MAXIMAL OPERATORS OF FEJÉR MEANS OF DOUBLE VILENKIN–FOURIER SERIES

BY

ISTVÁN BLAHOTA (Nyíregyháza), GYÖRGY GÁT (Nyíregyháza) and USHANGI GOGINA VA (Tbilisi)

Abstract. The main aim of this paper is to prove that the maximal operator $\sigma_0^* := \sup_n |\sigma_{n,n}|$ of the Fejér means of the double Vilenkin–Fourier series is not bounded from the Hardy space $H_{1/2}$ to the space weak-$L_{1/2}$.

Let \mathbb{N}_+ denote the set of positive integers, $\mathbb{N} := \mathbb{N}_+ \cup \{0\}$. Let $m := (m_0, m_1, \ldots)$ be a sequence of positive integers not less than 2. Denote by $Z_{m_k} := \{0, 1, \ldots, m_k - 1\}$ the additive group of integers modulo m_k. Define the group G_m as the complete direct product of the groups Z_{m_j}, with the product of the discrete topologies of Z_{m_j}’s. The direct product μ of the measures $\mu_k(\{j\}) := \frac{1}{m_k} (j \in Z_{m_k})$ is the Haar measure on G_m with $\mu(G_m) = 1$.

If the sequence m is bounded, then G_m is called a bounded Vilenkin group, otherwise it is an unbounded Vilenkin group. The elements of G_m can be represented by sequences $x := (x_0, x_1, \ldots, x_j, \ldots) (x_j \in Z_{m_j})$. It is easy to give a base of neighborhoods of $x \in G_m$:

$I_0(x) := G_m, \quad I_n(x) := \{y \in G_m \mid y_0 = x_0, \ldots, y_{n-1} = x_{n-1}\}$

for $n \in \mathbb{N}$. Define $I_n := I_n(0)$ for $n \in \mathbb{N}_+$.

The generalized number system based on m is defined in the following way: $M_0 := 1, M_{k+1} := m_k M_k$ ($k \in \mathbb{N}$). Then every $n \in \mathbb{N}$ can be uniquely expressed as $n = \sum_{j=0}^{\infty} n_j M_j$, where $n_j \in Z_{m_j}$ ($j \in \mathbb{N}_+$) and only a finite number of n_j’s are not zero. We use the following notations. For $n > 0$ let $|n| := \max\{k \in \mathbb{N} : n_k \neq 0\}$ (that is, $M_{|n|} \leq n < M_{|n|+1}$), $n^{(k)} := \sum_{j=k}^{\infty} n_j M_j$ and $n_{(k)} := n - n^{(k)}$.

2000 Mathematics Subject Classification: Primary 42C10.

Key words and phrases: Vilenkin system, Hardy space, maximal operator.

The first author is supported by the Békésy Postdoctoral fellowship of the Hungarian Ministry of Education Bö 91/2003, the second author is supported by the Hungarian National Foundation for Scientific Research (OTKA), grant no. M 36511/2001, T 048780 and by the Széchenyi fellowship of the Hungarian Ministry of Education Szö 184/2003.
Denote by $L^p(G_m)$ the usual (one-dimensional) Lebesgue spaces, with norms $\| \cdot \|_p (1 \leq p \leq \infty)$.

Next, we introduce on G_m an orthonormal system which is called the Vilenkin system. First define the complex-valued functions $r_k : G_m \to \mathbb{C}$, called the generalized Rademacher functions, in this way:

$$r_k(x) := \exp \frac{2\pi i x_k}{m_k} \quad (r^2 = -1, \ x \in G_m, \ k \in \mathbb{N}).$$

Now define the Vilenkin system $\psi := (\psi_n : n \in \mathbb{N})$ on G_m as follows:

$$\psi_n(x) := \prod_{k=0}^{\infty} r_{nk}(x) \quad (n \in \mathbb{N}).$$

If $m = 2$, we call this system the Walsh–Paley system. The Vilenkin system is orthonormal and complete in $L^1(G_m)$ [8].

