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ON AREA AND SIDE LENGTHS OF TRIANGLES
IN NORMED PLANES
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GENNADIY AVERKOV (Magdeburg) and HORST MARTINI (Chemnitz)

Abstract. Let Md be a d-dimensional normed space with norm ‖ · ‖ and let B be
the unit ball in Md. Let us fix a Lebesgue measure VB in Md with VB(B) = 1. This
measure will play the role of the volume in Md. We consider an arbitrary simplex T in
Md with prescribed edge lengths. For the case d = 2, sharp upper and lower bounds of
VB(T ) are determined. For d ≥ 3 it is noticed that the tight lower bound of VB(T ) is zero.

1. Introduction and results. A subset K of Rd is said to be a convex
body if it is convex, compact, and has non-empty interior. The convex and
affine hull operations are abbreviated by conv and aff, respectively. Let o
denote the origin in Rd. It is known that the class of o-symmetric convex
bodies in Rd is isomorphic to the class of all Euclidean norms in Rd. In fact,
if ‖ · ‖ is a norm in Rd, then the unit ball {x ∈ Rd : ‖x‖ ≤ 1} with respect
to ‖ · ‖ is an o-symmetric convex body. Vice versa, for every o-symmetric
convex body B in Rd the functional

‖x‖B := min{α ≥ 0 : x ∈ αB}

is a norm. In what follows, we consider an arbitrary normed spaceMd viewed
as the space Rd endowed with some norm ‖ · ‖; see [10], [7], and [6]. In the
literature also the term Minkowski space is used forMd. The notation B is
reserved for the unit ball with respect to ‖ · ‖. We fix a Lebesgue measure VB

in Rd such that VB(B) = 1. Clearly, VB( · ) := V ( · )/V (B), where V is any
Lebesgue measure in Rd. Let us call VB( · ) the normalized volume in Md

(and for d = 2 the normalized area). Below, all metric notions referring
to distance (e.g. length, diameter, perimeter etc.) will be considered with
respect to the norm of Md.

In this paper we determine the complete system of inequalities for nor-
malized area and side lengths of a triangle in a normed plane (i.e., a normed
space of dimension two).
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Theorem 1. For an arbitrary normed plane M2 and every triangle
in M2 with side lengths 0 < a1 ≤ a2 ≤ a3 and area A we have

(1)
1
8
a3(a1 + a2 − a3) ≤ A ≤ a1a2a3

2(a1 + a2 + a3)
.

Conversely , for all a1, a2, a3, and A satisfying 0 < a1 ≤ a2 ≤ a3, a1+a2 ≥ a3

and (1), there exists a normed planeM2 and a (possibly degenerate) triangle
in M2 which has area A and side lengths a1, a2, a3.

Theorem 1 extends the result from [12] providing tight bounds for the
area of an equilateral triangle in a normed plane and characterizing the
extremal cases. See also [4] and [10, Lemma 4.2.6], where such bounds are
used in a short proof of a generalization of the Blaschke–Lebesgue theorem
for normed planes. A theorem analogous to Theorem 1 and dealing with
side lengths and circumradius of a triangle in a normed plane was obtained
in [2]. See also [1] for results on inradii and side lengths of triangles in normed
planes. For further results on the geometry of finite point sets in Euclidean
and non-Euclidean spaces we refer to [8], [3], and [7].

The equality cases in (1) are described in the following

Proposition 2. LetM2(B) be a normed plane, let p1, p2, p3 be pairwise
distinct points in M2(B), and T := conv{p1, p2, p3}. Set

a1 := ‖p2 − p3‖, a2 := ‖p3 − p1‖, a3 := ‖p1 − p2‖,(2)
A := VB(T ),(3)

and assume that a1 ≤ a2 ≤ a3. Then:

(i) Equality on the right hand side of (1) is attained if and only if
p1, p2, p3 are not collinear and B = B0, where

(4) B0 := conv{±b1,±b2,±b3}
and

b1: = (p2 − p3)/a1, b2: = (p3 − p1)/a2, b3: = (p1 − p2)/a3(5)

(see Figs. 1 and 2).

(ii) If a1 + a2 > a3, then p1, p2, p3 are not collinear , B0 is a convex
hexagon, and equality on the left hand side of (1) is attained when B
is the parallelogram with sides contained in the lines ± aff{b3,−b1}
and ± aff{b3,−b2}, which are spanned by sides of B0 (see Figs. 1
and 3).

(iii) If a1 + a2 = a3, then the left hand side of (1) is equal to zero and
the equality A = 0 is attained if and only if p1, p2, p3 are collinear.

