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THE MULTIPLICITY PROBLEM FORINDECOMPOSABLE DECOMPOSITIONS OF MODULESOVER A FINITE-DIMENSIONAL ALGEBRA.ALGORITHMS AND A COMPUTER ALGEBRA APPROACHBYPIOTR DOWBOR and ANDRZEJ MRÓZ (Toru«)Abstrat. Given a module M over an algebra Λ and a omplete set X of pair-wise nonisomorphi indeomposable Λ-modules, the problem of determining the vetor
m(M) = (mX)X∈X ∈ NX suh that M ∼=

⊕
X∈X

X
mX is studied. A general method of�nding the vetors m(M) is presented (Corollary 2.1, Theorem 2.2 and Corollary 2.3).It is disussed and applied in pratie for two lasses of algebras: string algebras of �-nite representation type and hereditary algebras of type Ãp,q. In the seond ase detailedalgorithms are given (Algorithms 4.5 and 5.5).Introdution. The main problem of ontemporary representation the-ory of �nite-dimensional algebras is to desribe in a possibly preise waythe struture of the module ategory for a given algebra; in partiular, todetermine its representation type. From this point of view results ontaininglassi�ation of all (up to isomorphism) indeomposable modules in terms ofsome invariant (e.g. dimension vetor) have been onsidered to be quite sat-isfatory; espeially, if they additionally provide extra information on mor-phisms enoded by the shape of the Auslander�Reiten quiver.Most of the researh methods developed in the last thirty years for study-ing representations of algebras have been dediated to study this kind ofproblems. Nevertheless before they were invented, another rather universaland natural approah to the lassi�ation of indeomposables was ommon.It led via an answer to the more speialized and in fat di�ult question:how to deompose (e�etively) an arbitrary module into a diret sum of in-deomposable submodules (isomorphi to indeomposables from a �andidatelist�). Some variants of this method were suessfully used in several veryimportant lassial lassi�ation results [16, 10, 14, 18, 19, 7℄.The above question is interesting in its own right, even if a full list X ofpairwise nonisomorphi indeomposables is already known. It seems to be2000 Mathematis Subjet Classi�ation: 16G60, 16G70, 68Q99.Key words and phrases: algebra, representation, deomposition, algorithm, multipli-ity vetor. [221℄
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partiularly important if one thinks of appliations (see [16, 13℄). The weakerversion of this question, asking for a �normal form� of a module M (i.e. thefull multipliity sequene of diret summands from the list X for M) is alsoof importane (e.g. in an algebrai geometry approah to module ategories).These two problems an be onsidered as a �nal step of studies for a givenmodule ategory modΛ of �nite or tame representation type. They havea rather omputational and algorithmi harater. The atually availablestandard tools of representation theory are not partiularly useful and welladjusted for suessful, omprehensive disussion of these problems, on thelevel that allows formulating general answers.The main aim of this paper is to deal with the seond of them. More pre-isely, given a module M and a omplete family X of pairwise nonisomorphiindeomposable modules in modΛ we want to determine the sequene

m(M) = (mX) ∈ NX suh that M ∼=
⊕

X∈X

XmX .

The sequene (mX)X∈X is uniquely determined by the Krull�Remak�Shmidt theorem. We provide a general method for handling this problem.It relies (Theorem 2.2) on omputing the sequene
h(m) = (hX) ∈ NXof the dimensions hX = dimk HomΛ(M, X) and the so-alled Auslander�Reiten matrix TΛ for Λ. (Sometimes instead of TΛ it is enough to �nd theCartan matrix of the Auslander ategory for Λ.) In priniple this method anbe e�etively applied only in ase the anonial forms of all indeomposablemodules are known.We disuss this method in pratie for two simple lasses of string (speialbiserial) algebras: string algebras of �nite representation type and anoni-al hereditary algebras of type Ãp,q (later alled simply Ãp,q-algebras, seealso [20℄). In the seond ase we present rather preise algorithmi proe-dures for solving the problem (Algorithms 4.5 and 5.5). In onstruting thealgorithms, and to improve their e�ieny, we use some general informa-tion on the struture of the relevant module ategories and basi methodsof representation theory (Auslander�Reiten theory, Galois overings). To de-rease the omplexity of algorithms omputing the oordinates of the vetor

h(M), we also apply ertain simple results obtained by a detailed �numerialanalysis� of some omputational linear algebra problems, strongly related tospei� anonial forms for indeomposables (Lemmas 4.7 and 5.7).The paper is organized as follows. In Setion 1 we reall basi de�nitionsand �x the notation. In Setion 2 we introdue the notion of the multipli-ity vetor m(M), the Cartan matrix C(Λ) of the Auslander ategory andthe Auslander�Reiten matrix TΛ. We prove that C(Λ) is always invertible
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and its inverse is just TΛ (Theorem 2.2). We show the importane of thesetwo matries in determining the multipliity sequene. Also some strangeproperties of the partial algebra MY×Y(Z), where Y is an in�nite set, aredisussed.Setion 3 is devoted to a disussion of how using a ombinatorial desrip-tion of indeomposables, one an e�etively onstrut the matries C(Λ) forstring algebras of �nite representation type (see Algorithms 3.3 and 3.5).These algorithms are based on Proposition 3.2 (tree ase) and Proposition 3.4(general ase), desribing how the dimensions of the homomorphism spaesbetween indeomposables an be omputed.In Setion 4 we give a desription of the algorithm determining the mul-tipliity sequene for modules over the Kroneker algebra (Algorithm 4.5).In partiular, we show how to restrit a list of andidates for indeomposablediret summands of a given module to a �nite list (Proposition 4.4). Also anindutive metod of omputing the dimensions of the homomorphism spaesfrom a given module to indeomposables from individual Auslander�Reitenomponents is presented (Lemmas 4.6 and 4.7).Setion 5 is devoted to a desription of elements responsible for an anal-ogous algorithm for modules over Ãp,q-algebras in the general ase (Corol-lary 5.3, Lemma 5.4, Algorithm 5.5). In partiular, we onstrut a nie fun-tor that allows us to redue some onsiderations for Ãp,q-algebras to theKroneker algebra ase (see Lemma 5.2). Also an indutive method of om-puting the dimensions of the respetive homomorphism spaes in the general
Ãp,q-algebra ase is proposed (Lemmas 5.6 and 5.7), and a pessimisti om-plexity of the given algorithms is disussed (Lemma 5.8).1. Preliminaries and notations. We use the de�nitions and notationwhih are well known and ommonly used. Nevertheless, for the bene�t of thereader, we brie�y reall the most important of them. For other informationonerning representation theory of algebras (respetively, ring theory, linearalgebra, algorithm theory) we refer to [2, 4℄ (respetively, [1℄, [15℄, [6℄).1.1. Throughout the paper k always denotes a �eld, usually algebraiallylosed. By a k-algebra we always mean a �nite-dimensional assoiative on-neted basi algebra with unit over k. For a k-algebra Λ (respetively, loallybounded ategory Λ, see [12℄) we denote by modΛ the ategory of all �nite-dimensional right Λ-modules, and by JΛ the Jaobson radial in the ategory
modΛ. If (Q, I) is a bounded quiver (see [17℄) and the algebra (resp. loallybounded ategory) Λ has the form Λ = kQ/I, then we always identify modΛwith the ategory of all �nite-dimensional representations of the quiver Q,satisfying the relations from the ideal I (for the de�nition of the path algebra
kQ we refer to [2℄). In this ase for any V in modΛ we denote by suppV the
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set of all verties x of Q suh that Vx 6= 0, where Vx is the diret summandof the vetor spae V orresponding to x.By the Auslander�Reiten quiver ΓΛ of Λ we always mean the translationvalued quiver

Γ = (Γ0, Γ1, τ, d, d′).The translation quiver (Γ0, Γ1, τ) is de�ned in the standard way (the set ofverties Γ0 onsists of the isolasses of indeomposable objets in modΛ,arrows [Y ] → [X] in Γ1 re�et the existene of irreduible maps from Xto Y , and τ [X] = [τX], where τ is the Auslander�Reiten translate). Thevaluation (d, d′) is given by the olletions d = (d[X],[Y ]) and d′ = (d′[X],[Y ])indexed by Γ1, where for �xed [X]→ [Y ] ∈ Γ1, d[X],[Y ] (resp. d′[X],[Y ]) is thenumber of indeomposable diret summands isomorphi to Y (resp. X) in adeomposition of the odomain (resp. domain) of a minimal left (resp. right)almost split map for X (resp. for Y ).For any [X] ∈ Γ0 we denote by −[X] (resp. [X]+) the set of all diretpredeessors (resp. suessors) of [X] in ΓΛ, i.e. the set of all verties [Y ] ∈ Γ0suh that there exists an arrow [Y ]→ [X] (resp. [X]→ [Y ]) in ΓΛ.For any X and Y in modΛ, we denote by (X, Y ) the k-spae HomΛ(X, Y )and by [X, Y ] its dimension.1.2. Let Q = (Q0, Q1) be a quiver. For an arrow γ ∈ Q1, we denote by
γ−1 the formal inverse of γ (we set (γ−1)−1 = γ). Any unoriented path w in
Q an be presented as a sequene γ1 · · · γn, for some n ≥ 0, where γi ∈ Q1 or
γ−1

i ∈ Q1, for 1 ≤ i ≤ n. In the paper we onsider only walks, i.e. unorientedpaths w suh that if w = w1αβ−1w2 or w = w1α
−1βw2 for some unorientedpaths w1, w2 and arrows α, β ∈ Q1, then α 6= β. For any walk w = γ1 · · · γnwe denote by w−1 the formal inverse of w, i.e. the walk γ−1

n · · · γ
−1
1 . Thetrivial walks of length 0 are simply identi�ed with the verties of Q0.Assume that Q is a tree. Then any walk w de�nes an indeomposable

Λ-module V (w), alled a line module or simply a line, where Λ = kQ. Themodule V (w), as a representation of Q, has the one-dimensional spae k ateah vertex visited by w and zero spaes otherwise; the struture maps areidentities for the arrows belonging to w and zero maps otherwise. Note that
V (w) = V (w−1) and V (w) ≃ V (v) if and only if w = v or w = v−1.1.3. The following notations are used in this paper.For any set S, we denote by |S| the ardinality of S.Let R be a ring. For any m, n ∈ N we denote by Mm×n(R) the set ofall m × n-matries with entries in R. More generally, for any sets X and Ywe denote by MX×Y(R) the set of all X × Y-matries M with oe�ientsin R, that is, funtions M : X × Y → R. For any M ∈MX×Y(R) we denoteby M t the matrix transposed to M ; MX (resp. MX) is the olumn (resp.
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row) of M orresponding to X ∈ X ; �nally, for X ′ ⊆ X and Y ′ ⊆ Y ,
M|X ′×Y ′ ∈ MX ′×Y ′(R) is the restrition of M to X ′ × Y ′. For a sequene
r = (rX) ∈

∏
X∈X R, diag(r) is the �diagonal� matrix in MX×X (R) de�nedby r; we set IX = diag(r) where rX = 1 for every X ∈ X .Given a matrix M in Mm×n(k), we denote by r(M) the rank of M . By

M̂ we mean the generalized upper triangular matrix obtained by deleting allzero rows from the matrix whih is the result of the standard Gaussian-rowelimination proedure applied to M (see [15℄).For any set X and R = Z, Q, N, we set
RX =

∏

X

R, R(X ) =
⊕

X

R.

2. A general method of determining multipliities2.1. Let Λ be a �nite-dimensional algebra and X a �xed omplete list ofpairwise nonisomorphi indeomposable objets in modΛ. Denote by C =
C(Λ) the matrix (usually in�nite!) in MX×X (Z) de�ned by the formula

cX,Y = [Y, X]for X, Y ∈ X .Given a module M in modΛ, for any X ∈ X we denote by hX = hX(M)(resp. h′
X = h′

X(M)) the dimension [M, X] (resp. [X, M ]) and by mX =
mX(M) the multipliity of X in the deomposition of M into a diret sumof indeomposables (in partiular, M ∼=

⊕
Y ∈X Y mY ). We view the sequenes

h(M) = (hX), h′(M) = (h′
X) and m(M) = (mX)as olumn vetors in NX . Note that in ontrast to m = m(M), the ve-tors h = h(M) and h′ = h′(M) an have an in�nite number of nonzerooordinates.

