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Abstract. We show that there exist astheno-Ké&hler structures on Calabi—-Eckmann
manifolds.

1. Introduction. A Hermitian metric g on a complex manifold M of
complex dimension m is called astheno-Kdhler if its Kahler form (2 satis-
fies 0002™~2 = 0 (cf. [4], [5], [9]), where & and O are the complex exte-
rior differentials. It is known that every holomorphic 1-form on a compact
astheno-Kihler manifold is closed. We note that the condition 9902™~2 = 0
is automatically satisfied for m = 2.

The author [7] showed that there exist non-trivial examples of com-
pact astheno-Kahler manifolds. Namely, let M; be a 3-dimensional com-
pact Sasakian manifold with the structure tensor fields (¢;, &, 1i, i) for each
i = 1,2. On the product manifold M = M; x Ms, the Riemannian product
metric ¢ = g1 + g2 is compatible with A. Morimoto’s complex structure [§]
defined by

(1.1) J=¢1—m@& + g2+ m @ &
Then the Kéhler form {2 satisfies dd°f2 = 0, which is equivalent to 992 = 0,
that is, the metric g is astheno-K&hler. Moreover, it was also shown in [7]
that there exists a similar astheno-Kéahler structure on the product manifold
of a 3-dimensional compact Sasakian manifold and a compact cosymplectic
manifold of dimension > 3. In these examples, the dimensions of Sasakian
manifolds are restricted to 3. For instance, the Calabi-Eckmann manifold
S3 x S3 is one of these astheno-Kihler manifolds.

In [10], K. Tsukada introduced a family of complex structures on the
Calabi-Eckmann manifold $2™+1 x §2m2+1 containing Morimoto’s complex
structure (1.1) and defined Hermitian metrics compatible with the complex
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structures. In this paper, we show that there exist astheno-Kéahler structures
among Tsukada’s Hermitian structures on Calabi-Eckmann manifolds.

2. Preliminaries. Let (M, J, g) be a Hermitian manifold of complex
dimension m > 3 with complex structure J and Hermitian metric g. The
Kéhler form 2 on M is defined by 2(X,Y) = g(X, JY) for all vector fields
X,Y on M. Extend the complex structure J to p-forms ¢ on M as follows:

Jo=¢ for p =0,
(Jo)(Xi,...,Xp) = (—1)Pe(JX,,...,JX,) forp>0,
where X, ---, X, are vector fields on M. The real differential operator d°

(cf. [1]) is then defined by
dp=—JtdJp = (-1)PJdJy for any p-form ¢ on M.

Since it is well-known that dd® = 2v/—100, an astheno-Kihler manifold
(M, J,g) may be defined by the condition dd°f2™~2 = 0.

3. Hermitian structures on Calabi—Eckmann manifolds

3.1. Almost contact metric structures. Let N be a differentiable mani-
fold of dimension 2n+1. An almost contact structure on N is a triple (¢, &, n),
where ¢ is a tensor field of type (1,1), £ is a vector field, and 7 is a 1-form
on N satisfying the following conditions (cf. [2]):

(3.1) n() =1,
(32) ¢’ =-I+nQE,
where I denotes the identity transformation on each tangent space of N.

Endowed with (¢,£,n), N is called an almost contact manifold. Then we
also have the following equalities:

(3.3) P =0,
(3.4) nog¢=0.

Moreover, if there is a Riemannian metric g on an almost contact mani-
fold N satisfying

(3.5) 9(¢X,0Y) = g(X,Y) = n(X)n(Y)
for any vector fields X,Y on N, then N is said to have an almost contact

metric structure (¢,€,m,g9) and N endowed with this structure is called an
almost contact metric manifold. Then, from (3.1)—(3.5), we immediately get

n(X) =9(X,§) and g(X,¢Y)=—g(Y,¢X)
for any vector fields X,Y on N. The 2-form & defined by ¢(X,Y) =
9(X,9Y) is called the fundamental 2-form on the almost contact metric
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manifold N. We have n A @™ # (. If & = dn, then N is, by definition, a con-
tact manifold. Such an almost contact metric structure is called a contact
metric structure.