Let PB(K) and DB(K) denote the perimeter and the diameter, respec-
tively, of a planar convex set K with respect to the norm ofM2. If K is de-
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generate to a segment, we define PB(K) as twice the length of the segmentK.
Using Theorem 1, we determine all possible triples (PB(T ), DB(T ), VB(T ))
such that M2 is an arbitrary normed plane and T is an arbitrary triangle
in M2, which is possibly degenerate to a segment.

Corollary 3. For an arbitrary normed plane M2 and every triangle
in M2 with perimeter P , diameter D, and normalized area A we have

(6) 2D ≤ P ≤ 3D,
1
8
D(P − 2D) ≤ A ≤ (P −D)2D

8P
.

Conversely , if P > 0, D > 0, and A ≥ 0 satisfy (6), then there exists a
normed plane M2 and a (possibly degenerate) triangle in M2 with perime-
ter P , diameter D, and normalized area A.

Corollary 3 can also be represented in the form of inequalities for x and y
given by

x :=
DB(T )
PB(T )

, y :=
VB(T )
PB(T )2

.

Namely, we have
1
3 ≤ x ≤

1
2 ,

1
8x(1− 2x) ≤ y ≤ 1

8(1− x)2x.

The region consisting of all points (x, y) satisfying the above inequalities can
obviously be used to describe all possible triples (PB(T ), DB(T ), VB(T )).
Analogous regions for systems of quantities associated to convex bodies in
Euclidean space are called Santaló diagrams; see [9].

Now let us discuss possible extensions of the statement of Theorem 1 to
higher dimensions. We consider d + 1 pairwise distinct points p1, . . . , pd+1

in Md and define T := conv{p1, . . . , pd+1}. It turns out that for dimen-
sions d ≥ 3 the bounds of VB(T ) in the case of prescribed distances within
{p1, . . . , pd+1} have an essentially different form. The following proposition
provides the lower bound. It partially extends the statement from [11] on
the volume of an equilateral simplex in a finite-dimensional normed space.

Proposition 4. Let % be a metric on {1, . . . , d + 1} with d ≥ 3. Then
there exists a normed space Md and points p1, . . . , pd+1 in Md satisfying
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the equalities

‖pi − pj‖ = %(i, j) (i, j = 1, . . . , d+ 1)

and such that VB(T ) = 0, where T := conv{p1, . . . , pd+1}.
The above proposition is a straightforward corollary of the result from

[13], which states that for d ≥ 2 every metric space with d + 2 elements
can be isometrically embedded into Md for the case when ‖ · ‖ is the max-
imum norm (that is, ‖x‖ = max{|x1|, . . . , |xd|}, where x1, . . . , xd are the
coordinates of x).

Regarding the upper bound of VB(T ) for the case d ≥ 3 we remark
that this bound must have a much more complicated form than its two-
dimensional analogue. In fact, assume that T is a simplex in Md, d ≥ 2,
with vertices p1, . . . , pd+1 and edge lengths %(i, j) := ‖pi − pj‖, 1 ≤ i <
j ≤ d + 1. Then it can be shown that VB(T ) ≤ VB0(T ), where B0 :=
conv {(pi − pj)/aij : 1 ≤ i < j ≤ d+ 1} , and equality is attained if and only
if B = B0. However, it seems that there exists no simple analytical expres-
sion for V (B0) in terms of the edge lengths of T when d ≥ 3. In fact, if d = 2
then B0 is either a hexagon or a parallelogram. In contrast to the planar
case, for d ≥ 3 the polytope B0 can have many more combinatorial types,
which depend on the choice of the distances %(i, j).

2. The proofs. In the proofs below we usually determine a finite-
dimensional normed space by its unit ball rather than by its norm. For that
purpose we introduce the notation M2(B) for a normed plane with unit
ball B. Assume that A is a non-singular affine transformation in R2. Let
us define the linear transformation A0(x) := A(x) − A(o) with x ∈ R2. As
a direct consequence of the Mazur–Ulam theorem (see [10, Theorem 3.1.2])
we have

(7) ‖A(x)−A(y)‖A0(B) = ‖x− y‖B
for every x, y ∈ R2. Furthermore,

(8) VA0(B)(A(K)) = VB(K)

for every convex body K in R2. A hexagon H is said to be affine regular if
it is an affine image of a hexagon which is regular in the Euclidean sense.
It can be easily verified that an o-symmetric hexagon H is affine regular if
and only if for the triple h1, h2, h3 of the alternating vertices of H one has
h1 + h2 + h3 = o.

Proposition 5. Let 0 < a1 ≤ a2 ≤ a3 and a3 ≤ a1 + a2. Let p1, p2, p3

be non-collinear points in R2, and b1, b2, b3 and B0 be defined as in Propo-
sition 2. Then:

(i) If A is a non-singular affine transformation such that
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A(p1) = (0, a2)>, A(p2) = (−a1, 0)>, A(p3) = (0, 0)>,(9)

then

(10) A0(b1) = (−1, 0)>, A0(b2) = (0,−1)>, A0(b3) = (a1/a3, a2/a3)>.