Definition.(a) The matrix C(Λ) is alled the Cartan matrix of the Auslander ate-gory E(Λ) of the algebra Λ.(b) The vetor m(M) is alled the multipliity vetor of the Λ-module M .
Lemma. For any M in modΛ we have h = C(Λ) ·m and h′ = C(Λ)t ·m(see also Remark below).Proof. Sine M ∼=

⊕
Y ∈X Y mY , for any X ∈ X we have (M, X) =⊕

Y ∈X (Y, X)mY and hX =
∑

Y ∈X cX,Y mY . Notie that sine mY = 0 foralmost all Y , the above sum is �nite and also C ·m is well de�ned. Conse-quently, h = C ·m. Similarly, we obtain h′ = Ct ·m.



226 P. DOWBOR AND A. MRÓZ
Corollary.(a) If T ∈MX×X (Q) is a left inverse of C(Λ), then T · h = m.(b) If T ∈MX×X (Q) is a right inverse of C(Λ), then T t · h′ = m.Proof. Fix T ∈ MX×X (Q) suh that T · C = IX , where C = C(Λ). Let

X0 ⊆ X be the �nite subset onsisting of all X ∈ X suh that mX 6= 0.Then h =
∑

X∈X0
mXCX (in ZX ), so the produt T · h is well de�ned as

T ·h =
∑

X∈X0
mX(TCX), and onsequently T ·h =

∑
X∈X0

mX(IX )X = m.The proof of the seond assertion is analogous.
Remark. Let Y be an in�nite set.(i) The set MY×Y(Z) is a partial ring with respet to multipliation ofmatries: for M, N ∈ MY×Y(Z), the produt M · N is de�ned if and onlyif for eah pair X, Z ∈ Y the set {Y ∈ Y : M(X, Y ) 6= 0 6= M(Y, Z)} is�nite. The partial ring admits a unit element IY (the identity matrix). In

MY×Y(Z) the following pathologies may appear:
• Multipliation in MY×Y(Z) is not assoiative in the sense that theremay exist M1, M2, M3 ∈MY×Y(Z) suh that the produts M1 ·M2, M2 ·M3,

(M1 · M2) · M3, M1 · (M2 · M3) are well de�ned and (M1 · M2) · M3 6=
M1 · (M2 ·M3). For example, onsider the triple

M1 =




1 1 1 1 · · ·

1 2 2 2 · · ·

1 2 3 3 · · ·

1 2 3 4 · · ·... ... ... ... . . .



,

M2 =




2 −1 0 0 · · ·

−1 2 −1 0 · · ·

0 −1 2 −1 · · ·

0 0 −1 2
. . .... ... ... . . . . . .




,

M3 =




1 1 1 1 · · ·

2 2 2 2 · · ·

3 3 3 3 · · ·

4 4 4 4 · · ·... ... ... ... . . .



.

Note that M2 ·M3 = 0, M1 ·M2 = IY , M3 6= 0, (M1 ·M2) ·M3 = IY ·M3 =
M3 and M1 · (M2 ·M3) = M1 · 0 = 0.
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• A matrix M ∈ MY×Y(Z) may admit two di�erent two-sided inverses(see Remark 2.2(iv) for an example).(ii) Any matrix M ∈MY×Y(Z) indues a Z-linear map M · : Z(Y) → ZY .If in eah row (resp. olumn) of M1 ∈ MY×Y(Z) (resp. M2 ∈ MY×Y(Z))almost all entries are zero then M1 (resp. M2) indues a Z-linear map
M1 · : ZY → ZY (resp. M2 · : Z(Y) → Z(Y)). Moreover, the omposites
(M1·) ◦ (M ·), (M ·) ◦ (M2·) : Z(Y) → ZY an be represented as multiplia-tions by M1 ·M and M ·M2, respetively.(iii) Statements analogous to (i) and (ii) also hold for MY×Y(Q).The result below was suggested to us by G. Zwara.
Proposition. Let C = C(Λ) be the Cartan matrix.(a) For any nonzero D ∈ MX×X (Q) suh that D · C is de�ned, D · Cis a nonzero matrix. Moreover, C has at most one left inverse in

MX×X (Q).(b) For any nonzero D ∈ MX×X (Q) suh that C · D is de�ned, C · Dis a nonzero matrix. Moreover, C has at most one right inverse in
MX×X (Q).Proof. First we laim that for any nonzero d = (dX) ∈ QX suh that

dt · C is de�ned, i.e. the set XY = {X ∈ X : dX 6= 0 6= cX,Y } is �nite for all
Y ∈ X , the produt dt · C is nonzero.We start by observing that if dt · C is de�ned then d is in Q(X ); morepreisely, dX = 0 for every X ∈ X ′ = X \ (XP1 ∪· · ·∪XPn), where P1, . . . , Pnare all the projetive modules in X . Suppose that dX 6= 0 for some X ∈ X ′.Sine P1 ⊕ · · · ⊕ Pn is a projetive generator in modΛ, there exists i suhthat cX,Pi

= [Pi, X] 6= 0, and X belongs to XPi
, a ontradition.To prove our laim it su�es to show that d = 0 whenever d ∈ Z(X ) and

dt ·C =0. Given suh a d, we onsider two �nite sets: X+ ={X ∈X : dX >0}and X− = {X ∈ X : dX < 0}. For any Y ∈ X we have
0 = (dt · C)Y =

∑

X∈X

dXcX,Y =
∑

X∈X+

dX [Y, X]−
∑

X∈X−

(−dX)[Y, X]

=
[
Y,

⊕

X∈X+

XdX

]
−

[
Y,

⊕

X∈X−

X(−dX)
]

=: [Y, X+]− [Y, X−].Consequently, by the result of Auslander [3, 5℄, we obtain X+ ∼= X−, and
d = 0.Now the �rst assertion of (a) follows immediately from the above laim.To show the seond, note that if T · C = IX = T ′ · C then the produt
(T − T ′) · C is de�ned and (T − T ′) · C = 0. Then by the �rst assertion wehave T = T ′ and the proof of (a) is omplete.The proof of (b) is similar.
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2.2. Observe that if Λ is a direted algebra of �nite representation typethen C(Λ) is invertible (ΓΛ is �nite and ontains no oriented yle, so C(Λ)is triangular for a suitable ordering of X ). Now we show that C(Λ) is al-ways invertible in MX×X (Q). We give a diret desription of its inverse. Theonstrution is e�etive if one knows the Auslander�Reiten quiver ΓΛ of Λ.From now on, we identify modules from X with verties of ΓΛ (X ∋ X ↔

[X] ∈ Γ0). We an assume that for any nonprojetive (resp. noninjetive)
X ∈ X the module τX (resp. τ−X) belongs to X .
Definition. Let T = TΛ = [tX,Y ] ∈ MX×X (Z) be de�ned as follows: if

Y, X ∈ X and X is nonprojetive, then
tX,Y =





1 if Y = X 6= τX or Y = τX 6= X,
2 if Y = X = τX,
−d′Y,X if Y ∈ −X,
0 otherwise,while if X is projetive, then
tX,Y =





1 if Y = X,
−d′Y,X if Y ∈ −X,
0 otherwise.We all TΛ the Auslander�Reiten matrix of Λ.For any X ∈ X , we set fX = dimk EndΛ(X)/J(EndΛ(X)).

Theorem. Let Λ be a �nite-dimensional k-algebra, C = C(Λ) the or-responding Cartan matrix, T = TΛ the Auslander�Reiten matrix of Λ and
F = diag((fX)X∈X ).(a) C is invertible in MX×X (Q) and F−1T is the unique two-sided in-verse of C.(b) If EndΛ(X)/J(EndΛ(X)) ∼= k for every X ∈ X (whih holds auto-matially if k is algebraially losed), then T is an inverse of C, so Cis invertible in MX×X (Z), and m(M) = T ·h(M) (resp. T t ·h′(M) =

m(M)) for all M in modΛ.Proof. (a) We show �rst that TC = F .For any X ∈ X we have either the almost split sequene
0→ τX →

⊕

Z∈−X

Zd′Z,X → X → 0

if X is nonprojetive, or the right minimal almost split sequene
⊕

Z∈−X

Zd′Z,X ∼= JX →֒ X
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if X is projetive. They indue respetively exat sequenes
(∗) 0→ (−, τX)→

⊕

Z∈−X

(−, Z) d′Z,X → (−, X)→ (−, X)→ 0

and
(∗∗) 0→

⊕

Z∈−X

(−, Z) d′Z,X → (−, X)→ (−, X)→ 0

of ontravariant k-funtors from the ategory modΛ to mod k, where (−, X)denotes the simple funtor (−, X)/J (−, X) (see [11℄). Fix an arbitrary
Y ∈ X . Then applying the exat sequenes (∗)(Y ) and (∗∗)(Y ), and om-puting dimensions, we obtain the formulas

cτX,Y + cX,Y −
∑

Z∈−X

d′Z,X cZ,Y =

{
fX if Y = X,
0 if Y 6= X,and

cX,Y −
∑

Z∈−X

d′Z,X cZ,Y =

{
fX if Y = X,
0 if Y 6= X,respetively. Consequently, the required equality TC = F holds.To prove that C is invertible with inverse F−1T , onsider the matrix

T− = (t−X,Y ) ∈ MX×X (Z), dual to T in some sense, whih is de�ned asfollows:
t−X,Y =





1 if X = Y 6= τ−Y or X = τ−Y 6= Y ,
2 if X = Y = τ−Y ,
−dY,X if X ∈ Y +,
0 otherwise,if Y is noninjetive, and

t−X,Y =





1 if X = Y ,
−dY,X if X ∈ Y +,
0 otherwise,if X is injetive, for Y, X ∈ X . We show that CT− = F .As before, for Y ∈ X we have either the almost split sequene

0→ Y →
⊕

Z∈Y +

Z dY,Z → τ−Y → 0

if X is noninjetive, or the left minimal almost split sequene
Y ։ Y/SocY ∼=

⊕

Z∈Y +

ZdY,Z
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if Y is injetive. Again we obtain exat sequenes
(∗)′ 0→ (τ−Y,−)→

⊕

Z∈Y +

(Z,−) dY,Z → (Y,−)→ (Y,−)→ 0and respetively
(∗∗)′ 0→

⊕

Z∈Y +

(Z,−) dY,Z → (Y,−)→ (Y,−)→ 0

of ovariant k-funtors from modΛ to modΛ, where (Y,−) denotes thesimple funtor (Y,−)/J (Y,−) (see [11℄). Then for any X ∈ X the exatsequenes (∗)′(X) and (∗∗)′(X) yield the formulas
cX,τ−Y + cX,Y −

∑

Z∈Y +

cX,Z dY,Z =

{
fX if X = Y ,
0 if X 6= Y ,and

cX,Y −
∑

Z∈Y +

cX,Z dY,Z =

{
fX if X = Y ,
0 if X 6= Y ,respetively. Consequently, we have CT− = F .To omplete the proof of (a), we observe that the matries T−=T−F−1,

C and T =F−1T indue Q-linear maps: T−· : Q(X )→ Q(X ), C· : Q(X )→ QXand T · : QX → QX , respetively. Now, by applying the assoiativity ofomposition (for (T ·)◦ (C·)◦ (T−)), the two equalities proved above and therules from Remark 2.1(ii), we infer that the maps T−·, T · : Q(X ) → QX areequal, hene T−F−1 = F−1T , and F−1T is the unique (by Proposition 2.1)inverse of C in MX×X (Q).Sine (b) is a onsequene of (a) and of Corollary 2.1, the theorem isproved.
Corollary. If Λ is of �nite representation type then the Cartan matrix

