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ON INTEGRAL SIMILITUDE MATRICES

BY

J. BRZEZIŃSKI and T. WEIBULL (Göteborg)

Abstract. We study integral similitude 3 × 3-matrices and those positive integers
which occur as products of their row elements, when matrices are symmetric with the
same numbers in each row. It turns out that integers for which nontrivial matrices of this
type exist define elliptic curves of nonzero rank and are closely related to generalized cubic
Fermat equations.

1. Introduction. Let A be a rational n × n-matrix. We say that A
is a similitude matrix if its rows have the same length l and are pairwise
orthogonal, that is, AAt = l2I, where At is the transpose of A and I the
identity matrix. Of course, also the columns of A have the same length and
are pairwise orthogonal. We say that an integral matrix A = [aij ] (aij ∈ Z)
is primitive if the greatest common divisor of the aij equals 1. Since det(A)
= ln, the number l must be an integer when n is odd (as l2 is an inte-
ger). For simplicity, we will consider only similitude matrices with positive
determinant. When n = 2, then, of course,

A =
(

a b

−b a

)
,

where a2 + b2 = l2 and a, b are relatively prime integers, is a general form
of primitive similitude matrices. In the special case when (a, b) has integer
length, that is, l = c for a positive integer c, we have a Pythagorean triple
(a, b, c) and assuming that a is even,

A =
(

a b

−b a

)
=
(

2rs r2 − s2

s2 − r2 2rs

)
,

where gcd(r, s) = 1 and r, s are of different parities.
Notice that integral similitude 2×2-matrices can be considered as integral

square frames by which we mean a pair of orthogonal vectors in R2 with inte-
gral coordinates spanning a square. The products of the coordinates of such
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vectors lead to interesting questions in number theory: The area of the right
triangle is S = 1

2ab = mk2, where m is square-free and k is an integer. The
number m is called a congruent number (see e.g. [K, p. 52]). For example, it
is well known that 1, 2, 3 are not, but 5, 6 are congruent. Characterization of
congruent numbers is a difficult problem on which a considerable progress
has been achieved using the theory of elliptic curves and modular forms
(see [Tu]). In fact, m is a congruent number if and only if the elliptic curve

y2 = x3 −m2x

has non-zero rank (see [K, p. 110]).
The purpose of this note is to study similar questions concerning inte-

gral cubic frames, that is, triples of integral orthogonal vectors in R3 which
span cubes. In other words, we are concerned with 3 × 3 integral simili-
tude matrices. The Pythagorean triples may be considered as a special case
of such integral cubic frames (when the matrices A above are extended to
3× 3-matrices by a row and column consisting of 0, 0, c).

First of all, in Section 2, we recall a parametrization of all primitive
similitude 3 × 3-matrices, which, in principle, was already known to Euler
(see [D, p. 530]). In Section 3, we study symmetric matrices of this type,
and in Section 4, those integral cubic frames in which coordinates of the
vectors are permuted. This case is in some sense a natural analogue of the
case of Pythagorean triangles and opens for natural questions concerning
cuboid numbers, which are defined by an analogy to the congruent num-
bers. The primitive permutational similitude matrices have the following
form:

A =

 −rs rs− r2 rs− s2

rs− r2 rs− s2 −rs
rs− s2 −rs rs− r2

 ,

where r, s are relatively prime integers (see (4.1)). The product of the row
elements of A is always a square, and the cuboid numbers are those positive
integers whose squares appear as such products. Somewhat simpler, a pos-
itive integer m is a cuboid number if m = αβ(α − β)γ3, where α, β, γ are
rational numbers (m is congruent if m = αβ(α2 − β2)γ2). It turns out that
m 6= 2 is a cuboid number if and only if the elliptic curve y2 = x3 +16m2 has
non-zero rank (see Proposition 4.4). This result identifies the cuboid num-
bers as those for which the generalized Fermat equation x3 +y3 = mz3 has a
non-trivial solution (see Proposition 4.5). Thus the problem of construction
of integral similitude matrices is related to a vast literature concerning gen-
eralized Fermat equations m1x

3 +m2y
3 +m3z

3 = 0, where mi are integers
such that m1m2m3 = m (see [C1], [ZK], and especially [S] with a long list
of references on this problem).
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In the last Section 5, we give some numerical examples constructing prim-
itive similitude matrices for all cuboid numbers m ≤ 50.