Now, we introduce analogues of the usual definitions of Fourier analysis. If $f \in L^1(G_m)$ we can make the following definitions:

- Fourier coefficients:
 $$\hat{f}(k) := \int_{G_m} f \overline{\psi}_k \, d\mu \quad (k \in \mathbb{N}),$$

- partial sums:
 $$S_n f := \sum_{k=0}^{n-1} \hat{f}(k) \psi_k \quad (n \in \mathbb{N}_+, \ S_0 f := 0),$$

- Fejér means:
 $$\sigma_n f := \frac{1}{n} \sum_{k=0}^{n-1} S_n f \quad (n \in \mathbb{N}_+),$$

- Dirichlet kernels:
 $$D_n := \sum_{k=0}^{n-1} \psi_k \quad (n \in \mathbb{N}_+).$$

Recall that

$$D_{M_n}(x) = \begin{cases} M_n & \text{if } x \in I_n, \\ 0 & \text{if } x \in G_m \setminus I_n. \end{cases}$$ (1)

For $f \in L_1(G_m \times G_m)$, the rectangular partial sums of the double Vilenkin–Fourier series of f are defined as follows:

$$S_{M,N}(f; x^1, x^2) := \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} \hat{f}(i,j) \psi_i(x^1) \psi_j(x^2),$$
where the number
\[\hat{f}(i, j) = \int_{G_m \times G_m} f(x^1, x^2) \overline{\psi}_i(x^1) \overline{\psi}_j(x^2) \mu(x^1, x^2). \]
is said to be the \((i, j)\)th Vilenkin–Fourier coefficient of \(f\) (\(\mu\) is the product measure \(\mu \times \mu\)).

The norm (or quasinorm) of the space \(L_p(G_m \times G_m)\) is defined by
\[\|f\|_p := \left(\int_{G_m \times G_m} |f(x^1, x^2)|^p \mu(x^1, x^2) \right)^{1/p} \quad (0 < p < \infty). \]

The space weak-\(L_p(G_m \times G_m)\) consists of all measurable functions \(f\) for which
\[\|f\|_{\text{weak-}L_p(G_m \times G_m)} := \sup_{\lambda > 0} \lambda \mu(|f| > \lambda)^{1/p} < \infty. \]

Let
\[I_{n,k}(x^1, x^2) := I_n(x^1) \times I_k(x^2). \]
The \(\sigma\)-algebra generated by the rectangles \(\{I_{n,k}(x^1, x^2) : (x^1, x^2) \in G_m \times G_m\}\) will be denoted by \(\mathcal{F}_{n,k} (n, k \in \mathbb{N})\).

Denote by \(f = (f^{(n,k)} : n, k \in \mathbb{N})\) a martingale with respect to \((\mathcal{F}_{n,k} : n, k \in \mathbb{N})\) (for details see, e.g., [9, 13]). The maximal function and the diagonal maximal function of a martingale \(f\) are defined by
\[f^* = \sup_{n,k \in \mathbb{N}} |f^{(n,k)}|, \quad f^\square = \sup_{n \in \mathbb{N}} |f^{(n,n)}|, \]
respectively. In case \(f \in L_1(G_m \times G_m)\), the maximal functions are also given by
\[f^*(x^1, x^2) = \sup_{n,k \in \mathbb{N}} \frac{1}{\mu(I_{n,k}(x^1, x^2))} \left| \int_{I_{n,k}(x^1, x^2)} f(u^1, u^2) \mu(u^1, u^2) \right|, \]
\[f^\square(x^1, x^2) = \sup_{n \in \mathbb{N}} \frac{1}{\mu(I_{n,n}(x^1, x^2))} \left| \int_{I_{n,n}(x^1, x^2)} f(u^1, u^2) \mu(u^1, u^2) \right|. \]
for \((x^1, x^2) \in G_m \times G_m\).

The Hardy martingale spaces \(H_p(G_m \times G_m)\) and \(H_p^\square(G_m \times G_m)\) \((0 < p < \infty)\) consist of all martingales for which
\[\|f\|_{H_p} := \|f^*\|_p < \infty \quad \text{and} \quad \|f\|_{H_p^\square} := \|f^\square\|_p < \infty, \]
respectively.