C = C(Λ) is uniquely determined by the formula C = T−1F, where T = TΛand F are as above. In partiular, C = T−1 if k is algebraially losed (f.Remark 2.1(i)).
Remark. (i) The equality T−F−1 = F−1T implies immediately thatin eah row and eah olumn of T (resp. T−) almost all entries are zero,and also that fY dX,Y = fXd′X,Y for all X, Y ∈ X , and fX = fτX for everynonprojetive X ∈ X .(ii) Let X ′ ⊆ X be the sublass of all verties of a �xed onnetedomponent in ΓΛ. Then m(M)|X ′ = T|X ′×X ′ · h(M)|X ′ and m(M)|X ′ =

(T−
|X ′×X ′)t ·h′(M)|X ′ for any M in modΛ, provided fX = 1 for all X ∈ X ′,where m(M)|X ′ = (mX(M))X∈X ′ , h(M)|X ′ = (hX(M))X∈X ′ and h′(M)|X ′

= (h′
X(M))X∈X ′ . In partiular, for any X ∈ X ′ we have m(M)X =

(T|X ′×X ′)X · h(M)|X ′ (resp. m(M)X = (h′(M)|X ′)t · (T−
|X ′×X ′)X).
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(iii) If X =
⋃

i∈I Xi is a splitting of X orresponding to the deom-position of ΓΛ into a disjoint union of onneted omponents then T =
diag({T|Xi×Xi

}i∈I) and T− = diag({T−
|Xi×Xi

}i∈I) (here �diag� denotes ablok diagonal matrix). In partiular, T|Xi×Xi
= T−

|Xi×Xi
if fX = 1 for all

X ∈ Xi.(iv) Assume that fX = 1 for all X ∈ X , and |I| ≥ 2, where I is as above.Then the matrix C, in spite of the equalities CT = TC = IX and T =
diag({T|Xi×Xi

}i∈I), always di�ers from diag({C|Xi×Xi
}i∈I), sine Λ is of in�-nite representation type and J∞

Λ (Xi,Xj) 6= 0 for some i 6= j, so C|Xj×Xi
6=0.Nevertheless, we learly have C|Xi×Xi

· T|Xi×Xi
= T|Xi×Xi

· C|Xi×Xi
= IXi

forevery i ∈ I, so diag({C|Xi×Xi
}i∈I) forms another, di�erent from C, inversefor T . As a simplest onrete example of this strange behaviour one anonsider the matries T and C for a Kroneker algebra (see Setion 4 for adetailed desription of T and C in blok form).(v) In ase Λ is of �nite representation type and k is algebraially losed,the formula from the orollary provides a method of �nding the matrix C ifone knows the shape of ΓΛ, and onversely, the matrix T if one knows C.From now on we assume that k is an algebraially losed �eld.2.3. As a onlusion from Theorem 2.2 and Corollary 2.1 it follows thatto determine the multipliity vetor m(M) = (mX) ∈ Z(X ) of an arbitrarymodule M in modΛ, one has to onstrut the Auslander�Reiten matrix TΛfor Λ and ompute the in�nite vetor h(M) = (hX) ∈ ZX (resp. h′(M)

= (h′
X) ∈ ZX ). In fat, one we know these two data the oordinates of thevetor m(M) an be omputed as follows.
Corollary. For any X ∈ X , we have

mX =





hX + hτX −
∑

Y ∈−X

d′Y,X hY if X is nonprojetive,
hX −

∑

Y ∈−X

d′Y,X hY if X is projetive,and
mX =





h′
X + h′

τ−X −
∑

Y ∈X+

dY,X h′
Y if X is noninjetive,

h′
X −

∑

Y ∈X+

dY,X h′
Y if X is injetive.

Remark. To ompute m(M) we do not need to know the entire, usuallyin�nite, vetor h(M) (m(M) ∈ Z(X )). If we are able to �nd a �nite subset
X0 ⊂ X ontaining {X ∈ X : mX 6= 0} then we need to ompute theoordinates hX for X from some �nite subset X1 ⊆ X ontaining X0, whihan be e�etively onstruted from X0. If Λ is representation �nite then wean always set X0 = X .
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3. String algebras of �nite representation type. If Λ is an algebraof �nite representation type then in some situations it may be easier todetermine the matrix C = C(Λ) (than TΛ itself), and afterwards ompute TΛas its inverse (in ase Λ is representation in�nite this may be di�ult, sine

C is then an in�nite matrix). This is the ase for string algebras of �niterepresentation type, though ombinatorial formulas for Auslander�Reitensequenes in modΛ (expressed in terms of V -sequenes) are known ([22℄). Inthis setion we brie�y desribe how to ompute the matries C in this ase.First we onsider the tree ase and next the general ase.3.1. Reall that an algebra Λ is alled a string speial biserial algebra(or simply a string algebra) if it has the form kQ/I, where I is an admissibleideal in kQ, and the bound quiver (Q, I) satis�es the following onditions:(S1) The numbers of arrows starting from, respetively ending in, any�xed vertex of Q are bounded by 2.(S2) For any arrow α of Q, there is at most one arrow β and at most onearrow γ suh that βα and αγ are not in I.(S3) The ideal I is generated by zero-relations.To desribe indeomposable modules over a string algebra Λ = kQ/I oneuses some speial walks. Following [22℄, a walk w in the quiver Q is alleda V -sequene in (Q, I) if for any oriented path u suh that u or u−1 is asubpath of w, u does not belong to I. A V -sequene w is primitive if forany n ∈ N the omposite walk wn is de�ned and wn is again a V -sequenein (Q, I). Denote by V = V(Q, I) the set of all V -sequenes in (Q, I) andby V0 = V0(Q, I) a �xed seletion of representatives of sets {w, w−1} (thesesets de�ne a splitting of V). Note that if Q is a tree then the indeomposable
kQ-module V (w) de�ned by any walk w ∈ V (see 1.2) belongs to modΛ,sine V (w) is annihilated by I.Let (Q̃, Ĩ) be a universal over of the bound quiver (Q, I) in the sense of[17℄ (in our situation Q̃ is a universal over of Q, so a tree). We denote by
F : (Q̃, Ĩ) → (Q, I) the anonial Galois overing of bound quivers, de�nedby passing to orbits under the identi�ation Q = Q̃/G, where G is thefundamental group of Q ating on Q̃ in the usual way. Denote by Λ̃ theloally bounded k-ategory kQ̃/Ĩ whih is a fator of the path ategory
kQ̃ of Q̃ modulo the ideal Ĩ. We have at our disposal the indued pull-upfuntor F• : modΛ→ Mod Λ̃ and its left (and right) adjoint, the pull-downfuntor Fλ : mod Λ̃ → modΛ, whih, due to the fat that G ats freely onindeomposables, have nie properties (see [12℄). (Here Mod Λ̃ denotes theategory of loally �nite-dimensional Λ̃-modules, see [9℄.) It is lear thatthe notions of walk, V -sequene and line module, introdued earlier, an beextended to the situation of Q̃, (Q̃, Ĩ) and Λ̃, respetively.
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For any V -sequene w ∈ V = V(Q, I) we denote by X(w) the indeom-posable Λ-module of the form Fλ(V (w̃)), where w̃ is a �xed lifting of wto Q̃ (learly w̃ ∈ Ṽ = V(Q̃, Ĩ)). By the properties of Fλ the de�nitionof X(w) does not depend on the hoie of the lifting w̃ (for two liftings
w̃, w̃′ of w we have w̃ = gw̃′, so V (w̃) = gV (w̃′) for some g ∈ G, hene
Fλ(V (w̃)) = Fλ(V (w̃′))). Notie that X(w) is indeomposable sine so isevery line. Clearly, X(w) = V (w) if Q is a tree, sine then Q̃ = Q and
V = Ṽ.Following [22℄, we have the following haraterization of representation�nite string algebras.
Proposition. Let Λ = kQ/I be an arbitrary string algebra. The algebra

Λ is of �nite representation type if and only if (Q, I) admits no primitive
V -sequene. In this ase, the set

X = {X(w) : w ∈ V0}is a omplete family of pairwise nonisomorphi indeomposable Λ-modules.
Corollary. If Λ = kQ/I is a string algebra suh that Q is a tree (weall suh algebras string tree algebras), then Λ is of �nite representation type.3.2. Now we show how to onstrut the Cartan matrix

C(Λ) = C = [cX,Y ]X,Y ∈X = [cv,w]v,w∈V0for a string tree algebra Λ = kQ/I. First we state some tehnial fats. Weset Sw,v = supp X(w) ∩ suppX(v). Note that for any w ∈ V, the support
suppX(w) oinides with the set Sw onsisting of all verties belonging tothe walk w.
Lemma. For any v, w ∈ V0 the following hold true:(i) cv,w ≤ 1,(ii) cv,v = 1,(iii) if Sw,v = ∅ then cw,v = cv,w = 0,(iv) if Sw,v 6= ∅ then any Λ-homomorphism f ={fc}c∈Q0 : X(w)→X(v)suh that fs = 0 for some s ∈ Sw,v is zero,(v) if cw,v = 1 for some v 6= w, then cv,w = 0.Proof. Assertions (i)�(iv) follow easily from the de�nition of homomor-phism and the fats that for any w ∈ V the k-spaes orresponding to vertiesin the representation X(w) = V (w) are k or 0 and that the full subquiver of

Q formed by the support of Sw is onneted.To prove (v), note that Λ is of �nite representation type and k is alge-braially losed, so there exist oriented paths from X(v) to X(w) and from
X(w) to X(v) in the Auslander�Reiten quiver ΓΛ, provided cw,v = cv,w = 1.
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Consequently, ΓΛ ontains oriented yles, a ontradition. Note that ΓΛ isayli, sine Q is a tree (see [2℄).The result below furnishes a neessary and su�ient ondition for thedimension cv,w to be 1.
Proposition. For v, w ∈ V0 suh that Sv,w 6= ∅, cv,w = 1 if and onlyif for any arrow α : a→ b ∈ Q1 the following two onditions are satis�ed:(i) If a ∈ Sv,w and b ∈ Sv then b ∈ Sw.(ii) If b ∈ Sv,w and a ∈ Sw then a ∈ Sv.Proof. Observe �rst that if for some α ∈ Q1, (i) (or (ii)) is not satis�edthen cv,w = 0 from Lemma 3.2(iv). Assume now that (i) and (ii) are satis�ed.Then it is easy to show that the olletion {fc}c∈Q0 given by the formula

fc =

{
idk if c ∈ Sv,w,
0 if c ∈ Q0 \ Sv,w,yields a (nonzero) Λ-homomorphism from X(w) to X(v). Consequently, byLemma 3.2(i) we have cv,w = 1.3.3. The proposition above yields an easy, purely ombinatorial, methodof omputing the dimensions cv,w. As a onsequene, we an onstrut theCartan matrix C = C(Λ) using only the shape of the quiver (Q, I). Wesummarize our onsiderations by an algorithm.