2. Similitude transformations in three dimensions. Assume now
that n = 3. We want to find a general form of primitive similitude matrices
of dimension 3 (with positive determinant). Let A = [aij ] be such a matrix.
Let q : Q3 → Q, where q(x) = x2

1 + x2
2 + x2

3. Then ϕ(x) = Ax for a (column)
vector x ∈ Q3 is a linear transformation for which q(Ax) = l2q(x). Hence
(1/l)ϕ is an orthogonal transformation of (Q3, q).

Consider the Hamiltonian quaternion algebra H over the rational num-
bers, that is, H = Q + Qi + Qj + Qk, where i2 = j2 = −1, ij + ji = 0 and
k = ij. For a quaternion x = x0 + x1i + x2j + x3k ∈ H, where xi ∈ Q, we
denote by x̄ = x0 − x1i− x2j − x3k its conjugate. The trace Tr(x) = x+ x̄
and the norm Nr(x) = xx̄ of x ∈ H are elements of Q. The subspace H0

consisting of the pure quaternions, that is, quaternions with Tr(x) = 0, has
dimension 3 over Q and Nr(x) = x2

1 +x2
2 +x2

3. Thus (1/l)ϕ can be considered
as an orthogonal transformation of (H0,Nr), whose matrix in the basis i, j, k
is (1/l)[aij ]. The following well-known result gives a parametrization of all
orthogonal transformation of this space (see [O’M, 57:13]):

Proposition 2.1. Every rotation of H0 has the form σ(x) = αxα−1 for
some α ∈ H.

In fact, let α = a+ bi+ cj + dk, where a, b, c, d ∈ Q. In the basis i, j, k,
the transformation (1/l)ϕ = αxα−1 has the following matrix:

(1/l)[aij ] =
1

a2 + b2 + c2 + d2

×

a
2 + b2 − c2 − d2 2bc− 2ad 2bd+ 2ac

2bc+ 2ad a2 − b2 + c2 − d2 2cd− 2ab
2bd− 2ac 2cd+ 2ab a2 − b2 − c2 + d2

 .

The matrix on the right uniquely determines a primitive integral matrix with
positive determinant, that is, the numbers aij and the factor 1/l. Multiplying
the rational numbers a, b, c, d by their least common denominator, we may
assume that these numbers are relatively prime integers. Then we get the
following result (see [D, p. 530] and the references given there, in particular
to L. Euler):

Proposition 2.2. Every primitive similitude 3×3-matrix (with positive
determinant) has the form 2−κA(a, b, c, d), where
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(2.1) A(a, b, c, d)

=

a
2 + b2 − c2 − d2 2bc− 2ad 2bd+ 2ac

2bc+ 2ad a2 − b2 + c2 − d2 2cd− 2ab
2bd− 2ac 2cd+ 2ab a2 − b2 − c2 + d2

 ,

a, b, c, d are relatively prime integers and

(a) κ = 0 when exactly one of a, b, c, d is odd or exactly one is even;
(b) κ = 1 when exactly two of a, b, c, d are odd ;
(c) κ = 2 when all a, b, c, d are odd.

Moreover , the length of the rows of 2−κA(a, b, c, d) equals l = 2−κ(a2 + b2 +
c2 + d2) and the determinant of this matrix equals l3.

Proof. Let A = [aij ] be a primitive similitude 3×3-matrix (with positive
determinant) with row length l. Then according to the arguments above,

[aij ] =
l

a2 + b2 + c2 + d2
A(a, b, c, d),

where a, b, c, d are relatively prime integers. It is easy to see that the greatest
common divisor of all the elements of the matrix A(a, b, c, d) must be a power
of 2. In fact, if an odd prime p divides all the elements of this matrix, then
an easy computation modulo p shows that p must divide all a, b, c, d, which
contradicts our assumption. Thus the only possibility is that all the elements
of the matrix are divisible by a power of 2.

