago-nal and weights (2) to be absolutely ontinuous. Those onditions are quitedi�erent from the onditions (3) and (4) used in [4℄ and [3℄, and there areno impliations between them, despite the fat that the lass of matriesonsidered here is larger than the lass analysed in [4℄ and [3℄.3. Absolute ontinuity of Jaobi matries. This setion ontainstwo theorems on the asymptotis of the solutions of the system (7), and onthe spetral properties of the operator de�ned by (1) and (2). To state thesetheorems we need some preparations. Let(11) S(n) :=

(

0 λ

−λλ2n−2/λ2n λ2/λ2n−1λ2n

)

, S∞ := lim
n→∞

S(n),and µm(j) and µm∞ be the eigenvalues of S(j) and S∞, m = 1, 2.Theorem 1. Let J be a Jaobi operator of the form (1) with zero diag-onal and weights (2) for whih we have(i) |∆n| ≤ r < 1, n ∈ N;(ii) ((∆n−1 − ∆n)/nα)n∈N ∈ l1;(iii) (∆n)n∈N ∈ D2.Then for any λ ∈ R \ {0} there exists a basis ~x1 = ~x1(n, λ), ~x2 = ~x2(n, λ) ofthe spae of solutions of (7) of the form
~xm(n, λ) =

(n−1
∏

j=1

(

−λ2j−1

λ2j
+

1

λ2j−1
µm(j)

))

(~sm∞ + o(1)), m = 1, 2,
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where µm(j) → µm∞, ~sm∞ is an eigenvetor of S∞ for µm∞, and o(1) is a
C2 vetor with o(1) norm.Computing all the eigenvalues and eigenvetors mentioned in this theo-rem we get formulas for the basis vetors of the spae of solutions of (7):
(12) ~x1(n, λ) =

n−1
∏

j=1

(

−λ2j−1

λ2j
+

λ2

2λ2
2j−1λ2j

+
1

2λ2j−1

√

λ4

λ2
2j−1λ

2
2j

− 4
λ2λ2j−2

λ2j

)

(~s1∞ + o(1)),

(13) ~x2(n, λ) =
n−1
∏

j=1

(

−λ2j−1

λ2j
+

λ2

2λ2
2j−1λ2j

− 1

2λ2j−1

√

λ4

λ2
2j−1λ

2
2j

− 4
λ2λ2j−2

λ2j

)

(~s2∞ + o(1)),where
~s1∞ =

(

1

i

)

, ~s2∞ =

( −1

i

)

,Proof. The idea of the proof is to represent the produt of the transfermatries B2nB2n−1, given by the formula (6), as a(n)I + p(n)S(n) + R(n),where I is the identity matrix, (S(n))n∈N ∈ D1, (R(n))n∈N ∈ l1, a(n) =
−λ2n−1/λ2n and p(n) = 1/λ2n−1. Next, using Theorem 1.7 in [2℄ we will getour theorem.Sine (λn−1/λn)n∈N ∈ D1, using Lemma 1 we have(14) λ2n−2

λ2n−1
− λ2n−1

λ2n
= rn and (rn)n∈N ∈ l1.By (6) we obtain

B2nB2n−1 =

( −λ2n−2

λ2n−1

λ
λ2n−1

− λ
λ2n

λ2n−2

λ2n−1

λ2

λ2n−1λ2n
− λ2n−1

λ2n

)

.

Using (14) we an write the above matrix as
B2nB2n−1 = −λ2n−1

λ2n
I +

1

λ2n−1
S(n) + R(n),where S(n) is as in (11) and

R(n) =

( −rn 0

0 0

)

.
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By (14) we have (R(n))n∈N ∈ l1. A produt of two sequenes in D1 is againin D1, so sine
−λ · λ2n−2

λ2n
= −λ · λ2n−2

λ2n−1
· λ2n−1

λ2n
,

λ2

λ2n−1λ2n
= λ2 · 1

λ2n−1
· 1

λ2n
,Lemma 1 implies (S(n))n∈N ∈ D1. Now, by assumption (i) it follows that

detB2nB2n−1 =
λ2n−2

λ2n
6= 0, n ∈ N,

det

(

−λ2n−1

λ2n
I +

1

λ2n−1
S(n)