If \(f \in L_1(G_m \times G_m)\) then it is easy to show that the sequence \((S_{M_n,M_k}(f) : n, k \in \mathbb{N})\) is a martingale. If \(f\) is a martingale, that is, \(f = (f^{(n,k)} : n, k \in \mathbb{N})\), then the Vilenkin–Fourier coefficients must be defined in a slightly different
way:
\[
\hat{f}(i, j) = \lim_{k,l \to \infty} \int_{G_m \times G_m} f(k,l)(x^1, x^2) \overline{\psi}_i(x^1) \overline{\psi}_j(x^2) \mu(x^1, x^2).
\]

The Vilenkin–Fourier coefficients of \(f \in L_1(G_m \times G_m) \) are the same as those of the martingale \((S_{M_n, M_k}(f) : n, k \in \mathbb{N}) \) obtained from \(f \).

For \(n, k \in \mathbb{N}_+ \) and a martingale \(f \) the Fejér mean of order \((n, k)\) of the double Vilenkin–Fourier series of \(f \) is given by
\[
\sigma_{n,k}(f; x^1, x^2) = \frac{1}{nk} \sum_{i=0}^{n-1} \sum_{j=0}^{k-1} S_{i,j}(f; x^1, x^2).
\]

For a martingale \(f \) the restricted and unrestricted maximal operators of the Fejér means are defined by
\[
\sigma^*_\lambda f(x^1, x^2) = \sup_{1/M_\lambda \leq n/k \leq M_\lambda} |\sigma_{n,k}(f; x^1, x^2)|,
\]
\[
\sigma^* f(x^1, x^2) = \sup_{n,k \in \mathbb{N}} |\sigma_{n,k}(f; x^1, x^2)|.
\]

In the one-dimensional case the weak type inequality
\[
\mu(\sigma^* f > \lambda) \leq \frac{c}{\lambda} \|f\|_1 \quad (\lambda > 0)
\]
can be found in Zygmund [15] for the trigonometric series, in Schipp [5] for Walsh series and in Pál and Simon [4] for bounded Vilenkin series. Again in one dimension, Fujii [2] and Simon [7] verified that \(\sigma^* \) is bounded from \(H_1 \) to \(L_1 \). Weisz [10, 12] generalized this by proving the boundedness of \(\sigma^* \) from the martingale Hardy space \(H_p \) to \(L_p \) for \(p > 1/2 \). Simon [6] gave a counterexample to show that this does not hold for \(0 < p < 1/2 \). In the endpoint case \(p = 1/2 \) Weisz [14] proved that \(\sigma^* \) is bounded from \(H_{1/2} \) to weak-\(L_{1/2} \). By interpolation it follows that \(\sigma^* \) is not bounded from \(H_p \) to weak-\(L_p \) for any \(0 < p < 1/2 \). It is an open question whether \(\sigma^* \) is bounded from \(H_{1/2} \) to \(L_{1/2} \) or not. (We think the answer is no.)

For the two-dimensional Vilenkin–Fourier series Weisz [11] proved the following results:

THEOREM A (Weisz [11]). Let \(p > 1/2 \). Then the maximal operator \(\sigma^*_\lambda \) is bounded from \(H_p \square \) to \(L_p \).

THEOREM B (Weisz [11]). Let \(p > 1/2 \). Then the maximal operator \(\sigma^* \) is bounded from \(H_p \) to \(L_p \).

The main aim of this paper is to prove that for any bounded Vilenkin system the maximal operator \(\sigma^* \) (resp. \(\sigma^*_\lambda \)) is not bounded from \(H_{1/2} \) (resp. \(H_{1/2} \square \)) to weak-\(L_{1/2} \). Moreover, we prove that the following is true.
Theorem 1. For any bounded Vilenkin system the maximal operator σ_0^* is not bounded from $H_{1/2}$ to weak-$L_{1/2}$.

Thus, as regards boundedness of σ^* and σ_λ^*, the case of double Vilenkin–Fourier series differs from that of one-dimensional Vilenkin–Fourier series.