In case (a) and only in this case, the diagonal elements of A(a, b, c, d) are
odd. Hence the matrix is primitive and we have l = a2 + b2 + c2 + d2.

In case (b), l = a2 + b2 + c2 + d2 ≡ 2 (mod 4) and all the elements of
A(a, b, c, d) are even. An easy computation modulo 4 shows that they are
not all divisible by 4. Hence their greatest common divisor is 2. Dividing the
elements of this matrix by 2, we get a primitive matrix, and at the same
time we get 2l = a2 + b2 + c2 + d2.

Finally, in case (c), l = a2 + b2 + c2 +d2 ≡ 4 (mod 8) and, as in case (b),
the elements of A(a, b, c, d) are even. But now they are all divisible by 4, but
not all by 8. Dividing these elements by 4, we get a primitive matrix and the
equality 4l = a2 + b2 + c2 + d2.

Corollary 2.3. There exist primitive similitude matrices with row
length l if and only if l is odd.

Proof. If l is odd, then l has a primitive representation as a sum of four
integer squares (see [C2, p. 144]). Of course, exactly one or three of these
squares are odd, so according to Proposition 2.2(a), there is a primitive
similitude matrix whose length of rows (columns) equals l. Conversely, if
such a matrix exists, then by Proposition 2.2, l is odd (case (a)) or 2l ≡ 2
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(mod 4) (case (b)) or 4l ≡ 4 (mod 8) (case (c)), so l must be odd in all
cases.

3. Symmetric similitude matrices. The aim of this section is to prove
the following result:

Proposition 3.1. For every positive odd integer l there exists a primi-
tive symmetric similitude matrix with length of rows (columns) equal to l. If
A 6= I is such a matrix , then for some κ ∈ {0, 1}, 2κA has the form

(3.1)

b
2 − c2 − d2 2bc 2bd

2bc −b2 + c2 − d2 2cd
2bd 2cd −b2 − c2 + d2

 ,

where b, c, d are relatively prime.

Proof. Recall that according to the well known theorem of Gauss a pos-
itive integer is a sum of three squares if and only if it is not of the form
22r(8s + 7), where r, s are non-negative integers. Moreover, if the integer is
not congruent to 0, 4 or 7 modulo 8, it has a primitive representation, that
is, it is a sum of three relatively prime squares (see [C2, p. 144]).

Thus if l is a positive odd integer such that l 6≡ 7 (mod 8), then l =
b2 + c2 + d2, where b, c, d are relatively prime. Then if we choose a = 0, the
matrix (2.1) is symmetric and primitive according to Proposition 2.2(a).

If l ≡ 7 (mod 8), then 2l is a sum of three integer squares. Let 2l =
b2 + c2 + d2, where b, c, d are relatively prime. Exactly one of b, c, d must be
even. If we choose a = 0, then the matrix 2−1A(a, b, c, d) is symmetric and
primitive according to Proposition 2.2(b).

This proves the first part of the proposition. The second part follows
immediately from Proposition 2.2 on noting that the matrix (2.1), if not
equal to a2I, is symmetric if and only if a = 0.

Remark 3.2. Notice that if l is odd, then 2l is a sum of three squares if
and only if l is represented by the quadratic form x2 + y2 + 2z2. In fact, as
noted above, 2l = b2 + c2 + d2 implies that exactly one of b, c, d is even, say
d = 2z. Since then both b, c are odd, we can find integers x, y (of different
parities) such that b = x+y and c = x−y. Then l = x2+y2+2z2. Conversely,
the last equality implies that 2l = 2x2+2y2+4z2 = (x+y)2+(x−y)2+(2z)2

is a sum of three squares. Thus in Proposition 3.1, we have the first case when
l is represented by x2 + y2 + z2, and the second when l is represented by
x2 + y2 + 2z2 (of course, it may happen that l is represented by both forms).