Algorithm (omputing C(Λ) for string tree algebras).Input: The set V0 = V0(Q, I) of V -sequenes in (Q, I) for a given stringtree algebra Λ = kQ/I.Output: The Cartan matrix C = C(Λ).for any w ∈ V0 set cw,w := 1;for any distint v, w ∈ V0 doif cv,w is not omputed then do {if Sv,w = ∅ then set cv,w := 0, cw,v := 0;else do {for any a ∈ Sv,w, a→ b ∈ Q1, b ∈ Sv doif b /∈ Sw then {set cv,w := 0; break;}if cv,w is not omputed then dofor any b ∈ Sv,w, a→ b ∈ Q1, a ∈ Sw doif a /∈ Sv then {set cv,w = 0; break;}
}if cv,w is not omputed then set cv,w := 1, cw,v := 0;
}Observe that the matrix TΛ an be easily omputed as an inverse of

C sine all elements of the set V0 (see 3.1) an be viewed as a sequene
(w1, . . . , wn) suh that [cwi,wj

]1≤i,j≤n ∈ Mn×n(k) is a triangular 0-1 matrix(f. 2.1).
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3.4. Now we onsider general string algebras. Let Λ = kQ/I be anystring algebra of �nite representation type and Ṽ ′0 = {w̃ : w ∈ V0} a subsetof Ṽ0 formed by a �xed omplete seletion of liftings (see 3.1). For any
v, w ∈ V0 we set Gv,w = {g ∈ G : Sṽ ∩ gSw̃ 6= ∅}. Note that eah Gv,w is�nite sine the standard ation of G on Q̃0 is free. Denote by Q′ = (Q′

0, Q
′
1)the smallest onneted (�nite) subquiver of Q̃ ontaining the �nite set of all

x ∈ Q̃0 that are visited by the walks gw̃ for some w̃ ∈ Ṽ ′0 and g ∈
⋃

v∈V0
Gv,w.Denote by Λ′ the algebra orresponding to the full subategory of Λ̃formed by Q′

0. As Λ′ is a string tree algebra, it is of �nite representation type,and it has the form Λ′ = kQ′/I ′, where I ′ orresponds to the appropriaterestrition of the ideal Ĩ in kQ̃ to kQ′. We an assume that Ṽ ′0 ⊆ V ′0 =

V0(Q
′, I ′). Clearly, V ′ = V(Q′, I ′) ⊂ Ṽ. Set C ′ = C(Λ′) = [c′v′,w′ ] v′,w′∈V′

0
.The following result yields a method for omputing the matrix C = C(Λ) inthe form C = [cv,w] v,w∈V0 , one we know C ′ (the latter an be omputed byapplying the algorithm above).

Proposition. For any v, w ∈ V0 the (w, v)th entry of C = C(Λ) is
cw,v =

∑

g∈Gv,w

c′gw̃,ṽ.Proof. For any w′ ∈ V ′0 let V ′(w′) denote the line module in modΛ′de�ned by w′ (as opposed to the line V (w′) in mod Λ̃). It is easily seen thatfor any v′, w′ ∈ V ′0 there exists a anonial k-isomorphism
HomΛ′(V ′(v′), V ′(w′)) ∼= Hom

Λ̃
(V (v′), V (w′)).Then for �xed v, w ∈ V0 we have

HomΛ(X(v), X(w)) ∼=
⊕

g∈Gv,w

Hom
Λ̃
(V (ṽ), V (gw̃))

∼=
⊕

g∈Gv,w

HomΛ′(V ′(ṽ), V ′(gw̃))

(apply properties of the funtor Fλ, see [12℄). Consequently, taking dimen-sions we obtain the required equality.3.5. Applying Proposition 3.4 (in fat its proof) and Proposition 3.2we formulate an analogue of Algorithm 3.3 for all string algebras of �niterepresentation type. We use the notation introdued in 3.4.
Algorithm (omputing C(Λ) for string algebras of �nite representationtype).Input: The sets V0 = V0(Q, I), Ṽ ′0 = {w̃ ∈ Ṽ0 : w ∈ V0} and Gv,w,

v, w ∈ V0, for a given string algebra Λ = kQ/I of �nite representation type.
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Output: The Cartan matrix C = C(Λ).for any w, v ∈ V0 do {set cw,v := 0;for any g ∈ Gv,w do {if g = 1, w̃ = ṽ then set c′gw̃,ṽ := 1;else if c′gw̃,ṽ is not omputed then do {for any a ∈ Sgw̃,ṽ, a→ b ∈ Q′

1, b ∈ Sgw̃ doif b /∈ Sṽ then {set c′gw̃,ṽ := 0; break;}if c′gw̃,ṽ is not omputed then dofor any b ∈ Sgw̃,ṽ, a→ b ∈ Q′

1, a ∈ Sṽ doif a /∈ Sgw̃ then {set c′gw̃,ṽ := 0; break;}if c′gw̃,ṽ is not omputed then set c′gw̃,ṽ := 1, c′ṽ,gw̃ := 0;
}set cw,v := cw,v + c′gw̃,ṽ;
}

}

Remark. One an give an algorithmi reursive method of omputingthe vetors h(M) for M in modΛ, where Λ is a string algebra. It is basedon a deep analysis of hanges in the systems of linear equations desribingthe spae (M, X(w)), w ∈ V0, under the proess of extending walks w byarrows or their inverses. It has a tehnial and rather ompliated harater,and will be presented in a separate publiation.4. Ãp,q-algebras: the Kroneker algebra ase. In the next two se-tions we disuss how to apply the general method, outlined in Setion 1, tomodules over Ãp,q-algebras, i.e. the path algebras of the quivers

1A
AK

α1

2
�
��
β1

p+1

6
α2

3
6
β2

p+2

... ...p p+q−1
�
��αp

A
AK βq

p+q

where p, q ≥ 1. These string algebras, in ontrast to biserial trees, are oftame and so in�nite representation type, and require a slightly di�erent ap-proah (see Remark 2.3). For a given M in modΛ, it may be hard to �ndthe in�nite vetor h(M). Moreover, we annot sequentially ompute all mul-tipliities m(M)X , X ∈ X , applying Corollary 2.3. We show how to extrate�etively a �nite set of potential indeomposable diret summands for M
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and ompute a �nite number of oordinates of the vetor h(M), whih areneessary to determine m(M). (The desription of TΛ is not a problem inthis ase.)First we onsider the simplest ase of Ã1,1 (the Kroneker algebra) andgive a preise desription of the algorithm. This algorithm di�ers essentiallyfrom the lassial one (see [13, 16℄). In the next setion we show how to deal,in spite of some di�erenes, with the general Ãp,q-algebra ase, and to redueit partially to the previous one.4.1. Let Λ be the Kroneker algebra, i.e. Λ = kQ, where Q looks asfollows: 1 -
β

-α 2We denote by e1, e2 the idempotents orresponding to the verties. We �rstdistinguish three lasses of indeomposable Λ-modules:
Pi: ki−1 -

Wi

-Vi

ki, Ij : kj -
W t

j

-V
t
j

kj−1, Rλ,l: kl -
Il

-Jl(λ)

kl,where i, j, l ≥ 1, λ ∈ k, Wi, Vi ∈Mi×(i−1)(k) are of the form
Vi =




1 0 · · · 0

0 1 · · · 0... ... ...
0 0 · · · 1

0 0 · · · 0




, Wi =




0 · · · 0 0

1 · · · 0 0... ... ...
0 · · · 1 0

0 · · · 0 1




,

Jl(λ) ∈ Ml×l(k) is an upper triangular Jordan blok with eigenvalue λand Il ∈ Ml×l(k) the unit matrix. The representations from the sets P =
{Pi}i≥1 and I = {Ii}i≥1 are alled respetively postprojetive and prein-jetive (P1, P2 are projetive, I1, I2 injetive, and P1, I1 simple, see [2℄). Allmodules {Rλ,l}λ∈k, l≥1 together with representations of the form

R∞,n: kn -
Jn(0)

-In
kn

for n ≥ 1, are alled regular . We set R = {Rλ,n}λ∈k∪{∞}, n≥1.We brie�y list below those (well known, see e.g. [8, 21℄) fats onerningthe struture of the module ategory modΛ that we use in this paper.
Proposition.(i) The disjoint union X = P ∪R ∪ I is a omplete family of pairwisenonisomorphi indeomposable Λ-modules.
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(ii) For any P ∈ P, R ∈ R, I ∈ I we have

(R, P ) = (I, P ) = (I, R) = 0.(iii) For any n1, n2 ≥ 1 we have
[Pn1, Pn2 ] =

{
n2 − n1 + 1 if n1 ≤ n2,
0 if n1 > n2,

[In1 , In2 ] =

{
n1 − n2 + 1 if n1 ≥ n2,
0 if n1 < n2.(iv) For any n1, n2 ≥ 1 and λ, λ1, λ2 ∈ k ∪ {∞}, λ1 6= λ2, we have

[Rλ,n1 , Rλ,n2 ] = min{n1, n2}, [Rλ1,n1 , Rλ2,n2 ] = 0.(v) The lasses P and I are onneted omponents in ΓΛ. More preise-ly, a minimal right (respetively, left) almost split map for a pro-jetive (respetively, injetive) nonsimple module has the form 0 →
P 2

1 → P2 (respetively, I2 → I2
1 → 0); moreover, the almost splitsequenes are of the form

0→ Pi → P 2
i+1 → Pi+2 → 0and respetively

0→ Ij+2 → I2
j+1 → Ij → 0for i, j ≥ 1. In partiular, P2s−1 = τ−(s−1)P1 and P2s = τ−(s−1)P2

(respetively, I2s−1 = τ (s−1)I1 and I2s = τ (s−1)I2) for every s ≥ 1,where τ denotes the Auslander�Reiten translate.(vi) The lass R is a 1-parameter family {Tλ}λ∈k∪{∞} of onneted om-ponents in ΓΛ, where eah Tλ is a rank 1 stable tube with vertiesrepresented by {Rλ,n}n≥1. More preisely, the almost split sequenesin the tube Tλ, λ ∈ k ∪ {∞}, have the form
0→ Rλ,1 → Rλ,2 → Rλ,1 → 0and

0→ Rλ,i → Rλ,i−1 ⊕Rλ,i+1 → Rλ,i → 0for all i ≥ 2. In partiular, τ iRλ,n = Rλ,n for all i ∈ Z, n ≥ 1 and
λ ∈ k ∪ {∞}.

Corollary. Consider the matries T = TΛ and C = C(Λ) as blokmatries with respet to the splitting X = P ∪ (
⋃

λ∈k∪{∞} Tλ) ∪ I.
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(a) The nonzero blok-oordinates for T look as follows:
T|P×P =




1 0 0 0 0 · · ·

−2 1 0 0 0 · · ·

1 −2 1 0 0 · · ·

0 1 −2 1 0 · · ·

0 0 1 −2 1 · · ·... ... ... ... . . . . . .




,

T|Tλ×Tλ
=




2 −1 0 0 0 · · ·

−1 2 −1 0 0 · · ·

0 −1 2 −1 0 · · ·

0 0 −1 2 −1 · · ·

0 0 0 −1 2 · · ·... ... ... ... . . . . . .




, λ ∈ k ∪ {∞},

T|I×I = (T|P×P)t.(b) The diagonal oordinate-bloks for the lower blok-triangular matrix
C look as follows:

C|P×P =




1 0 0 0 · · ·

2 1 0 0 · · ·

3 2 1 0 · · ·

4 3 2 1 · · ·... ... ... ... . . .




,

C|Tλ×Tλ
=




1 1 1 1 · · ·

1 2 2 2 · · ·

1 2 3 3 · · ·

1 2 3 4 · · ·... ... ... ... . . .




, λ ∈ k ∪ {∞},

C|I×I = (C|P×P)t.Moreover, C|P×Tλ
= C|P×I = C|Tλ×I = 0 for all λ ∈ k ∪ {∞}.4.2. To ompute the multipliity sequenes m(M) = (mX)X∈X , X =

P ∪R ∪ I, for modules M in modΛ, we an apply the following rules.
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Lemma. For any M as above the following equalities hold :(i) mP1 = [M, P1], mP2 = [M, P2] − 2[M, P1] and mPi

= [M, Pi] −
2[M, Pi−1] + [M, Pi−2] for all i ≥ 3;(ii) mI1 = [I1, M ], mI2 = [I2, M ] − 2[I1, M ] and mIj

= [Ij, M ] −
2[Ij−1, M ] + [Ij−2, M ] for all j ≥ 3;(iii) mRλ,1

= 2[M, Rλ,1]−[M, Rλ,2] and MRλ,l
= [M, Rλ,l]−[M, Rλ,l−1]−

[M, Rλ,l+1] for all l ≥ 2, λ ∈ k ∪ {∞}.Proof. The assertions follow easily from Corollary 2.3, Remark 2.2 andProposition 4.1.By the lemma above, to determine the multipliity vetor m(M)X for all
X from one Auslander�Reiten omponent, it su�es to ompute �onseu-tively� the dimensions [M, X] (resp. [X, M ]), referring to the natural linearorder in that omponent (note that in this ase all omponents have suhan order). We use this general observation to give an algorithmi proedureyielding the sequene m(M). We show how to redue the onsiderations toa �nite number of omponents and potential diret summands ontainedin them. We also disuss the stop problem for the onstruted algorithm.Finally, we propose an indutive method of e�etive omputation of theonseutive dimensions for individual omponents.4.3. Given a module, we apply the following tehnial fat to restritthe list of andidates for its indeomposable diret summands to a �nite list.
Lemma. For any j, n ≥ 1 and λ ∈ k ∪ {∞} we have [Pj, Rλ,n] = n. Inpartiular,

C|Tλ×P =




1 1 1 · · ·

2 2 2 · · ·

3 3 3 · · ·... ... ... . . .