By Theorem 1 and interpolation it follows that σ_0^* is not bounded from H_p to weak-L_p for any $0 < p < 1/2$. In particular, in Theorems A and B the assumption $p > 1/2$ is essential. On the other hand, it would be interesting to find a decent space to replace weak-$L_{1/2}$ in order to have the relevant boundedness. However, this question does not seem to be easy.

The Fejér kernel of order n of the Vilenkin–Fourier series is defined by

$$K_n(x) := \frac{1}{n} \sum_{k=0}^{n-1} D_k(x).$$

Set

$$K_{s,t}(x) := \sum_{j=s}^{s+t-1} D_k(x).$$

In order to prove the theorem we need the following lemmas.

Lemma 1 ([3]). Suppose that $s, t, n \in \mathbb{N}$ and $x \in I_t \setminus I_{t+1}$. If $t \leq s \leq |n|$, then

$$K_{n^{s+1},s}(x) = \begin{cases} M_t M_s \psi_n(x) \frac{1}{1 - r_t(x)} & \text{if } x - x_t e_t \in I_s, \\ 0 & \text{otherwise}. \end{cases}$$

Lemma 2. Let $2 < A \in \mathbb{N}_+$, $k \leq s < A$ and $n_A^* := M_{2A} + M_{2A-2} + \cdots + M_2 + M_0$. Then

$$n_{A-1}^*|K_{n_{A-1}}^*(x)| \geq M_{2k} M_{2s}/4$$

for $x \in I_{2A}(0, \ldots, 0, x_{2k} \neq 0, 0, \ldots, 0, x_{2s} \neq 0, x_{2s+1}, \ldots, x_{2A-1})$, $k = 0, 1, \ldots, A - 3$, $s = k + 2, k + 3, \ldots, A - 1$.

Proof. Let $n \in \mathbb{N}_+$. It is known [1] that

$$D_n(x) = \psi_n(x) \left(\sum_{j=0}^{\infty} D_{M_j}(x) \sum_{u=m_j-n_j}^{m_j-1} r_u(x) \right),$$

thus

$$|D_n(x)| \leq \sum_{j=0}^{\infty} n_j D_{M_j}(x).$$

Since for $x \in I_l \setminus I_{l+1}$,

$$\sum_{j=0}^{\infty} n_j D_{M_j}(x) = \sum_{j=0}^{l} n_j M_j \leq m_l M_l = M_{l+1},$$
if \(s \leq l \) we obtain
\[
|K_{n^{s+1},M_s}(x)| = \left| \sum_{u=n^{s+1}}^{n^{s+1}+M_s-1} D_u(x) \right| \leq M_l+1M_s.
\]
From Lemma 1 we see that
\[
K_{n^{2l+1},M_{2l}}(x) = 0 \quad \text{for } l = s + 1, s + 2, \ldots, A - 1.
\]
If \(l < s \leq |n|, x \in I_l \setminus I_{l+1} \) and \(x - x_l e_l \in I_s \), then also from Lemma 1 we get
\[
1 \leq \frac{|K_{n^{s+1},M_s}(x)|}{M_lM_s} = \frac{1}{2|\sin(\pi x_l/m_l)|} \leq \frac{m_l}{\pi}.
\]
Using these facts, the equality from [3, p. 16]
\[
nK_n = \sum_{h=0}^{|n|} \sum_{j=0}^{n_h-1} K_{n^{h+1}+jM_h,M_h},
\]
and
\[
(n^*_A) = \begin{cases} 1 & \text{if } 2 | h, h < 2A, \\ 0 & \text{otherwise} \end{cases}
\]
we estimate
\[
n^*_A |K_{n^*_A}(x)| = \left| \sum_{h=0}^{2A-2} \sum_{j=0}^{\lfloor 2A/2h \rfloor} K_{(n^*_A)^{h+1},M_h}(x) \right| = \left| \sum_{l=0}^{s} K_{(n^*_A)^{2l+1},M_{2l}}(x) \right|
\]
\[
\geq |K_{(n^*_A)^{2s+2},M_{2s}}(x)| - \left| \sum_{l=0}^{s-1} K_{(n^*_A)^{2l+2},M_{2l}}(x) \right|
\]
\[
\geq M_{2s}M_{2k} - \sum_{l=0}^{s-1} |K_{(n^*_A)^{2l+2},M_{2l}}(x)| \geq M_{2s}M_{2k} - \sum_{l=0}^{s-1} M_{2l+1}M_{2k}.
\]
It is easy to see that
\[
\sum_{l=0}^{s-1} M_{2l+1} = \sum_{l=0}^{s-2} M_{2l+1} + M_{2s-1} \leq M_{2s-2} + M_{2s-1}
\]
\[
= \frac{M_{2s}}{m_{2s-1}m_{2s-2}} + \frac{M_{2s}}{m_{2s-1}} \leq \frac{3M_{2s}}{4}.
\]
Summarizing,
\[n_{A-1}^* |K_{n_{A-1}^*}(x)| \geq \frac{M_{2A}M_{2k}}{4}. \]