4. Cubic integral frames with permuted coordinates. In this sec-
tion, we study the integral similitude 3 × 3-matrices in which all rows are
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permutations of the first one. As we show below, this case is in some sense
similar to the case of 2 × 2-matrices and Pythagorean triples and similarly
leads to an analog of congruent numbers, which are also governed by rational
points on some elliptic curves.

Call two integral matrices of the same size equivalent if they differ by a
permutation of rows or columns, or by a change of sign of all elements in a
number of rows or columns. We denote the equivalence class of A with re-
spect to this relation by [A]. Any matrix in which all rows are permutations
of the first one will be called permutational. Recall that as before, for sim-
plicity of formulations, we limit our considerations to matrices with positive
determinant. First of all, we have the following result:

Proposition 4.1. (a) Every primitive similitude 3 × 3 permutational
matrix is equivalent to a symmetric matrix

(4.1)

 −rs rs− r2 rs− s2

rs− r2 rs− s2 −rs
rs− s2 −rs rs− r2

 ,

where r, s are relatively prime integers. Moreover , the length of the rows
(columns) equals l = r2 − rs + s2, the determinant of this matrix equals l3,
and the product of the row (column) elements is a square r2s2(r − s)2.

(b) A permutational primitive similitude matrix whose rows (columns)
have length l exists if and only if l = 1 or all the prime factors of l or of l/3
are primes congruent to 1 modulo 3.

Proof. (a) Let A be a permutational primitive similitude matrix. Then,
looking at possible configurations of elements in A, it is easy to notice that
A is equivalent to a symmetric matrix. Hence the elements of A or 2A are
given by (3.1), where the second and the third rows are permutations of the
first one. This condition easily implies the equality b + c + d = 0. Dividing
by 2 (notice that we have case (b) of (2.2)) and suitably changing the names
of the parameters, we get the desired matrix.

(b) We find that the length of rows of A equals r2−rs+s2. It is well known
that the integers primitively represented by the quadratic form r2 − rs+ s2

are exactly 1, the products of primes congruent to 1 modulo 3, or 3 times
such a product.

Finally, in connection with 3 × 3 permutational integral similitude ma-
trices, we want to discuss “cuboid” numbers, which appear in a natural way
as a three-dimensional analogue of congruent numbers.

Recall that a congruent number is an integer expressing the area of a
rational right triangle. If a, b, c are the sides of such a triangle, then mul-
tiplying these numbers by their least common denominator k, we may as-
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sume that a, b, c are relatively prime positive integers. The area of the right
triangle is S = 1

2ab = mk2, wherem is a square-free congruent number and k
a positive integer. It is well known that a = 2rs, b = r2−s2, c = r2+s2, where
r > s > 0, gcd(r, s) = 1 and r, s have different parities. Hence S = rs(r2−s2)
and the congruent numbers m satisfy
(4.2) rs(r2 − s2) = mk2.

It is well known (see e.g. [K, p. 53]) that m is congruent if and only if there
exists a Q-rational point on the elliptic curve

y2 = x3 −m2x,

which is different from (0, 0), (±m, 0) and ∞. The rows of the 2× 2-matrix

A =

(
a b

−b a

)
=

(
2rs r2 − s2

s2 − r2 2rs

)
form an integral square frame in R2, that is, a pair of orthogonal vectors
in R2 with integer coordinates and of integer length, which span a square.
The products of the coordinates of these vectors (row elements in A) define
congruent numbers.

Similarly, if

A =

a b c

b c a

c a b

 , ab+ bc+ ca = 0,

is a permutational rational similitude 3 × 3-matrix, then its rows form a
rational cubic frame in R3, that is, a triple of orthogonal vectors in R3 with
rational coordinates (and of rational length), which span a cube. According
to (4.1), if we multiply the elements of A by their least common denominator,
say k0, and assume that detA > 0, we can assume that the first row of A
is −rs, rs − r2, rs − s2, where r, s are relatively prime integers. Then the
product of the row elements in such a matrix is a square. Therefore, we adopt
the following:

Definition 4.2. A positive integer m is called cuboid if there exists a
rational permutational similitude matrix for which the product of the row
elements equals m2.