Proof. Reall that the funtor τ− : modΛ→ modΛ establishes an equiv-alene between the full subategories of Λ-modules without injetive andrespetively projetive diret summands. Moreover, Rλ,n is τ -invariant and
HomΛ(eiΛ, R) ≃ Rei. Therefore, for any s, n ≥ 1 and λ ∈ k ∪ {∞},

[P2s−1, Rλ,n] = [τ−(s−1)P1, Rλ,n] = [τ−(s−1)P1, τ
−(s−1)Rλ,n]

= [P1, Rλ,n] = [e2Λ, Rλ,n] = dimRλ,ne2 = n,and analogously
[P2s, Rλ,n] = [P2, Rλ,n] = [e1Λ, Rλ,n] = dimRλ,ne1 = n.

Corollary. Let P be a Λ-module suh that P ≃
⊕nP

i=1 P si

i for some
nP , s1, . . . , snP

∈ N. Then [P, Rλ,n] =
∑nP

i=1 sin for any λ ∈ k and n ≥ 1.
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Remark. The remaining nonzero oordinate-bloks of the lower-trian-gular matrix C = C(Λ) look as follows:
C|I×Tλ

= (C|Tλ×P)t, C|I×P =




0 1 2 · · ·

1 2 3 · · ·

2 3 4 · · ·... ... ... . . .



(f. Corollary 4.1 and Lemma 4.3). The �rst formula is straightforward. Toprove the seond, one shows that [Pi, Ij ] = i + j − 2 for all i, j ≥ 1 (applyarguments similar to those in the proof above).4.4. Now we formulate a neessary and su�ient ondition for a modulefrom the tube Tλ, λ ∈ k, to be a diret summand of a given Λ-module.
Proposition. Let M : kn1 −→−→

A

B
kn2 be a �nite-dimensional Λ-module,where A, B ∈ Mn2×n1(k), n1, n2 ≥ 1. The module Rλ0,n, λ0 ∈ k, is adiret summand of M, for some n ≥ 1, if λ0 is a ommon root of all

(n2 −
∑nP

i=1 si)-minors of the matrix A − λB, regarded as polynomialsfrom k[λ], where P s1
1 ⊕· · ·⊕P

snP
nP is a maximal postprojetive diret summandof M .Proof. We an assume that M has the form M = P ⊕ R ⊕ I, where

P ∈ addP, R ∈ addR, I ∈ add I and P =
⊕nP

i=1 P si

i . Fix λ0 ∈ k and assumethat for some n ≥ 1, R ≃ Rλ0,n⊕R′ for some R′. Then by Corollary 4.3 andProposition 4.1 we have
[M, Rλ0,1] = [P, Rλ0,1]+ [Rλ0,n, Rλ0,1]+ [R′, Rλ0,1]+ [I, Rλ0,1]=

nP∑

i=1

si +1+xfor some x ∈ N (note that x is stritly positive exatly when R′ ontainsa diret summand from Tλ0). Conversely, if Rλ0,n is not a diret summandof M for any n ≥ 1, then learly [M, Rλ0,1] =
∑nP

i=1 si. Consequently, theinequality [M, Rλ0,1] ≥
∑nP

i=1 si always holds and it is strit if and onlyif Rλ0,n is a diret summand of M for some n ≥ 1.Now we estimate the dimension of HomΛ(M, Rλ0,1). Note that any f ∈
(M, Rλ0,1) is a pair (x, y) ∈M1×n1(k)×M1×n2(k), satisfying the system

{
yA = λ0x,

yB = x,of linear equations, or the equivalent one
{

yB = x,

y(A− λ0B) = 0.
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Therefore we have
(∗) [M, Rλ0,1] = n2 − r(A− λ0B)(x is determined by y and [M, Rλ0,1] is equal to the dimension of the solutionspae of y(A−λ0B) = 0). Sine [M, Rλ0,1] ≥

∑nP

i=1 si, we have r(A−λ0B) ≤

n2 −
∑nP

i=1 si. The last inequality is strit if and only if all (n2 −
∑nP

i=1 si)-minors of A− λ0B are zero, and the proof is �nished.Let {λ1, . . . , λt} ⊂ k, t ≥ 0, be the set of all λ ∈ k suh that M ontains adiret summand from the tube Tλ (we an determine this set by applying theproposition). The fat below shows how to ompute the number of summandsof M in Tλi
, knowing the rank of the matrix A− λiB.

Corollary. Given i ∈ {1, . . . , t} denote by ji the number of indeom-posable diret summands of M from the tube Tλi
. Then ji = n2− r(A−λiB)

−
∑nP

l=1 sl.Proof. Fix i ∈ {1, . . . , t}. Let Rλi,m1 , . . . , Rλi,mji
, m1, . . . , mji

≥1, be aomplete list of indeomposable diret summands of M in Tλi
, i.e. R ≃

Rλi,m1 ⊕· · ·⊕Rλi,mji
⊕R′, where R′ ontains no diret summands from Tλi

.Then by Corollary 4.3 and Proposition 4.1 we have
[M, Rλi,1] = [P, Rλi,1] + [Rλi,m1 , Rλi,1] + · · ·+ [Rλi,mji

, Rλi,1]

+ [R′, Rλi,1] + [I, Rλi,1]

=

nP∑

l=1

sl + 1 + · · ·+ 1 + 0 + 0 =

nP∑

l=1

sl + ji.Now applying the equality (∗) from the previous proof, we immediately ob-tain ji = n2 − r(A− λiB)−
∑nP

l=1 sl.4.5. Now we summarize our previous onsiderations and present on-seutive steps of algorithm whose task is to determine the full mutipliitysequene m(M), for a given Λ-module M , if we know �su�iently many�oordinates of the vetor h(M) (resp. h′(M)).
Algorithm (the Kroneker algebra ase).Input: A Λ-module M in the form

M : kn1 -
B

-A
kn2Output: The integers

nP , nI , s1, . . . , snP
, t1, . . . , tnI

≥ 0;

s ≥ 0, m1, . . . , ms ≥ 1;

a1
1, . . . , a

1
m1

, a2
1, . . . , a

2
m2

, . . . , as
1, . . . a

s
ms
≥ 0;

m∞, b1, . . . , bm∞
≥ 0,
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and elements λ1, . . . , λs ∈ k suh that M ≃ P ⊕R⊕I, where P =
⊕nP

i=1 P si

i ,
I =

⊕nI

i=1 Iti
i and R = (

⊕s
i=1

⊕mi

j=1 R
ai

j

λi,j
)⊕ (

⊕m∞

l=1 Rbl

∞,l).(1) Determining the multipliity vetor for a postprojetive omponent :set s1 := mP1
= [M, P1]

s2 := mP2
= [M, P2]− 2[M, P1]

n := 3while ∑n−1

i=1
si(i− 1) + (n− 1) ≤ n1 and ∑n−1

i=1
sii + n ≤ n2 do {

sn := mPn
= [M, Pn]− 2[M, Pn−1] + [M, Pn−2]

n := n + 1
}set

nP := max{i : i = 1, . . . , n− 1, si 6= 0}
n′

1 := n1 −
∑nP

i=1
si(i− 1)

n′

2 := n2 −
∑nP

i=1
sii(2) Determining the multipliity vetor for a preinjetive omponent :set

t1 := mI1
= [I1, M ]

t2 := mI2
= [I2, M ]− 2[I1, M ]

n := 3while ∑n−1

i=1
tii + n ≤ n′

1 and ∑n−1

i=1
ti(i− 1) + (n− 1) ≤ n′

2 do {
tn := mIn

= [In, M ] + 2[In−1, M ] + [In−2, M ]

n := n + 1
}set

nI := max{i : i = 1, . . . , n− 1, ti 6= 0}(3) Determining the multipliity vetor for a regular omponent Tλ with
λ 6=∞: Let {λ1, . . . , λs} ⊂ k be all ommon roots of (n2 −

∑nP

i=1 si)-minorsof the matrix A− λB treated as polynomials from k[λ] (see Corollary 4.4).for i = 1, . . . , s do
ji := n2 − r(A− λiB)−

∑nP

l=1
slfor i = 1, . . . , s do {

ai
1 := mRλi,1

= 2[M, Rλi,1]− [M, Rλi,2]

n := 2while ∑n−1

l=1
ai

l < ji do {
ai

n := mRλi,n
= 2[M, Rλi,n]− [M, Rλ1,n−1]− [M, Rλi,n+1]

n := n + 1

}
mi := n− 1

}
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(4) Determining the multipliity vetor for a regular omponent Tλ with

λ =∞: set
b1 := mR∞,1

= 2[M, R∞,1]− [M, R∞,2]
n := 2

n′

1 := n1 −
∑nP

i=1
si(i− 1)−

∑nI

i=1
tii−

∑s
i=1

∑mi

j=1
ai

jjwhile ∑n−1

i=1
bii < n′

1do {
bn := mR∞,n

= 2[M, R∞,n]− [M, R∞,n−1]− [M, R∞,n+1]
n := n + 1

}
m∞ := max{i : i = 1, . . . , n− 1, mi > 0}

Remark. (i) It is easily seen that the algorithm stops in eah of the foursteps. In steps (1) and (2) the index n inreases in eah exeution of the loop.In step (3) the loop must stop when the sum of the multipliities of the diretsummands from Tλi
reahes ji (see Corollary 4.4), i.e. if ai

1 + · · ·+ ai
mi

= jifor some mi < ∞. Finally, in step (4) the loop stops sine 2n′
1 = dimk M ′,where M ′ is the maximal diret summand of M formed by modules from T∞,i.e. n′

1 =
∑m∞

i=1 bii, for some m∞ < ∞ (learly under the assumption thatthe algorithm is orret).(ii) The orretness of the algorithm follows from Lemma 4.2, Propo-sition 4.4 and Corollary 4.4. After stop of loops in steps (1) and (2) weobtain the multipliities of all postprojetive (respetively, preinjetive) di-ret summands of M . A possible next run of any of these loops would testan indeomposable diret summand whose dimension is already greater thanthe odimension of the diret sum of all indeomposable summands detetedup to that stage. This estimation is very impreise in ase dimkM is muhgreater than dimkP . In steps (3) and (4) the situation is muh better, the ex-eution of loops stops immediately after deteting all the summands searhedfor.The algorithm requires onseutive omputations of the dimensions
[M, Pi] for i ≥ 1 (and analogously for the remaining onneted omponents).Generally, the omplexity of the omputations grows fast with inreasing i.We show how to avoid full omputations of [M, Pi] in eah step, reduingthem to the already known result of omputations for [M, Pi−1] and somesimple omputational problem, depending only on the dimension vetor of
M and suh that its omplexity in eah step is the same.4.6. Now we desribe an indutive method of omputing the dimensions
[M, X] (resp. [X, M ]) where X is of the form Pi, Rλ,i, R∞,i (resp. Ii) for
i ∈ N. First, one has to translate this problem into the language of systemsof linear equations.
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Lemma. Let M : kn1 −→−→
A

