COLLOQUIUM MATHEMATICUM

DIVERGENT VECTOR SEQUENCES $\left\{y_{n}\right\}$ WITH $\Delta y_{n} \rightarrow 0$

BY
ROMAN WITUŁA (Gliwice)

Abstract

An approximation property of divergent sequences in normed vector spaces is discussed.

1. Introduction. We are interested in sequences $\left\{y_{n}\right\}$ of elements of a normed vector space \mathbb{X} such that $\Delta y_{n}:=y_{n+1}-y_{n} \rightarrow 0$ as $n \rightarrow \infty$. Each vector sequence $\left\{y_{n}\right\}$ of this kind can be approximated by a sequence of the form

$$
\begin{equation*}
x_{n}=\beta_{n} y+y_{n}, \quad y_{n} \in \mathbb{N} \tag{1}
\end{equation*}
$$

where $\|y\|=1$ and $\left\{\beta_{n}\right\} \subset \mathbb{R}$ is a sequence convergent to zero. Then, of course, $\left\|x_{n}-y_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Moreover, the sequence $\left\{x_{n}\right\}$ can be chosen so that

$$
\left\|\Delta x_{n}\right\|=\alpha_{n}, \quad n \in \mathbb{N}
$$

is any given null sequence with $\alpha_{n}>\left\|y_{n+1}-y_{n}\right\|, n \in \mathbb{N}$.
Interesting results are obtained when $\left\{y_{n}\right\}$ is a divergent sequence with one of the properties: either limsup $\left\|y_{n}\right\|=\infty$, or liminf $\left\|y_{n}\right\|<\lim \sup \left\|y_{n}\right\|$ $<\infty$, or $\left\{y_{n}\right\}$ is divergent and, at the same time, has no subsequence with convergent sequence $\left\{\left\|y_{n}\right\|\right\}$.

2. Main result

Theorem 1. Let $(\mathbb{X},\|\cdot\|)$ be a normed linear space over either $F=\mathbb{R}$ or \mathbb{C} and let $\left\{y_{n}\right\} \subset \mathbb{X}, \Delta y_{n}:=y_{n+1}-y_{n} \rightarrow 0$. Then, for every $\left\{\alpha_{n}\right\} \subset(0, \infty)$ such that $\alpha_{n} \rightarrow 0$ and $\left\|y_{n+1}-y_{n}\right\|<\alpha_{n}, n \in \mathbb{N}$, and for every $y \in \mathbb{X}$ with $\|y\|=1$, there exists a sequence $\left\{\beta_{n}\right\} \subset \mathbb{R}$ convergent to zero such that

$$
\left\|x_{n+1}-x_{n}\right\|=\alpha_{n}
$$

where x_{n} is defined in (1).
Proof. Fix $\left\{\alpha_{n}\right\}$ and $y \in \mathbb{X}$ as in the statement. We define β_{n} by induction in such a way that

$$
\begin{equation*}
\left\|\beta_{n+1} y+y_{n+1}-\beta_{n} y-y_{n}\right\|=\alpha_{n} \tag{2}
\end{equation*}
$$

2000 Mathematics Subject Classification: 40A05, 46B20.
Key words and phrases: divergent vector sequences.
and

$$
\begin{equation*}
\left|\beta_{n+1}\right|<\left|\beta_{n}\right| \quad \text { whenever } \quad \beta_{n} \beta_{n+1}>0 \tag{3}
\end{equation*}
$$

for every $n \in \mathbb{N}$. Set $\beta_{1}=0$. Suppose that $\beta_{1}, \ldots, \beta_{n}$ satisfying (2) and (3) have already been defined. Clearly, each of the following two functions is continuous:

$$
\left(-\infty, \beta_{n}\right] \ni \beta \stackrel{f}{\mapsto}\left\|\beta y+y_{n+1}-\beta_{n} y-y_{n}\right\|
$$

and

$$
\left[\beta_{n}, \infty\right) \ni \beta \stackrel{g}{\mapsto}\left\|\beta y+y_{n+1}-\beta_{n} y-y_{n}\right\| .
$$

Moreover, we have $f\left(\beta_{n}\right)<\alpha_{n}, g\left(\beta_{n}\right)<\alpha_{n}$ and

$$
\lim _{\beta \rightarrow \infty} f(\beta)=\lim _{\beta \rightarrow \infty} g(\beta)=\infty
$$

Hence, by the Darboux property, there exist

$$
\begin{equation*}
\beta_{n+1}^{(1)} \in\left(-\infty, \beta_{n}\right) \quad \text { and } \quad \beta_{n+1}^{(2)} \in\left(\beta_{n}, \infty\right) \tag{4}
\end{equation*}
$$

such that

$$
f\left(\beta_{n+1}^{(1)}\right)=g\left(\beta_{n+1}^{(2)}\right)=\alpha_{n}
$$

Let $\beta_{n+1}=\beta_{n+1}^{(1)}$ if $\beta_{n} \geq 0$. In the opposite case let $\beta_{n+1}=\beta_{n+1}^{(2)}$. Then conditions (2) and (3) are obviously satisfied.