Proof of Theorem 1. Let \(A \in \mathbb{N}_+ \) and
\[
f_A(x^1, x^2) := (D_{M_{2A+1}}(x^1) - D_{M_{2A}}(x^1))(D_{M_{2A+1}}(x^2) - D_{M_{2A}}(x^2)).
\]

It is evident that
\[
\hat{f}_A(i, k) = \begin{cases}
1 & \text{if } i, k = M_{2A}, \ldots, M_{2A+1} - 1, \\
0 & \text{otherwise}.
\end{cases}
\]

Then we can write
\[
(2) \quad S_{i,j}(f_A; x^1, x^2) = \begin{cases}
(D_i(x^1) - D_{M_{2A}}(x^1))(D_j(x^2) - D_{M_{2A}}(x^2)), & \text{if } i, j = M_{2A} + 1, \ldots, M_{2A+1} - 1, \\
f_A(x^1, x^2) & \text{if } i, j \geq M_{2A+1}, \\
0 & \text{otherwise}.
\end{cases}
\]

Since
\[
f_A^*(x^1, x^2) = \sup_{n, k \in \mathbb{N}} |S_{M_n, M_k}(f_A; x^1, x^2)| = |f_A(x^1, x^2)|,
\]
from (1) we get
\[
(3) \quad \|f_A\|_{H_p} = \|f_A^*\|_p = \|D_{M_{2A+1}} - D_{M_{2A}}\|_p^2
\]
\[
= \left(\left(\int_{I_{2A}}^{I_{2A+1}} M_{2A}^p + \int_{I_{2A+1}} M_{2A+1}^p - M_{2A}^p \right)^{1/p} \right)^2
\]
\[
= \left(\left(\frac{m_{2A} - 1}{M_{2A+1}} M_{2A}^p + \frac{(m_{2A} - 1)^p M_{2A}}{M_{2A+1}} \right)^{1/p} \right)^2
\]
\[
\leq 2^{2/p} m_{2A}^2 M_{2A}^{2-2/p} \leq cM_{2A}^{2-2/p}.
\]

Since
\[
D_{k+M_{2A}} - D_{M_{2A}} = \psi_{M_{2A}} D_k, \quad k = 1, \ldots, M_{2A},
\]
from (2) we obtain
\[
(4) \quad \sigma_0^* f_A(x^1, x^2) = \sup_{n \in \mathbb{N}} |\sigma_{n,n}(f_A; x^1, x^2)| \geq |\sigma_{n_A^*, n_A^*}(f_A; x^1, x^2)|
\]
\[
= \frac{1}{(n_{A}^*)^2} \sum_{i=0}^{n_{A}^*-1} \sum_{j=0}^{n_{A}^*-1} S_{i,j}(f_A; x^1, x^2)\]
\[
\begin{align*}
&= \frac{1}{(n_A^*)^2} \left| \sum_{i=M_2+1}^{n_A^*-1} \sum_{j=M_2+1}^{n_A^*-1} (D_i(x^1) - D_{M_2A}(x^1))(D_j(x^2) - D_{M_2A}(x^2)) \right| \\
&= \frac{1}{(n_A^*)^2} \left| \sum_{i=1}^{n_A^*-1-1} \sum_{j=1}^{n_A^*-1-1} (D_{i+M_2A}(x^1) - D_{M_2A}(x^1))(D_{j+M_2A}(x^2) - D_{M_2A}(x^2)) \right| \\
&= \frac{(n_A^*-1)^2}{(n_A^*)^2} |K_{n_A^*-1}(x^1)| |K_{n_A^*-1}(x^2)|.
\end{align*}
\]