B
kn2 be a �nite-dimensional representation,where A, B ∈Mn2×n1(k), n1, n2 ≥ 1. Then

[M, Pi] = in2 − r(M i
P ),(i)

[Ii, M ] = in1 − r(M i
I),(ii)

[M, Rλ,i] = in2 − r(M i
λ),(iii)

[M, R∞,i] = in2 − r(M i
∞),(iv)for all i ≥ 1 and λ ∈ k, where M i

P ∈Min2×(i+1)n1
(k), M i

I ∈Min1×(i+1)n2
(k),

M i
λ ∈Min2×in1(k) and M i

∞ ∈Min2×in1(k) are the following blok matries:
M i

P =




−A B 0 0 · · · 0

0 −A B 0 · · · 0

0 0 −A B · · · 0... ... ... . . . . . . ...
0 0 0 · · · −A B




,

M i
I =




−At Bt 0 0 · · · 0

0 −At Bt 0 · · · 0

0 0 −At Bt · · · 0... ... ... . . . . . . ...
0 0 0 · · · −At Bt




,

M i
λ =




C 0 0 · · · 0

−B C 0 · · · 0

0 −B C · · · 0... ... . . . . . . ...
0 0 · · · −B C




, M i
∞ =




B 0 0 · · · 0

−A B 0 · · · 0

0 −A B · · · 0... ... . . . . . . ...
0 0 · · · −A B




,

where C = C(λ) = A− λB.Proof. We onsider the ase of postprojetive indeomposables Pi. For-mula (i) is lear for i = 1, sine eah f : M → P1 is given by x ∈ M1×n2(k)satisfying the system xA = 0 = xB, or equivalently x[A|B] = 0. In the gen-eral ase i ≥ 2 the morphism f : M → Pi is a pair (X, Y ) ∈M(i−1)×n1
(k)×

Mi×n2(k) of matries, satisfying the system
(∗)

{
Y A = ViX,

Y B = WiX,onsisting of two subsystems (∗)α and (∗)β. Denote by x1, . . . , xi−1 (respe-
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tively, y1, . . . , yi) the rows of X (respetively, Y ). Then (∗) has the form

(∗)′





y1A = x1,... ...
yi−1A = xi−1,

yiA = 0,

y1B = 0,

y2B = x1,... ...
yiB = xi−1,and is equivalent to

(∗)′′





y1A = x1,... ...
yi−1A = xi−1,

yiA = 0,

y1B = 0,

y2B − y1A = 0,... ...
yiB − yi−1A = 0.((∗)′′ is obtained from (∗)′ by subtrating from the (j+1)th matrix equationof (∗)′β the jth matrix equation of (∗)′α, for every j = 1, . . . , i− 1.) Let (∗∗)be obtained from (∗)′′ by dropping the �rst i−1 equations; as a blok matrixequation it has the form

[yn, . . . , y1] ·M
i
P = 0.Sine the vetors x1, . . . , xi−1 are determined in (∗)′′ by y1, . . . , yi−1, thedimensions of the solution spaes for systems (∗)′′ and (∗∗) are the same,and onsequently, we have (i).It is easily seen that applying the standard duality D : modΛ→ modΛopand (i) we immediately obtain (ii).To ompute the number [M, Rλ,i], onsider an arbitrary homomorphism

f : M → Rλ,i, given by a pair (X, Y ) ∈ Mi×n1(k) ×Mi×n2(k) of matriessatisfying the system
(∗∗∗)

{
Y A = Ji(λ)X,

Y B = X,onsisting of two subsystems (∗∗∗)α and (∗∗∗)β. Denote by x1, . . . , xi and



MULTIPLICITY PROBLEM FOR DECOMPOSITIONS OF MODULES 247

y1, . . . , yi the rows of X and Y , respetively. Then (∗∗∗) an be written inthe form
(∗∗∗)′





y1A = λx1 + x2,... ...
yi−1A = λxi−1 + xi,

yiA = λxi,

y1B = x1,... ...
yiB = xi.Now, we proeed as before. For every j = 1, . . . , i, we subtrat from the jthequation of (∗∗∗)′α the jth equation of (∗∗∗)′β multiplied by λ, then we dropthe last i equations and we arrive at the system
[y1, . . . , yi] ·M

i
λ = 0whose solution spae has the same dimension as that of (∗∗∗). In this waywe obtain (iii).The last formula (iv) follows easily from (iii) (one has to exhange ma-tries A and B, for λ = 0).4.7. Finally, we brie�y outline an indutive method of rank omputationfor matries from Lemma 4.6. This method follows from their very spei�form. We use the notation introdued in 1.3.

Lemma.(a) Let N = N (A, B) be a family of generalized upper triangular matries
Ni, i ∈ N, de�ned indutively by setting N1 = ̂[−A|B] and

Ni+1 =

[
N

(i)
11 [N

(i)
12 |0]

0 Ûi

]

where Ni =

[
N

(i)
11 N

(i)
12

N
(i)
21 N

(i)
22

] with maximal zero blok N
(i)
21 ontaining

in1 olumns and Ui =

[
N

(i)
22 0

−A B

]. Then r(Ni+1) = r(Ni) + r(Ûi) −

r(N
(i)
22 ) and r(M i

P ) = r(Ni), for every i ∈ N; moreover, N
(i)
22 = U

(i−1)
22 ,where Ûi =

[
U

(i)
11 U

(i)
12

U
(i)
21 U

(i)
22

] with maximal zero blok U
(i)
21 ontaining n1olumns.(b) Let N = N (−C,−B) be a family of matries as above. Then r(M i

λ) =

r(Ni−1)−r(N
(i−1)
22 )+r(Ẑi−1) for every i ≥ 2, where Zi−1 =

[
N

(i−1)
22

C

].
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Proof. Assertion (a) follows from the detailed analysis of Gauss elimina-tion. To show (b), note that r(M i

λ) = r

([
Ni−1

[ 0 |C]

]) and apply the argumentsused in (a).
Remark. (i) The matries M i

I and M i
∞ have respetively the same formas M i

P and M i
λ so their ranks an be omputed analogously.(ii) In Algorithm 4.5, for a given number d, we have to ompute thedimensions [M, Pi], or equivalently the ranks r(M i

P ) (see Lemma 4.6), for
i = 1, . . . , d. The last lemma allows us to redue the omplexity of the aboverank omputations. They are realized in pratie as a sequene of d Gausseliminations for the matries M i

P of linearly inreasing sizes in2 × (i + 1)n1and now an be replaed by a sequene of d Gauss eliminations for matriesof size at most 2n2 × 2n1.5. Ãp,q-algebras: the general ase. In this setion we disuss the dif-ferene between the problem of determining the multipliity vetors of gen-eral Ãp,q-algebras and of the Kroneker algebra. In the general ase we donot present the algorithm in detail, but rather indiate how to modify Al-gorithm 1.5 and how to redue partially the problem to the previous one.To deal with indeomposables and handle ertain homomorphism spaes ina more onvenient way, we use some elements of the overing tehnique forstring algebras (brie�y outlined in 3.1).5.1. Let Λ = kQ be the path algebra of the quiver Q of type Ãp,q (seeSetion 4). The universal over Q̃ of Q is then an in�nite quiver of the form
· · ·

αn
1−→ · · ·

αn
p
−→

βn
q
←− · · ·

βn
1←−

αn+1
1−→ · · ·

αn+1
p
−→

βn+1
q
←− · · ·

βn+1
1←− · · ·for n ∈ Z. The anonial Galois overing of bound quivers is in fat just anordinary quiver morphism F : Q̃→ Q (I = 0!), given by the natural formulas

F (αn
i ) = αi and F (βn

i ) = βi for n ∈ Z, i = 1, . . . , p, j = 1, . . . , q. Thefundamental group G of Q an be identi�ed with Z; under this identi�ationthe ation of G on Q̃ is given by m · αn
i = αn+m

i and m · βn
i = βn+m

i for
n, m ∈ Z. Clearly, we have Λ = kQ and Λ̃ = kQ̃.Note that any walk in Q (resp. Q̃) is a V -sequene in (Q, 0) (resp.
(Q̃, 0)). Therefore to list all indeomposable Λ-modules of the form X(w) =
Fλ(V (w̃)), w ∈ V0 (see 3.1), it su�es to write down all walks in Q onsistentwith a �xed, arbitrarily seleted yle orientation of the underlying unori-ented graph for Q. We do this in some quite ordered and stritly presribedway.For this purpose, we �x some notation. For any 1 ≤ i < j ≤ p (resp.
1 ≤ s < t ≤ q), we distinguish the walk αi,j = αiαi+1 · · ·αj−1αj (resp.
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β−1
s,t = β−1

t β−1
t−1 · · ·β

−1
s+1β

−1
s ) in the quiver Q. We also set α = α1,p and

β−1 = β−1
1,q .First, onsider the indeomposable modules P0,p+q = X(p + q), P0,p+q−1

= X(β−1
q ), P0,p+q−2 = X(β−1

q−1,q), . . . , P0,p+1 = X(β−1
2,q ), P0,p = X(αp),

P0,p−1 = X(αp−1,p), . . . , P0,2 = X(α2,p), and P0,1 = X(β−1
1,qα1,p). It iseasy to see that they are all projetive. Note that P0,i = P (i) for every

i = 1, . . . , p + q. Given i ∈ {1, . . . , p + q}, we de�ne by indution the mod-ules P−n,i of the form X(w) for all n > 0. Suppose that P−(n−1),i = X(w)for some walk w already onstruted. Then we set P−n,i := X(v), where vis a walk obtained from w as follows. We extend w with one arrow αs onthe left-hand side and one inverse β−1
t on the right-hand side (notie thatthey always exist!); in ase s = 1 (resp. t = 1) we also add the walk β−1(resp. α).For example, if p = 2, q = 3 we have P0,3 = X(β−1

2,3), P−1,3 = X(α2β
−1α),

P−2,3 = X(β−1αβ−1αβ−1
3 ), P−3,3 = X(α2β

−1αβ−1αβ−1
2,3) and so on.

Λ-modules from the lass
P = {P−n,i}n≥0, 1≥i≥p+qare alled postprojetive [2℄.We an onstrut dually the lass of preinjetive Λ-modules. We set

I0,1 = X(1), I0,2 = X(α1), I0,3 = X(α1,2), . . . , I0,p = X(α1,p−1), I0,p+1 =
X(β−1

1 ), I0,p+2 = X(β−1
1,2), . . . , I0,p+q−1 = X(β−1

1,q−1) and I0,p+q = X(αβ−1)(these modules are injetive and I0,i = I(i) for every i = 1, . . . , p + q). If
In−1,i = X(w) for some walk w already onstruted, then we set In,i := X(v),where v is a walk obtained by extending w with one inverse β−1

s on the left-hand side and one arrow αt on the right-hand side; in ase s = q (resp. t = p)we also add the walk α (resp. β−1). Λ-modules from the lass
I = {In,i}n≥0, 1≥i≥p+qare alled preinjetive.To de�ne the next two lasses of indeomposables in modΛ, we introdueindutively two families of walks de�ning them. A walk w is alled a walk oftype alpha with quasi-length n starting at a ∈ {1, . . . , p} (denoted by αa,n)if w = a for 2 ≤ a ≤ p, or w = β−1 for a = 1, in the ase n = 1; and

w = αaαt(αa),n−1 for 2 ≤ a ≤ p, or w = β−1α1αt(α1),n−1 for a = 1, in thease n > 1 (we identify verties p + q and 1, if neessary). For example,if p = 2, q = 3, we have α1,2 = β−1α1, α2,2 = α2β
−1, α1,3 = β−1αβ−1,

α2,3 = α2β
−1α1, α1,4 = β−1αβ−1α1, α2,4 = α2β

−1αβ−1. Dually, we say that
w is a walk of type beta with quasi-length n starting at a ∈ {p +1, . . . , p+ q}(denoted by βa,n) if w = a for p + 1 ≤ a ≤ p + q− 1, or w = α for a = p + q,in the ase n = 1; and w = β−1

a−pβs(βa−p),n−1 for p + 1 ≤ a ≤ p + q − 1, or
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w = αβ−1

q βs(βq),n−1 for a = p + q, in the ase n > 1 (we identify verties 1and 1 + q if neessary).For simpliity, we denote by Aa,n and Ba,n the indeomposable Λ-modulesof the form X(αa,n) and X(βa,n), respetively, whih are de�ned by walksfrom the two newly onstruted families of walks. We set
A = {Aa,n}1≤a≤p, n≥1, B = {Ba,n}p+1≤a≤p+q, n≥1.Observe that by the onstrution eah of the families P, I, A, B onsists ofpairwise nonisomorphi Λ-modules, these families are pairwise disjoint and

P ∪ I ∪A∪B exhausts all indeomposables of the form X(w), for all walks
w in Q.5.2. For any λ ∈ k \ {0} and n ≥ 1 we denote by Rλ,n the Λ-modulegiven by the representation of the quiver Q that has the k-spae kn at eahvertex, the k-linear map orresponding to the arrow α1 is de�ned by theJordan blok Jn(λ) and all remaining struture maps are identities. We set

R = {Rλ,n}λ∈k\{0}, n≥1 ∪ A ∪ B.