)

=

(

λ2n−1

λ2n

)2

6= 0, n ∈ N.Using the form of the weights λn, we obtain
lim

n→∞
−λ2n−1

λ2n
= 1, lim

n→∞

1

λ2n−1
= 0.The matrix S∞ is

S∞ =

(

0 λ

−λ 0

)

,for whih we have discrS∞ = −4λ2 < 0, with λ ∈ R \ {0}.Now all that needs to be done is to apply Theorem 1.7 of [2℄ for A(n) =
B2nB2n−1 and V (n) = −a(n)I + p(n)S(n), where a(n) = −λ2n−1/λ2n and
p(n) = 1/λ2n−1 for all n ∈ N. This ompletes the proof.Thanks to the asymptoti formulas (12) and (13) we are able to desribespetral properties of the operators onsidered. By the analysis of (12) and(13) we show as in [4, 3℄ that for any real λ there are no subordinate solutions.The subordinay theory shows that the absolutely ontinuous spetrum ofthe operator J overs the whole R.Applying Lemma 1 and Theorem 1 we obtainTheorem 2. The operator J as in Theorem 1 is absolutely ontinuousand σac(J ) = R.Proof. We need to show that there are no subordinate solutions. UsingTheorem 3 of [6℄ will then omplete the (folklore) proof.Any solution of (7) with λ 6= 0 is a linear ombination of the vetors(12) and (13). In those formulas, for n large enough, the salar fators areonjugate. We an thus rewrite them as

~x1(n) =
n−1
∏

j=1

(aj + bji)(~s1∞ + o(1)) = RneiΦn(~s1∞ + o(1)),

~x2(n) =

n−1
∏

j=1

(aj − bji)(~s2∞ + o(1)) = Rne−iΦn(~s2∞ + o(1)).
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So, the solutions of (7) are as follows:

~u(n) = c1~x1(n) + c2~x2(n) = Rn(c1e
iΦn~s1,n + c2e

−iΦn~s2,n),

~v(n) = d1~x1(n) + d2~x2(n) = Rn(d1e
iΦn~s1,n + d2e

−iΦn~s2,n),where we put ~si,n for ~si∞ + o(1) for i = 1, 2.To show that there are no subordinate solutions we will prove that(15) ∑N
n=1 ‖~u(n)‖2

∑N
n=1 ‖~v(n)‖2

≥ ̺ > 0.Indeed,
∑N

n=1 ‖~u(n)‖2

∑N
n=1 ‖~v(n)‖2

=

∑N
n=1 |Rn|2‖c1e

iΦn~s1,n + c2e
−iΦn~s2,n‖2

∑N
n=1 |Rn|2‖d1eiΦn~s1,n + d2e−iΦn~s2,n‖2

(16)
=

∑N
n=1 |Rn|2‖c1~s1,n + c2e

−2iΦn~s2,n‖2

∑N
n=1 |Rn|2‖d1~s1,n + d2e−2iΦn~s2,n‖2

.The sequene (e−2iΦn)n∈N ⊂ {z ∈ C : |z| = 1} has a onvergent subsequene
(e−2iΦnk )k∈N. Hene there are numbers Φ and Φ suh that for any omplexnumbers a and b we have

lim inf
n→∞

‖a~s1,n + be−2iΦn~s2,n‖ = ‖a~s1∞ + be−2iΦ~s2∞‖,

lim sup
n→∞

‖a~s1,n + be−2iΦn~s2,n‖ = ‖a~s1∞ + be−2iΦ~s2∞‖.It follows that for any ε > 0 there is n0 ∈ N suh that for n ≥ n0,
‖c1~s1,n + c2e

−2iΦn~s2,n‖2 ≥ (‖c1~s1∞ + c2e
−2iΦ~s2∞‖ − ε)2,(17)