If for the matrix A, the product of the row elements is a square, that is,
abc = m2, then for

a = −rs
k0
, b =

rs− r2

k0
, c =

rs− s2

k0
,

we have
(4.3) rs(r − s) = mk3,
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where r, s are relatively prime integers and k0 = k2 for a positive integer k.
Of course, studying cuboid numbers, we can restrict our attention to cube-
free positive integers m. It is easy to see that m = 1 is not cuboid. In fact,
assuming m = 1, the equation (4.3) implies that r, s, r − s are cubes of
natural numbers, so existence of r, s contradicts Fermat’s Last Theorem for
exponent 3. Of course, m = 2 is a cuboid number. In general, we have the
following result:

Proposition 4.3. If m is a cube-free positive integer , then the following
are equivalent :

(a) m is a cuboid number ;
(b) m = αβ(α− β), where α, β are rational numbers;
(c) there exists a Q-rational point on the elliptic curve

y2 = x3 + 16m2

other than (0,±4m) and ∞;
(d) there is a factorization m = m1m2m3 such that mi are pairwise

relatively prime and the Diophantine equation

m1x
3 +m2y

3 = m3z
3

has a solution (x, y, z) with xyz 6= 0.

Proof. The equivalence of (a) and (b) follows directly from the text pre-
ceding the proposition.

In order to prove equivalence of (a) and (c), notice that the equality (4.3)
implies (

r

s

)2

− r

s
= m

(
k

s

)3

,

so setting x1 = k/s, y1 = r/s, we get y2
1−y1 = mx3

1. Now easy computations
show that this equation can be transformed into the equivalent form

y2 = x3 + 16m2,

where

x =
4mk
s

, y =
4m(2r − s)

s
.

Conversely,

r =
(y + 4m)k

2x
, s =

4mk
x

is a solution of the equation rs(r− s) = mk3 if a rational point (x, y) on the
elliptic curve y2 = x3 + 16m2 is given with x 6= 0.

Finally, the equation m1x
3 + m2y

3 = m3z
3 in (d) gives r = m3z

3, s =
m1x

3, which satisfy rs(r−s) = mk3 (with k = xyz), which is (a). Conversely,
the equality rs(r−s) = mk3 with r, s, r−s pairwise relatively prime implies
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that m = m1m2m3 and k = xyz for a suitable choice of m1,m2,m3 and
x, y, z, so that r = m3z

3, s = m1x
3 and r − s = m2y

3.

Let us denote by [[a, b, c]] the symmetric permutational matrix whose
first row is a, b, c (of course, there is only one such matrix).

The torsion groups of the equations y2 = x3 −D are well known thanks
to the Feuter–Billing theorem (see e.g. [C1, p. 246]). From this result, it
follows immediately that the torsion group E(Q)tors of y2 = x3 + 16m2 for
cube-free m 6= 2 consists of three elements: (0,±4m) and ∞. If m = 2, then
the rank of y2 = x3 + 64 is 0, and the group of rational points E(Q)tors =
{(0,±8), (−4, 0), (8,±24),∞} has order 6. A non-trivial symmetric permu-
tational matrix [[−2,−2, 1]] corresponds to the torsion point (8, 24), which
gives r = 2, s = 1 (for k = 1; the remaining torsion points with x 6= 0
give the same matrix). Hence, using Proposition 4.3, we can characterize the
cuboid numbers in the following way:

Proposition 4.4. A cube-free number m 6= 2 is cuboid if and only if
the rank of the elliptic curve y2 = x3 + 16m2 is non-zero, which means that
there exists a finite rational point with x 6= 0 on this curve.

According to Proposition 4.3(d), the solvability of the equation x3 +y3 =
mz3 with xyz 6= 0 implies, of course, that m is a cuboid number. But, in
fact, the following, somewhat unexpected, result holds:

Proposition 4.5. A (cube-free) number m is cuboid if and only if the
Diophantine equation x3 +y3 = mz3 has a non-trivial solution (that is, such
that xyz 6= 0).