Λ-modules from this family are alled regular .Now we onstrut a restrition funtor Ψ : modΛ → modΛ′, whihallows us to redue partially omputations of homomorphism spaes over Λto those over the Kroneker algebra Λ′ = kQ′ (here Q′ denotes the quiver
1′ ⇉ 2′). In view of appliations we de�ne Ψ only on a dense full subategoryonsisting of matrix representations.Let M be a �nite-dimensional Λ-module, whih as a representation of Qis de�ned by the k-spaes ka1, . . . , kap, kb1 , . . . , kbq , orresponding to ver-ties 1, . . . , p, p + 1, . . . , p + q, and the k-linear maps given by matries
A1, . . . , Ap, B1, . . . , Bq of suitable dimensions, orresponding to the arrows
α1, . . . , αp, β1, . . . , βq, respetively, where a1, . . . , ap, b1, . . . , bq ∈ N. Then weset

Ψ(M) = (ka1
A
−→−→

B
kbq)where A = Ap · · ·A2A1, B = Bq · · ·B2B1. For a homomorphism f =

{fi}1≤i≤p+q : M → N between Λ-modules M and N given by matrix repre-sentations of Q, we set
Ψ(f) = {f1, fp+q}where the maps f1, fp+q orrespond to verties 1′, 2′ of Q′, respetively. Itis easily seen that the above mappings yield a funtor between the relevantategories. Notie that Ψ(Rλ,n) = R′

λ,n for all λ ∈ k \{0}, n ≥ 1, where R′
λ,ndenotes the regular indeomposable Rλ,n in modΛ′.
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Lemma. For any Λ-module M and λ ∈ k \ {0}, n ≥ 1, the funtor Ψyields the isomorphism
HomΛ(M, Rλ,n) ≃ HomΛ′(Ψ(M), R′

λ,n)of k-linear spaes.Proof. An easy hek on de�nitions.5.3. Below we ollet some (well known, see e.g. [8℄) fats onerning thestruture of the ategory modΛ, to be used later.
Proposition.(i) The disjoint union X = P ∪R ∪ I is a omplete family of pairwisenonisomorphi indeomposable Λ-modules.(ii) For any P ∈ P, R ∈ R, I ∈ I we have

(R, P ) = (I, P ) = (I, R) = 0.(iii) The lasses P and I are onneted omponents in the Auslander�Reiten quiver ΓΛ of Λ of the form (−N)Qop and NQop, respetively.The orrespondene between verties and modules is given by themappings (−n, i) 7→ P−n,i and (n, i) 7→ In,i. In partiular, P−n,i =
τ−nP0,i and In,i = τnI0,i for every n ≥ 0, i = 1, . . . , p + q.(iv) The regular modules form a 1-parameter family {Tλ}λ∈k∪{∞} of pair-wise orthogonal (in the Hom-sense) onneted omponents in ΓΛ.Eah omponent Tλ for λ ∈ k \ {0} is a rank 1 stable tube withverties represented by {Rλ,n}n≥1 (in partiular, the almost split se-quenes are exatly of the same form as in Proposition 4.1(v)). Theomponent T0 (resp. T∞) is a rank p (resp. q) stable tube with ver-ties represented by A (resp. B). More preisely, the almost splitsequenes in the tube T0 have the form

0→ Aa,n → Aa−1,n+1 ⊕Aa,n−1 → Aa−1,n → 0for all a = 1, . . . , p, n ≥ 0, where A0,n = Ap,n and Aa,0 = 0.Similarly in the tube T∞ we have the almost split sequenes of theform
0→ Ba,n → Ba−1,n−1 ⊕Ba,n+1 → Ba−1,n → 0for all a = p+1, . . . , p+q, n ≥ 0, where Bp,n = Bp+q,n and Ba,0 = 0.In partiular, τ rpAa,n = Aa,n and τ rqBa,n = Ba,n for any r ∈ Z.

Corollary. Let M be an arbitrary Λ-module.(i) For any λ ∈ k \ {0}, n ≥ 1 we have
mRλ,n

(M) = mR′
λ,n

(Ψ(M)).
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(ii) For any n ≥ 0, a = 1, . . . , p, b = p + 1, . . . , p + q we have

mAa,n(M)= [M, Aa−1,n]−[M, Aa−1,n+1]−[M, Aa,n−1]+[M, Aa,n],

mBb,n
(M)= [M, Bb−1,n]−[M, Bb−1,n−1]−[M, Bb,n+1]+[M, Bb,n].Proof. (i) follows from Lemma 5.2 and the fat that Ψ preserves almostsplit sequenes for indeomposables from the tubes Tλ, λ ∈ k \ {0} (seeProposition 5.3).(ii) follows immediately from Proposition 5.3.

Remark. Preise formulas giving the multipliities for postprojetiveand preinjetive indeomposables an be obtained as in Lemma 4.2 by apply-ing the shape of the postprojetive and preinjetive omponent (see Propo-sition 5.3(iii)). We do not present them beause of their rather ompliatedform. In partiular, to ompute the multipliities of the form mP0,a
for all

a ∈ Q0, we use right minimal almost split homomorphisms in the �start-ing� full subquiver {0} × Qop of −NQop. We an indutively ontinue thisproedure using the shape of the quiver −NQop.5.4. Let M be an arbitrary Λ-module (notations as in 5.2). We have ananalogous neessary and su�ient ondition for a module from the tube Tλ,
λ ∈ k \ {0}, to be a diret summand of a given module M .
Lemma. Rλ0,n, λ0 ∈ k \ {0}, is a diret summand of M, for some

n ≥ 1, if and only if λ0 is a ommon root of all (bq − s)-minors of thematrix A − λB, regarded as polynomials from k[λ], where A = Ap · · ·A1,
B = Bq · · ·B1, and s is the sum of the multipliities of indeomposable post-projetive diret summands of M . Moreover, the number of indeomposablediret summands of M from the tube Tλ is equal to bq − r(A − λB)− s forany λ ∈ k \ {0}.Proof. Sine every postprojetive module is of the form τ−mP0,a for some
m ≥ 0, a ∈ Q0 and regular modules from Tλ for λ ∈ k \ {0} are τ -invariants(see Proposition 5.3), we have [P−i,a, Rλ,n] = n for all i ≥ 0, a ∈ Q0,
λ ∈ k \ {0}, n ≥ 1. Then the argument from the proof of Proposition 4.4yields [M, Rλ0,1] ≥ s and the inequality is strit if and only if Rλ0,n is a diretsummand of M for some n ≥ 1. Now by the properties of the funtor Ψ (seeLemma 5.2), we obtain the assertion of the lemma.5.5. Now we modify the onseutive steps of Algorithm 4.5 and brie�youtline the algorithm deteting the multipliity vetors in the general Ãp,qase, under the assumption as in 4.5. We also assume that a Λ-module M isgiven by data as in 5.2.
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Algorithm (the general ase).Input: A Λ-module M .Output: The multipliity vetor m(M).(1+2) Determining the multipliity vetor for postprojetive and prein-jetive omponents:set n := 0while there exists a = 1, . . . , p + q with dimk P−n,a ≤ codimk M, do {for i = p + q downto 1 doompute the number mP−n,i
(see Remark 5.3)

n := n + 1
}Here codimk M is the di�erene between dimk M and the dimension vetorof the diret sum of the indeomposable diret summands already detetedby the algorithm.For preinjetive modules the proedure is an analogous generalizationof that for the Kroneker ase (i.e. omputing the dimensions [X, M ] for

X ∈ I).(3) Determining the multipliity vetor for Tλ with λ ∈ k \ {0}: Let
{λ1, . . . , λt} be all ommon roots of (bq − s)-minors of the matrix A − λBtreated as polynomials from k[λ] (see Lemma 5.4).By Corollary 5.3(i), to ompute multipliities, we apply the main partof Algorithm 4.5(3) for {λ1, . . . , λt} and representation Ψ(M) (now ji =
bq − r(A− λiB)− s for i = 1, . . . , t, see Lemma 5.4).(4) Determining the multipliity vetor for T0 and T∞:set n := 1while there exists a = 1, . . . , p suh that dimk Aa,n ≤ codimk M, do {for i = 1 to p doompute the number mAi,n

(apply Corollary 5.3(ii))
n := n + 1

}For modules from the tube T∞ we proeed analogously.
Remark. (i) The orretness and stop property for the algorithm for-mulated above follow by arguments analogous to those from Remark 4.5.(ii) To determine the number mP−n,a

, in eah loop exeution we have toompute only one new dimension [M, P−n,a] (the remaining needed dimen-sions are already omputed in the previous loop exeution). Analogously,to determine mAa−1,n
for any n ≥ 2 and a = 1, . . . , p, we ompute just



254 P. DOWBOR AND A. MRÓZ
one new dimension [M, Aa−1,n+1] and use the already omputed dimensions
[M, Aa−1,n], [M, Aa,n−1], [M, Aa,n].Notie that also in the general ase, the shape and nature of the aboveproedures motivate searhing for an �indutive� method of omputing thedimensions h(M)X = [M, X]. In the next paragraphs we present our pro-posal of handling this problem.5.6. We start by observing that (from the onstrution) for any n ≥ 0and a = 1, . . . , p+q there exist uniquely determined m ≥ 0, i ∈ {2, . . . , p+1},
j ∈ {2, . . . , q + 1} (and vie versa) suh that P−n,a = X(αi,p(β

−1α)mβ−1
j,q ),where αp+1,p = β−1

q+1,q = (p + q). Analogously, for any n′ ≥ 0 and a′ =
1, . . . , p + q there exist uniquely determined m′ ≥ 0, i′ ∈ {0, . . . , p − 1},
j′ ∈ {0, . . . , q − 1} (and vie versa) suh that In′,a′ = X(β−1

1,j′(αβ−1)m′

α1,i′),where α1,0 = β−1
1,0 = (1). Similarly, for any m ≥ 1 and a = 1, . . . , p,we have αa,m = αs,p(β

−1α)nβ−1α1,t for some n ≥ 0, s ∈ {2, . . . , p + 1},
t ∈ {0, . . . , p − 1} or αa,m = αi,j for some 2 ≤ i ≤ j ≤ p − 1 or αa,m = (a)(if m = 1, a 6= 1). Analogously for any m′ ≥ 1 and a′ = p + 1, . . . , p + qwe have βa′,m′ = β−1

1,t′α(β−1α)n′

β−1
s′,q for some n′ ≥ 0, s′ ∈ {2, . . . , q + 1},

t′ ∈ {0, . . . , q−1} or βa′,m′ = β−1
i,j for some 2 ≤ i ≤ j ≤ q−1 or βa′,m′ = (a′)(if m′ = 1, a′ 6= p + q).To desribe an indutive method of omputing, for a given M , the di-mensions [M, X] (resp. [M, X]) for all indeomposables X from an individualomponent, we proeed as in the Kroneker algebra ase. (We use the nota-tion for M established in 5.2.)