Let \(q := \sup \{m_i : i \in \mathbb{N} \} \). For every \(l = 1, \ldots, \left[\frac{1}{4} \log q \sqrt{A} \right] - 1 \) (\(A \) is supposed to be large enough) let \(k_l^1 \) and \(k_l^2 \) be the smallest natural numbers for which

\[
M_2A\sqrt{A} \frac{1}{q^{4l}} \leq M_{2k_l^1}^2 < M_2A\sqrt{A} \frac{1}{q^{4l-4}},
\]

\[
M_2A\sqrt{A} q^{4l} \leq M_{2k_l^2}^2 < M_2A\sqrt{A} q^{4l+4}.
\]

Define

\[
I_{2A}^{k_l^1,k_l^2}(x) := I_{2A}(0, \ldots, 0, x_{2k} \neq 0, 0, \ldots, 0, x_{2s} \neq 0, x_{2s+1}, \ldots, x_{2A-1})
\]

and let

\[
(x^1, x^2) \in I_{2A}^{k_l^1,k_l^1+1}(x^1) \times I_{2A}^{k_l^2,k_l^2+1}(x^2).
\]

Then from Lemma 2 and (4) we obtain

\[
\sigma_0^* f_A(x^1, x^2) \geq c \frac{M_{2k_l^1}^2 M_{2k_l^2}^2}{M_{2A}^2} \geq cM_2A\sqrt{A} \frac{1}{q^{4l-4}} \frac{M_2A\sqrt{A} q^{4l}}{M_{2A}^2} \geq cA.
\]

On the other hand,

\[
\mu\{ (x^1, x^2) \in G_m \times G_m : |\sigma_0^* f_A(x^1, x^2)| \geq cA \}
\]

\[
\geq c \sum_{l=1}^{\left[\frac{1}{4} \log q \sqrt{A} \right]} \sum_x \mu(I_{2A}^{k_l^1,k_l^1+1}(x^1) \times I_{2A}^{k_l^2,k_l^2+1}(x^2))
\]

\[
\left(\sum_x := \sum_{x_{2k_l^1+3} = 0}^{m_{2k_l^1+3} - 1} \cdots \sum_{x_{2A-1} = 0}^{m_{2A-1} - 1} \sum_{x_{2k_l^2+3} = 0}^{m_{2k_l^2+3} - 1} \cdots \sum_{x_{2A-1} = 0}^{m_{2A-1} - 1} \right)
\]

\[
\geq c \sum_{l=1}^{\left[\frac{1}{4} \log q \sqrt{A} \right]} \frac{m_{2k_l^1+3} \cdots m_{2A-1} m_{2k_l^2+3} \cdots m_{2A-1}}{M_{2A}^2}
\]
\[
\frac{1}{M_{2k_l+2}^2} r \geq \sum_{l=1}^{\left\lfloor \frac{1}{4} \log \sqrt{A} \right\rfloor} \frac{1}{M_{2k_l}^2 M_{2k_l+2}^2}
\]

\[
\frac{1}{(M_{2A} \sqrt{A} q^{-4l+1})^{1/2} (M_{2A} \sqrt{A} q^{4l+4})^{1/2}} \geq \frac{c \log A}{M_{2A} \sqrt{A}}.
\]

Combining this with (3) we obtain

\[
\frac{cA}{\|f_A\|_{H^{1/2}}} \geq \frac{cA \log^2 A}{M_{2A}^2 A} \to \infty \quad \text{as } A \to \infty.
\]

The Theorem is proved.

Acknowledgements. The authors would like to thank the referee for his comments.

REFERENCES