An almost contact structure (¢,&,n) is said to be normal if

[¢, 0] +2dn © & =0,
where [¢, ¢] denotes the Nijenhuis tensor field of ¢ defined by

[0, 9)(X,Y) = [¢X,0Y] + ¢°[X, Y] — ¢[X, ¢Y] — $[pX, Y]

for all vector fields X,Y on N. A normal contact metric structure is called
a Sasakian structure. It is well-known (cf. [2], [10]) that there is a standard
Sasakian structure on the unit sphere $?"*! in C**1.

On the other hand, an almost contact metric structure (¢, &, 7, g) satisfy-
ing d® = 0 and dn = 0 is called an almost cosymplectic structure. A normal
almost cosymplectic structure is called a cosymplectic structure. The product
of a unit circle and a compact Kahler manifold is the trivial example of com-
pact cosymplectic manifolds. Non-trivial examples of compact cosymplectic
manifolds are found in [3] and [6].

3.2. Tsukada’s Hermitian structures on the product of two Sasakian
manifolds. Let M; be a (2m; + 1)-dimensional Sasakian manifold with the
structure tensor fields (¢, &, m:, g;) for each ¢ = 1,2. On the product mani-
fold M = My x M, K. Tsukada [10] introduced an almost complex struc-
ture J defined by

a 2,12

a“+b 1 a
(3.6) J:¢1—<b771+ 2 772>®£1+¢2+<bm+b172>®€2’

where a,b € R and b # 0. In the case of a = 0 and b = 1, this almost complex
structure coincides with A. Morimoto’s complex structure (1.1). Since each
almost contact structure is normal, we can prove, by the same method as
A. Morimoto [8], that this almost complex structure J is integrable. Thus
M endowed with J is a complex manifold of complex dimension m = m; +
mo + 1.

K. Tsukada also introduced the following Hermitian metric g on the
complex manifold (M, J):

(3.7) 9=g1+g2+a(m @ +m@mn)+(a®+b* — 1) .
Then the Kéhler form (2 on the Hermitian manifold (M, J, g) is given by
(3.8) 2 =01+ D2 —2bm A,

where @; denotes the fundamental 2-form on M; for each 7 = 1, 2. In particu-

lar, we can define this Hermitian structure on the Calabi-Eckmann manifold
Sle+1 X S2m2+1.
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4. Astheno-Kahler structures on Calabi—Eckmann manifolds.
In this section, we show that there exist astheno-Kahler structures among
the Hermitian structures defined by (3.6) and (3.7) on the Calabi-Eckmann
manifold M = §2m™i+1x §2m2+1 or more generally, on the product manifold
M = M7 x M of two Sasakian manifolds.

Since M; is Sasakian, i.e., &; = dn; for each i = 1,2, we have
(41) df? = —2()(@1 Ang—m A @2)

We now show that &, is J-invariant, i.e., J®; = ®;. For any vector fields
X, Y on M,

(JO)(X,)Y) =1(JX,JY) = g1 (JX, 1Y) = g1 (J X, $iY1)
= g1(61X1, 92Y1) = g1(X1,01Y1) = 1(X1, Y1) = &1(X,Y).

Of course, @5 is also J-invariant. Similarly, we can show that n; and o
satisfy

2 p2
a a‘+b 1 a
M=t T, 2 p Ty

Since, from (4.1), d°Q2 = JdJ§2 = Jd2 = =2b(JP1 A Jna — Jm A JD3), we

obtain

(4.2) d°Q2 = 2[®1 A (m + ane) + (am + (a® + b*)na) A B2l
By taking the exterior differential of this equation, we get

(4.3) dd°2 = 2[0% + 2aP, A Dy + (a® + b*)D].

From (4.1)and (4.2) we also obtain

(4.4) dS2 A d°Q2 = 4b[®F 4 2aP; A By + (a® + b*)P3] Ay A .

We now assume that the complex dimension m of M is greater than 3.
Then

dd° ™2 = d(d°2™?) = d(JdJ ™ %) = d(JdR™?)

= (m — 2)d[J(dR2 A 2™73)] = (m — 2)d[(JdS2) A (J2™73)]
= (m — 2)d[d°02 A 2773
= (m — 2)[dd°Q2 A Q™3 — d°Q A d™3
= (m —2)[dd°Q2 A Q™73 — (m — 3)d°Q A dR2 A 2™
[

= (m — 2)[dd°2 A 2+ (m — 3)d2 A d°Q] A Q™
On the other hand, from (3.8) and (4.1)—(4.4) we have
dd°2 A Q2+ (m — 3)d2 A d°S2
= 2[0% + 2ad; A Dy + (a® 4 b)) A [Py + Dy + 2(m — 4)byy A ).
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By the binomial theorem, we also have

Qm4 (451 + By — 2bmy A )™

S | |
= Z (mi >(@1 + @) "IN (=20m A )

1=0
= (D1 + o)™ — 2(m — 4)b(Dy + B2)™ 5 Ay A
D1 + Py — 2(m — )by Ana] A (By + Po)™ 0.