Lemma. Let M be a �nite-dimensional Λ-module given by data as in 4.3.Then
[M, X(αi,p(β

−1α)mβ−1
j,q )] = (m + 1)bq − r(M i,j,m

P ),(i)

[X(β−1
1,j′(αβ−1)m′

α1,i′), M ] = (m′ + 1)a1 − r(M j′,i′,m′

I ),(ii)

[M, X(αs,p(β
−1α)nβ−1α1,t)] = (n + 1)bq + at+1 − r(M s,t,n

A ),(iii)

[M, X(β−1
1,t′α(β−1α)n′

β−1
s′,q)] = (n′ + 1)bq + bt′ − r(M t′,s′,n

B ),(iv)for all m, m′, n, n′ ≥ 0, i, s ∈ {2, . . . , p + 1}, j, s′ ∈ {2, . . . , q + 1}, t, i′ ∈
{0, . . . , p− 1}, j′, t′ ∈ {0, . . . , q − 1}, where

M i,j,m
P ∈M((m+1)bq)×(ma1+ai−1+bj−2)(k),

M j′,i′,m′

I ∈M((m′+1)a1)×(m′bq+ai′+2+bj′+1)
(k),

M s,t,n
A ∈M((n+1)bq+at+1)×((n+1)a1+as−1)(k),

M t′,s′,n′

B ∈M((n′+1)bq+bt′)×((n′+1)a1+bs′−2)
(k)
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are the blok matries
M i,j,m

P =




Ap,i−1 B 0 0 0 · · · 0

0 −A B 0 0 · · · 0

0 0 −A B 0 · · · 0... ... ... . . . . . . ... ...
0 0 · · · 0 −A B 0

0 0 · · · 0 0 −A Bq,j−1




,

M j′,i′,m′

I =




A
t

i′+1,1 Bt 0 0 0 · · · 0

0 −A
t

Bt 0 0 · · · 0

0 0 −A
t

Bt 0 · · · 0... ... ... . . . . . . ... ...
0 0 · · · 0 −A

t
Bt 0

0 0 · · · 0 0 −A
t

Bt
j′+1,1




,

M s,t,n
A =




Ap,s−1 B 0 0 · · · 0

0 −A B 0 · · · 0

0 0 −A B · · · 0... ... ... . . . . . . ...
0 0 · · · 0 −A B

0 0 · · · 0 0 −At,1




,

M t′,s′,n′

B =




Bq,s′−1 A 0 0 · · · 0

0 −B A 0 · · · 0

0 0 −B A · · · 0... ... ... . . . . . . ...
0 0 · · · 0 −B A

0 0 · · · 0 0 −Bt′,1




,

where As,t = AsAs−1 · · ·At and Bs,t = BsBs−1 · · ·Bt for s ≥ t, and A =
Ap,1, B = Bq,1, A0,1 = I, B0,1 = I.
Sublemma.(i) The dimensions of the solution spaes for the systems of linear equa-tions
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x1C0 = 0,

x2C1 = x1,... ...
xn+1Cn = xn,and

xn+1Cn · · ·C0 = 0are equal for any n ≥ 1 and any matries C0, . . . , Cn of suitablesizes, where x1, . . . , xn+1 are the unknown row vetors.(ii) The dimensions of solution spaes of the systems of linear equations




ymDm = ym−1,... ...
y2D2 = y1,

y1D1 = x1,

x2C1 = x1,... ...
xn+1Cn = xn,and

ymDm · · ·D1 = xn+1Cn · · ·C1are the same for any n, m ≥ 1 and any matries C1, . . . , Cm,
D1, . . . , Dn of suitable sizes, where x1, . . . , xn+1, y1, . . . , ym are theunknown row vetors.Proof. The assertions follow easily by applying appropriate elementarytransformations and dropping the equations ontaining those vetors xi thatare determined by the other ones (see the proof of Lemma 4.6).Proof of Lemma. Fix a postprojetive indeomposable module of theform X(w) with w = αi,p(β

−1α)mβ−1
j,q . By the properties of the funtors Fλand F• (f. 3.1) we have

HomΛ(M, X(w)) ≃ Hom
Λ̃
(F•(M), V (w̃)),therefore to ompute [M, X(w)], we onsider the spae Hom

Λ̃
(F•(M), V (w̃)),where w̃ is a �xed lifting of the walk w (Fλ(V (w̃)) = X(w)). Any homomor-phism f : F•(M)→ V (w̃) is given by a olletion

f = {xai
, xai+1 , . . . , xap} ∪ {y

s
b1

, . . . , ys
bq
}ms=1

∪ {xs
a1

, . . . , xs
ap
}ms=1 ∪ {ybj−1

, . . . , ybq
}
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of row vetors satisfying the ommutative diagram
kai−1-

Ai−1
kai · · · -

Ap

kbq �
Bq

· · · �
B1

ka1 -
A1

· · · -
Ap

kbq · · · -
Ap

kbq �
Bq

· · · �
Bj

kbi−1 �
Bj−1

kbj−2

0 -0 k · · · -1 k �1
· · · �1

k -1 · · · -1 k · · · -1 k �1
· · · �1

k �0
0

? ?
xai

?
y1

bq

?
x1

a1

?
y2

bq

?
ybq

?
ybj−1

?

or equivalently the system

(∗)





xai
Ai−1 = 0,

xai+1Ai = xai
,... ...

y1
bq

Ap = xap ,

y1
bq

Bq = y1
bq−1

,... ...
y1

b1
B1 = x1

a1
,

x1
a2

A1 = x1
a1

,... ...
y2

bq
Ap = x1

ap
,... ...

ybq
Ap = xm

ap
,

ybq
Bq = ybq−1 ,... ...

ybj
Bj = ybj−1

,

ybj−1
Bj−1 = 0,of linear equations. By the sublemma (with (i) applied to the �rst p− i + 2equations and the last q − j + 2 equations, and (ii) to the remaining part),the dimension of the solution spae for (∗) is the same as that for the sys-tem

(∗)′





y1
bq

Ap,i−1 = 0,

y1
bq

B = y2
bq

A,... ...
ym−1

bq
B = ym

bq
A,

ym
bq

B = ybq
A,

ybq
Bq,j−1 = 0.



258 P. DOWBOR AND A. MRÓZ
As a blok matrix equation, (∗)′ has the form

[y1
bq

, . . . , ym
bq

, ybq
] ·M i,j,m

P = 0,and onsequently, (i) is proved.It is easy to hek that applying the standard duality D : modΛ →
modΛop we obtain (ii) (notie that Λop = kQop and Qop is a quiver of type
Ãq,p).Formulas (iii) and (iv) follow by applying similar arguments.
Remark. It remains to show how to ompute the dimension [M, Aa,n]for Aa,n = X(αa,n), when αa,n = αs,t or αa,n = (a) for 2 ≤ s ≤ t ≤ p − 1,

2 ≤ a ≤ p − 1. In the �rst ase [M, Aa,n] is equal to the dimension ofthe solution spae for the system At · · ·AsAs−1x = 0, and in the seondase to that for Aa−1x = 0. Analogously, if βa,n = β−1
s,t or βa,n = (a) for

2 ≤ s ≤ t ≤ q − 1, p + 1 ≤ a ≤ p + q − 1, then [M, Ba,n] is the dimension ofthe solution spae of Bt · · ·BsBs−1x = 0 or Ba−px = 0, respetively.5.7. The fat below, just as before, is ruial for improving e�ienyof omputing oordinates of the vetor h(M), and indiates an indutivemethod of rank omputation for the family of matries from Lemma 5.6.
Lemma. Let N = N (Ap,i−1, A, B) be a family of generalized upper tri-angular matries Nl, l ∈ N, de�ned indutively, for a �xed i, by setting

N1 = ̂[Ap,i−1|B] and
Nl+1 =

[
N

(l)
11 [N

(l)
12 |0]

0 Ûl

]

where Nl =

[
N

(l)
11 N

(l)
12

N
(l)
21 N

(l)
22

] with maximal zero blok N
(l)
21 ontaining la1 olumnsand Ul =

[
N

(l)
22 0

−A B

]. Then r(Nl+1) = r(Nl) + r(Ûl) − r(N
(l)
22 ); moreover,

N
(l)
22 = U

(l−1)
22 , where Ûl =

[
U

(l)
11 U

(l)
12

U
(l)
21 U

(l)
22

] with maximal zero blok U
(l)
21 on-taining a1 olumns. Moreover, for any m, n and �xed j, t we have

r(M i,j,m
P ) = r(Nm)− r(N

(m)
22 ) + r(Û ′

m),

r(M i,t,n
A ) = r(Nn+1)− r(N

(n+1)
22 ) + r(Ẑ ′

n+1),where U ′
m =

[
N

(m)
22 0

−A Bq,j−1

] and Z ′
n+1 =

[
N

(n+1)
22

−At,1

].Proof. This follows easily by analysis of Gauss elimination.5.8. Finally, we summarize previous remarks onerning e�ieny of ourproedures, by estimating brie�y the pessimisti omplexity of the algorithms
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for Ãp,q-algebras and omparing it to the �naive� approah. We also dis-uss perspetives and possibilies for generalizations of our methods to otherlasses of algebras.Notie �rst that, exept for solving polynomial equations, Algorithms 4.5and 5.5 an be �automatized�. One an also onsider the situation of k beinga �nite �eld; in this ase the algorithms an be �fully automatized�.
Lemma. Exluding the problem of solving polynomial equations, the pes-simisti omplexity of Algorithm 5.5 (for �xed p, q) is O(m4), where m is thedimension of the given module M .Proof. Set m = dimk M . First we onsider the Kroneker algebra ase(i.e. Algorithm 4.5). It is obvious that the loop in step 1 is exeuted at most

m times (see the loop ondition), and similarly in steps 2 and 4. Analyzingstep 3, we see that m1+· · ·+ms annot be greater than m (⊕s
i=1

⊕mi

j=1 R
ai

j

λi,jis a diret summand of M), so the inner loop in step 3 is also exeuted atmost m times. All these exeutions rely on omputing the dimensions [M, Pi](resp. [Ii, M ], [M, Rλ,n]), i.e. performing Gauss elimination for matries ofsize at most 2n2×2n1 (see Lemma 4.7 and Remark 4.7(ii)). Sine m = n1+n2and the omplexity of Gauss elimination on an n × n matrix is O(n3), theassertion holds for the Kroneker algebra ase.The analysis of the omplexity for Algorithm 5.5 is similar, sine we haveLemma 5.7 at our disposal. In the new estimation one should only multiplythe parameters from the previous one by p + q (a onstant whih does nota�et the omplexity).
Remark. (i) The estimations in the proof above are very rough, so inpratie the relevant algorithms an be muh more e�ient. In partiular,this is the ase if the support of M does not ontain all verties of Q, ormore generally, the disposition of oordinates in dimkM is not enough �ho-mogeneous�.(ii) Note that Lemmata 4.7 and 5.7 essentially improve the e�ieny ofthe algorithms. In general, without this improvement, the rank omputationsare realized by Gauss elimination for matries of inreasing sizes estimatedby im×im, for i = 1, . . . , m (see Remark 4.7(ii)). In that ase the omplexityis O(

∑m
i=1(im)3) = O(m7).A �nal omment. The method of determining multipliity vetors formodules, proposed in this paper, an be adopted for other lasses of al-gebras; in partiular, for domesti anonial algebras and hereditary tamealgebras. The expeted pessimisti omplexities of the relevant algorithms inthese situations are similar to that in the ase of Ãp,q-algebras. We stronglybelieve that the existene of suh an algorithm with reasonably low polyno-
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mial omplexity depends on the struture and shape of the module ategoryonsidered, rather than on a preise desription of anonial forms for inde-omposables. We have already obtained some results in this diretion. Theywill be presented in forthoming publiations.
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