‖d1~s1,n + d2e
−2iΦn~s2,n‖2 ≤ (‖d1~s1∞ + d2e

−2iΦ~s2∞‖ + ε)2.(18)Now using (17) and (18) we an estimate the quotient in (15). First,
(19)

∑N
n=n0

|Rn|2‖c1~s1,n + c2e
−2iΦn~s2,n‖2

∑N
n=n0

|Rn|2‖d1~s1,n + d2e−2iΦn~s2,n‖2

≥ (‖c1~s1∞ + c2e
−2iΦ~s2∞‖ − ε)2

(‖d1~s1∞ + d2e−2iΦ~s2∞‖ + ε)2
> 0.If n < n0 then learly(20) ∑n0−1

n=1 |Rn|2‖c1~s1,n + c2e
−2iΦn~s2,n‖2

∑n0−1
n=1 |Rn|2‖d1~s1,n + d2e−2iΦn~s2,n‖2

> 0.by the linear independene of ~s1∞ and ~s2∞. To show that (15) is true, weneed one more fat:(21) ∀a, b, c, d > 0
a + b

c + d
≥ min

{

a

c
,
b

d

}

.
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Now using (16), (19), (20) and (21) we an prove (15):
(22) ∑N

n=1 ‖~u(n)‖2

∑N
n=1 ‖~v(n)‖2

≥ min{ζ, ξ} > 0,

where
ζ :=

∑n0−1
n=1 |Rn|2‖c1~s1,n + c2e

−2iΦn~s2,n‖2

∑n0−1
n=1 |Rn|2‖d1~s1,n + d2e−2iΦn~s2,n‖2

,

ξ :=
(‖c1~s1∞ + c2e

−2iΦ~s2∞‖ − ε)2

(‖d1~s1∞ + d2e−2iΦ~s2∞‖ + ε)2
.

(22) implies that for any λ ∈ R \ {0} there are no subordinate solutions ofthe generalized eigenequation.If λ = 0, then we have expliit formulas for the norms of solutions of thegeneralized eigenequation with the boundary onditions (u(1), u(2)) = (0, 1)or (1, 0):
(23) ‖~x1(n)‖ =

⌊n/2⌋−1
∏

j=1

∣

∣

∣

∣

λ2j

λ2j+1

∣

∣

∣

∣

, ‖~x2(n)‖ =

⌊(n−1)/2⌋
∏

j=1

∣

∣

∣

∣

λ2j−1

λ2j

∣

∣

∣

∣

.

We will show that every solution ~u(n) (being a linear ombination of ~x1(n)and ~x2(n) given by (23)) satis�es(24) ‖~u(n)‖2 ≤ C

λn−1
.(24) implies that there are no subordinate solutions (for details see Lemma2.2 in [3℄) and this yields λ = 0 ∈ σac(J ). To prove (24), we will show that(25) λn

λn+1
=

λn−1

λn
(1 + rn), n ≥ 2,where (rn)n∈N ∈ l1.Assuming that (25) holds, we prove (24) for ~u(n) = ~x1(n), the proof for

~x2(n) being similar:
‖~x1(n)‖2 =

⌊n/2⌋−1
∏

j=1

∣

∣

∣

∣

λ2j

λ2j+1

∣

∣

∣

∣

2

=

⌊n/2⌋−1
∏

j=1

∣

∣

∣

∣

λ2j

λ2j+1

∣

∣

∣

∣

∣

∣

∣

∣

λ2j−1

λ2j

∣

∣

∣

∣

∣

∣

∣

∣

1 + rn

∣

∣

∣

∣

=
λ1

λn−1

⌊n/2⌋−1
∏

j=1

|1 + rn| ≤
λ1

λn−1
e‖(rn)‖

l1 =
C

λn−1
.
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To end the proof we show (25) (omitting some details):

λn

λn+1
=

(n − 1)α
(

1 + 1
n−1

)α
(1 + ∆n)

nα
(

1 + 1
n

)α
(1 + ∆n)