We show that the sequence $\left\{\beta_{n}\right\}$ is convergent. We distinguish two cases. First, assume that $\beta_{n} \beta_{n+1}>0$ for sufficiently large $n \in \mathbb{N}$. This means, by (4), that

$$
\text { either } 0<\beta_{n+1}<\beta_{n}, \quad \text { or } \quad \beta_{n}<\beta_{n+1}<0
$$

for sufficiently large $n \in \mathbb{N}$. Hence, the sequence $\left\{\beta_{n}\right\}$ is convergent. The second case, where $\beta_{n} \beta_{n+1} \leq 0$ for infinitely many n, also implies the convergence of $\left\{\beta_{n}\right\}$. Indeed, since

$$
\left|\beta_{n+1}-\beta_{n}\right| \leq\left\|\beta_{n+1} y+y_{n+1}-\beta_{n} y-y_{n}\right\|+\left\|y_{n+1}-y_{n}\right\|<2 \alpha_{n}
$$

it follows that

$$
\begin{equation*}
\max \left\{\left|\beta_{n}\right|,\left|\beta_{n+1}\right|\right\}<2 \alpha_{n} \tag{5}
\end{equation*}
$$

in the case of $\beta_{n} \beta_{n+1} \leq 0$, i.e. for infinitely many positive integers n. From $(3),(5)$ and the convergence of $\left\{\alpha_{n}\right\}$ to zero we can easily deduce that $\left\{\beta_{n}\right\}$ is convergent.

At the same time, by (2), we have

$$
\left\|x_{n+1}-x_{n}\right\|=\alpha_{n}
$$

for every $n \in \mathbb{N}$, where $x_{n}=\beta_{n} y+y_{n}$. Since for the sequence

$$
x_{n}^{*}=\left(\beta_{n}-\lim _{k \rightarrow \infty} \beta_{k}\right) y+y_{n}
$$

we have $\left\|\Delta x_{n}\right\|=\left\|\Delta x_{n}^{*}\right\|$, it can be assumed that $\left\{\beta_{n}\right\}$ is convergent to zero and thus the proof is finished.

REMARK 1. If $\sum \alpha_{n}<\infty$, then each sequence $\left\{\beta_{n}\right\}$ with $\beta_{n} \in\left\{\beta_{n}^{(1)}, \beta_{n}^{(2)}\right\}$ for every $n \in \mathbb{N}$ is convergent, because

$$
\begin{aligned}
\left|\beta_{m}-\beta_{n}\right| & =\left\|\beta_{m} y-\beta_{n} y\right\| \leq\left\|y_{m}-y_{n}\right\|+\left\|\beta_{m} y+y_{m}-\beta_{n} y-y_{n}\right\| \\
& \leq\left\|y_{m}-y_{n}\right\|+\sum_{k=m}^{n-1}\left\|\beta_{k+1} y+y_{k+1}-\beta_{k} y-y_{k}\right\| \\
& =\left\|y_{m}-y_{n}\right\|+\sum_{k=m}^{n-1} \alpha_{k}
\end{aligned}
$$

for every $m, n \in \mathbb{N}, m<n$.
REmARK 2. If $\left\{y_{n}\right\} \subset \mathbb{X}$ is such that $\lim _{n \rightarrow \infty}\left\|y_{n}\right\|=\infty$, then the proof of Theorem 1 can be easily visualized. For simplicity, let us draw the sequence $\left\{y_{n}\right\}$ on the horizontal axis. The element x_{n+1} belongs to the intersection of a straight line with a sphere of radius α_{n}; there are two possibilities of choosing such an element (see Remark 3 below) and one has to choose the appropriate one; Figure 1 illustrates this situation.

Fig. 1.

REMARK 3. As follows from the proof of Theorem 1, the intersection of a straight line with a sphere contains at least two points. Note that (see for example [1]) if $C \subset X$ is convex and $x_{0} \in \operatorname{cl} C, x_{1} \in \operatorname{int} C$ then $x_{0}+$ $\Theta\left(x_{1}-x_{0}\right) \in \operatorname{int} C$ for every $\Theta \in(0,1]$, so there are no more such points.

Corollary 1. Let $(\mathbb{X},\|\cdot\|)$ be an incomplete normed linear space. Then for every positive real p there exist divergent series $\sum x_{n}$ and $\sum y_{n}$ with
$x_{n}, y_{n} \in \mathbb{X}$ such that

$$
\left\{\left\|x_{n}\right\|\right\} \in l^{p} \backslash \bigcup_{q<p} l^{q} \quad \text { and } \quad\left\{\left\|y_{n}\right\|\right\} \in \bigcup_{q>p} l^{q} \backslash l^{p}
$$

Proof. By Theorem 1, it is sufficient to prove that

$$
l^{p} \backslash \bigcup_{q<p} l^{q} \neq \emptyset \quad \text { and } \quad \bigcup_{q>p} l^{q} \backslash l^{p} \neq \emptyset .
$$

But an easy computation shows that

$$
\left\{n^{-1-2 \frac{\log \log (n+3)}{\log n}}\right\}_{n=1}^{\infty} \in l^{1} \backslash \bigcup_{q<1} l^{q}
$$

and

$$
\left\{n^{-1}\right\}_{n=1}^{\infty} \in \bigcup_{q>1} l^{q} \backslash l^{1}
$$

which implies the above relationships.
Acknowledgments. The author wishes to express his gratitude to Professor Piotr Biler and Mr. Jerzy Trzeciak for several helpful suggestions during the preparation of the final version of the paper.

REFERENCES
[1] P.-J. Laurent, Approximation et optimisation, Hermann, Paris, 1972.

Institute of Mathematics
Silesian University of Technology
Kaszubska 23
44-100 Gliwice, Poland
E-mail: r.witula@polsl.pl