Proof. It remains to prove that for a cuboid number m, the equation
x3 + y3 = mz3 has a non-trivial solution. If m 6= 2 is cuboid, then by
Proposition 4.4, the rank of y2 = x3 + 16m2 is at least 1. Thus the number
of Q-rational points on this curve is infinite and according to the proof of
equivalence of (a) and (c) in Proposition 4.3, it is clear that they produce
infinitely many solutions (r, s, k) of the equation (4.3). According to the
proof of the equivalence (a) and (d) in Proposition 4.3, these solutions give
infinitely many solutions to the equations m1x

3 + m2y
3 = m3z

3, where
m1m2m3 = m. By [S, Theorem I, p. 210], this implies that the equation
x3 + y3 = mz3 has a non-trivial integral solution (and, in fact, infinitely
many such solutions).

If m = 2, then, of course, the equation x3 + y3 = 2z3 has a non-trivial
solution.

Notice that each non-trivial solution (x, y, z) of the equation x3 + y3 =
mz3 (that is, with xyz 6= 0) gives a rational point on the elliptic curve

(4.4) Y 2 = X3 − 2433m2.
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In fact,

X =
12mz
x+ y

, Y =
36m(x− y)

x+ y

is such a point when x+ y 6= 0, that is, z 6= 0. Conversely,

x =
(36m+ Y )z

6X
, y =

(36m− Y )z
6X

gives a rational point on x3 + y3 = mz3 (notice that X 6= 0; for a less formal
argument see [ST, p. 24]). Thus Proposition 4.5 implies:

Proposition 4.6. A (cube-free) number m 6= 1, 2 is cuboid if and only
if the rank of the elliptic curve Y 2 = X3− 2433m2 is non-zero, which means
that there exists a rational point different from ∞ on this curve.

Proof. According to the Fueter–Billing theorem ([C1, Theorem VI,
p. 246]), the group of torsion points on the curve Y 2 = X3− 2433m2 over Q
is trivial when m 6= 1, 2. If m = 1 this group has order 3 and is generated by
(12, 36), while for m = 2, its order is 2 and the generator is (0, 12). In both
cases (m = 1, 2), it is well known that these two curves have rank 0.

Thus, if m is cuboid, then by Proposition 4.5, there is a non-trivial point
on the curve x3 + y3 = mz3 and the birational transformation above gives a
finite rational point on the curve Y 2 = X3 − 2433m2. By the Fueter–Billing
theorem, the curve has non-zero rank if m 6= 1, 2. Conversely, if there is a
finite rational point on the curve Y 2 = X3 − 2433m2 and m 6= 1, 2, then the
Fueter–Billing theorem and the formulae for x, y above show that xy 6= 0,
so the equation x3 + y3 = mz3 has a non-trivial solution.

Concerning relations between the elliptic curves y2 = x3 + 16m2 and
Y 2 = X3 − 2433m2, which were pointed out by Billing, see [S, 1.2.2 and
1.2.5]. Notice also that Propositions 4.4–4.6 and a part of 4.3 are essentially
contained in [ZK, p. 53] (in order to get (ii) in [ZK], m in 4.3(b) may be
replaced by −m noting that m and −m are cuboid simultaneously).

5. Examples. In this final section, we want to exemplify the results con-
cerning relations between the cuboid numbers and permutational primitive
similitude matrices. Thanks to the results of Proposition 4.5, the sequence of
cuboid numbers is well identified and its terms are computed in several places
(see [SE, sequence A020897], [ZK] and also the tables in Selmer’s paper [S]).
Our intention is to give examples of permutational primitive similitude ma-
trices [[a, b, c]] corresponding to the cuboid numbers 1 < m ≤ 50. In order
to construct such a matrix, we find a rational point (in fact, integral, with
the exception of m = 31, when it is impossible) of infinite order (if m 6= 2)
on the elliptic curve y2 = x3 + 16m2 (in case m = 31, we use the minimal
model y2 + y = x3 + 240 and the free generator for rational points on this
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rank 1 curve given in Cremona’s tables [C] in order to find a rational point
of infinite order on y2 = x3 + 16 · 312). If m = r(r − 1), then the situa-
tion is very easy, since in this case, (4r, 4r(r + 1)) is a point on the curve
y2 = x3 + 16m2 of infinite order if r > 2. The corresponding matrix is then
[[−r(r − 1),−r, r − 1]]. However, in all cases in the table, we try to choose
examples with max(|a|, |b|, |c|) as small as possible.