(26)
=

λn−1

λn

(

1 +
1

n2 − 1

)α (1 + ∆n)2

(1 + ∆n−1)(1 + ∆n+1)
.The seond fator of this produt is equal to(27) 1 +

α

n2 + 1
+ O(n−4) = 1 + r(1)

n ,where (r
(1)
n ) ∈ l1. The third fator equals(28) (

1 +
∆n − ∆n−1

1 + ∆n−1

)(

1 +
∆n − ∆n+1

1 + ∆n+1

)

.After some alulations we an rewrite (28) as(29) 1 +
(∆∆n−1)

2 − (1 + ∆n−1)(∆
2∆n−1)

(1 + ∆n−1)(1 + ∆n+1)
= 1 + r(2)

n .Using the assumptions of the theorem we �nd that (r
(2)
n )n∈N is an l1 sequene.Combining (26) with (27) and (29) one an see that (25) holds. It impliesthat there are no subordinate solutions for λ = 0.Conluding our onsiderations, we have proved that there an be nosubordinate solutions for all λ ∈ R, whih �nishes the proof.4. An example of Jaobi matries with irregular entries. In thissetion we onsider a Jaobi matrix de�ned by(30) qn = n + 1 + (−1)n, λn =

√
qn−1qn, n ≥ 1.whih was introdued by R. Szwar in [8℄ (Remark 2.4). Beause the sequene

(qn/λn)n∈N does not belong to D1, the author laims that the Levinson-typetheorems in [2℄ are not valid in this ase. On the ontrary, Theorem 1.6 in[2℄ does apply to this example. To see this, we reall that theorem below. Itonerns systems of equations of the form(31) u(n + 1) = A(n)u(n), (A(n))n≥n0
∈ l(M2(C)).Theorem 3. Assume that A(n) = V (n) + R(n) for n ≥ n0 and(i) detA(n), detV (n) 6= 0 for n ≥ n0,(ii) (V (n))n≥n0

∈ D1,(iii) (R(n))n≥n0
∈ l1.If (V (n)) ∈ M2(R) for n ≥ n0 and discrV∞ < 0, where V∞ := limn→∞V (n),
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then there exists a basis x1, x2 of the spae of solutions of (31) of the form
xm =

(

n−1
∏

j=n0

λm(j)
)

(vm∞ + o(1)),

where λm(j) → λm∞, λm(j) is an eigenvalue of V (n), and vm∞ is an eigen-vetor of V (n) for λm∞, for m = 1, 2; o(1) is a C2 vetor with o(1) norm.In Szwar's example we have
B2nB2n−1 =

( −1 −1

1 0

)

+
1

n

(

1/2 (1 + 2λ)/4

(1 − 2λ)/4 1 − λ

)

+ R(n)with (R(n)) ∈ l(N; M2(R)). In this ase
V (n) :=

( −1 −1

1 0

)

+
1

n

(

1/2 (1 + 2λ)/4

(1 − 2λ)/4 1 − λ

)

and it belongs to D1 beause it is the sum of a onstant matrix and anotheronstant matrix multiplied by a sequene in D1. This is true for all λ ∈ R.It remains to ompute the disriminant of the matrix
V∞ =

( −1 −1

1 0

)

,whih is equal to (trV∞)2 − 4 detV∞ = 1 − 4 = −3 < 0, for all λ ∈ R.Now we an apply Theorem 3. We obtain the asymptoti behavior of thesolutions of (7) whih is determined by the produt of the eigenvalues of V (j)matries. Next, by subordinay theory we prove that σ(J ) = σac(J ) = R.The eigenvalues of V (j) are
λ1(j) = −1

2
+

3 − 2λ

4j
+

1

2

√
3i

(

1 − 1 + 2λ

6j

)

+ O(n−2),

λ2(j) = −1

2
+

3 − 2λ

4j
− 1

2

√
3i

(

1 − 1 + 2λ

6j

)

+ O(n−2).Just as in the proof of Theorem 2, the eigenvalues are onjugate. So the proofof absolute ontinuity of the Jaobi operator given by (30) is essentially thesame as that of Theorem 2.
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