=
Since [@1 + Do+ 2(m — 4) by Ana] A[1 + Po — 2(m — 4)bny An] = (D1 +D2)?,
we get

[dd°Q A 2+ (m —3)dR2 Ad) A ™4
= 2[®0% + 2ad; A By + (a® + b*)B3] A (Py + Do) 3
Hence

dd° ™2 = 2(m — 2)[8% + 2aPy A Dy + (a* + b*)DI A (B + Bo)™ 3

3

3
= 2(m — 2) (mk_ 3) (@ DF A g
0

+2a@{" T A DEL 1 (a2 + 62" A 2k

m—1
~2) 3" C(m, k)@ A 2k,
k=0

>

where C'(m, k) are given as follows:
C(m,0)=1, C(m,1)=m — 3+ 2a,
C(m,m —2) =2a+ (m—3)(a®> +b%), C(m,m—1)=a>+1?

C(m, k)= <mk_ 3> +2<T£__f)a+(rg__§> (a®+b%) for2 <k <m-—3.

If p > my, then @ = 0 on M;. Therefore, if 0 < k < mg, then @gmfl)*k
=0 on M, and if mg < k < m — 1, then ®§ = 0 on M,. Thus
SVTEANGE =0 on M if k # my,
and hence
dd® Q™2 = 2(m — 2)C(m, ma) P A B2

Moreover, C'(m,mz) = 0 is a necessary and sufficient condition for the Her-
mitian structure defined by (3.6) and (3.7) on M to be astheno-Kéhler. The
condition

C(m,ms) = (mm—2 3) + 2<$2__31>a + (Z:Z) (a>+*) =0
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implies
mi(my — 1) + 2mymaa + ma(mo — 1)(a® + b?) = 0.
We deduce the following.

THEOREM 4.1. Let M; be a (2m; + 1)-dimensional Sasakian manifold
with the structure tensor fields (¢i,&,mi,g;) for each i = 1,2, and m =
mi + mg + 1 > 3. Then the Hermitian structure defined by (3.6) and (3.7)
on the product manifold of M = My x My is astheno-Kdhler if and only if
the constants a and b satisfy

my(my — 1) 4+ 2mimaa + ma(mo — 1)(a® + b2) =0.

We note that, in the case of m = 3, i.e., mqy = mg = 1, the astheno-Ké&hler
condition dd°2™~2 = dd°f2 = 0 is equivalent to a = 0 because of (4.3). That
is, the conclusion of Theorem 4.1 is also valid in the case of m = 3.

By the last theorem, the Calabi-Eckmann manifold §?™1+1 x §2m2+1
can be an example of a compact astheno-Kéhler manifold.

REMARK 4.1. Let M be a (2m;+1)-dimensional Sasakian manifold with
the structure tensor fields (¢1,&1,m1,91), and My a (2mg + 1)-dimensional
cosymplectic manifold with the structure tensor fields (¢2,&2,m2,92). On
M = M x Ms, we can then consider Tsukada’s Hermitian structure (3.6)—
(3.7). Since @1 = dny and d®y = 0,dne = 0, we get

A2 = =268y N1, d°02 =201 A (1 +ang),  dd° = 283
Therefore
dd°Q A 2+ (m — 3)dR2 A d°Q = 282 A [Py + Dy + 2(m — 4)bny A ),
and hence we obtain
dd ™2 = 2(m — 2)PI A (D1 + Do) 3

~ o — 2)”12:3 <m — 3> MmOk \ gk
- rar S 1 N
If m; = 1, then &2 = 0 on M, that is, each of Tsukada’s Hermitian
structures on M is astheno-Kéhler.
If my > 1, then m—3 > my. Therefore, if 0 < k < mg, then &\ 7 = ¢
on My, and if mg < k < m — 3, then @’5 = 0 on Ms. Thus

STV ANGE =0 on M if k # mo,
and hence

dd° ™% = 2(m — 2)(

-3
" )4571”1 AP £0  on M.
ma
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