Table. Cuboid numbers m ≤ 50 and corresponding primitive similitude matrices

Cuboid number
m

Rational point on
y2 = x3 + 16m2

(r, s) Matrix

2 (8, 24) (2, 1) [[−2,−2, 1]]

6 (12, 48) (3, 2) [[−6,−3, 2]]

7 (8, 36) (8, 7) [[−56,−8, 7]]

9 (9, 45) (9, 8) [[−72,−9, 8]]

12 (16, 80) (4, 3) [[−12,−4, 3]]

13 (273, 4511) (351, 8) [[−2808,−120393, 2744]]

15 (24, 132) (8, 5) [[−24,−40, 15]]

17 (8568, 793084) (5832, 1) [[−5832,−34006392, 5831]]

19 (24, 140) (27, 19) [[−513,−216, 152]]

20 (20, 120) (5, 4) [[−20,−5, 4]]

22 (33, 209) (27, 16) [[−432,−297, 176]]

26 (12, 112) (27, 26) [[−702,−27, 26]]

28 (336, 6160) (28, 1) [[−28,−756, 27]]

30 (40,280) (5, 3) [[−15,−10, 6]]

31 ( 8905
441

, 1422989
9261

) (31 · 423, 1373) [[−5905698432984, 630738927000,

−706157817625]]

33 (33,231) (11, 8) [[−88,−33, 24]]

34 (17,153) (17, 16) [[−272,−17, 16]]

35 (105,1085) (35, 8) [[−280,−945, 216]]

37 (48,364) (64, 37) [[−2368,−1728, 999]]

42 (28,224) (7, 6) [[−42,−7, 6]]

43 (2408,118164) (344, 1) [[−344,−117992, 343]]

49 (1617,65023) (1331, 8) [[−10648,−1760913, 10584]]

50 (24,232) (27, 25) [[−54,−675, 50]]



12 J. BRZEZIŃSKI AND T. WEIBULL

Acknowledgements. We express our thanks to J. Browkin and P. Kurl-
berg for several useful comments and references on the problem in the liter-
ature.

REFERENCES

[C1] J. W. S. Cassels, The rational solutions of the Diophantine equation Y 2 = X3−D,
Acta Math. 82 (1950), 243–273.

[C2] —, Rational Quadratic Forms, Academic Press, London, 1978.
[C] J. Cremona, Elliptic curve data, http://www.maths.nott.ac.uk/personal/jec/ftp

/data/.
[D] L. Dickson, History of the Theory of Numbers, vol. II, Chelsea, New York, 1952.
[K] A. W. Knapp, Elliptic Curves, Math. Notes 40, Princeton Univ. Press, Princeton,

NJ, 1992.
[O’M] O. T. O’Meara, Introduction to Quadratic Forms, Grundlehren Math. Wiss. 117,

Springer, Berlin, 1973.
[S] E. S. Selmer, The Diophantine equation ax3+by3+cz3 = 0, Acta Math. 85 (1951),

203–362.
[SE] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://www.

research.att.com/∼njas/sequences.
[ST] J. H. Silverman and J. Tate, Rational Points on Elliptic Curves, Springer, 1992.
[Tu] J. Tunel, A classical Diophantine problem and modular forms of weight 3/2,

Invent. Math. 72 (1983), 323–334.
[ZK] D. Zagier and G. Kramarz, Numerical investigations related to L-series of certain

elliptic curves, J. Indian Math. Soc. 52 (1987), 51–69.

Mathematical Sciences
University of Gothenburg
SE-41296 Göteborg, Sweden
E-mail: jub@chalmers.se

Mathematical Sciences
Chalmers University of Technology

SE-41296 Göteborg, Sweden
E-mail: weibull@chalmers.se

Received 15 June 2007 (4934)