In particular , B is an affine image of

conv{±(1, 0)>,±(0, 1)>,±(a1/a3, a2/a3)>}.

(ii) The polygon B0 is a parallelogram if and only if a3 = a1 + a2.
(iii) If a3 < a1 + a2, then B0 is a convex hexagon.
(iv) The polygon B0 is an affine regular hexagon if and only if a1 = a2

= a3.

Proof. Part (i) can be verified by straightforward computations. The
remaining parts are immediate consequences of (i).

Let H1, . . . ,Hm be half-planes in R2 and let li be the boundary of Hi for
i = 1, . . . ,m. If the polygonal region P := H1 ∩ · · · ∩Hm is uniquely deter-
mined by the lines l1, . . . , lm, we denote it by P (l1, . . . , lm). For brevity we
write P (±l1, . . . ,±lm) rather than P (l1, . . . , lm,−l1, . . . ,−lm). In analytic
expressions the elements of R2 are treated as column vectors. The following
lemma is related to the result from [5] on parallelotopes of maximal volume
contained in a given simplex.

Lemma 6. Let l1, l2 be distinct non-parallel lines in R2 and let p ∈ R2 \
(l1∪l2). Let l3 be a line containing p, intersecting both l1 and l2 and such that
P is not the bisector of the side l3 ∩ P (l1, l2, l3) of P (l1, l2, l3). Then there
exists a line l′3 obtained from l3 by an arbitrarily small rotation around p such
that the area of P (l1, l2, l′3) is strictly smaller than the area of P (l1, l2, l3).

Proof. The assertion of the lemma is invariant with respect to affine
transformations. Hence we may assume that l1, l2 are coordinate axes and
p = (1, 1)>. Then, for an appropriate t > 0, the points (0, 0)>, (1 + t, 0)>,
and (0, 1 + 1/t)> are the vertices of P (l1, l2, l3). Thus the area of P (l1, l2, l3)
is equal to 1

2(1 + t)(1 + 1/t), and the statement of the lemma can be derived
by computing the derivative of the above expression.

Lemma 7. Let H be an o-symmetric hexagon in R2 and let H0 be the
hexagon whose vertices are the midpoints of the sides of H. Then H0 is affine
regular and V (H) = 4

3V (H0).

Proof. Let v1, v2, v3 be consecutive vertices of H in the positive orienta-
tion. Then 1

2(v1 + v2), 1
2(v3 − v1), and 1

2(−v2 − v3) are alternating vertices
of H0, and their sum is equal to zero. Hence H0 is affine regular. Let det(a, b)
denote the determinant of a 2 × 2 matrix with columns a and b (in that



106 G. AVERKOV AND H. MARTINI

order). We have

V (H) = 2(V (conv{o, v1, v2}) + V (conv{o, v2, v3}) + V (o, v3,−v1))

= det(v1, v2) + det(v2, v3) + det(v1, v3)

and

V (H0) = 6V (conv{o, 1
2(v1 + v2), 1

2(v2 + v3)})

= 3
4 det(v1 + v2, v2 + v3) = 3

4(det(v1, v2) + det(v2, v3) + det(v1, v3)).

Consequently, V (H) = 4
3V (H0).

Now we are ready to prove the main theorem of the paper.

Proofs of Theorem 1 and Proposition 2. First we prove the main state-
ment of Theorem 1 together with Proposition 2. Let M2(B) be a normed
plane and p1, p2, p3 be pairwise distinct points in M2(B) such that equal-
ities (2) and (3) are satisfied and a1 ≤ a2 ≤ a3. Let T := conv{p1, p2, p3}.
Let us derive the right inequality of (1). For the proof we may assume that
p1, p2, p3 are not collinear. Then, by Proposition 5, B0 is a parallelogram or
a hexagon. We have V (B) ≥ V (B0), where

V (B0) = 2(V (conv{o, b1,−b3}) + V (conv{o,−b3, b2})(11)

+ V (conv{o, b2,−b1}))

= 2
(

1
a1a2

+
1

a2a3
+

1
a3a1

)
V (T ) =

2(a1 + a2 + a3)
a1a2a3

V (T ).

This yields the right inequality of (1) and Proposition 2(i). The proof of
Proposition 2(iii) is straightforward.

Next we obtain Proposition 2(ii) and the left inequality of (1) for the
case a3 < a1 +a2. From now on we assume that a3 < a1 +a2. Then p1, p2, p3

are obviously not collinear, and so T is not degenerate to a segment. By
Proposition 5(iii), B0 is a hexagon. We denote by B′ the class of all o-
symmetric convex bodies B′ satisfying

a1 = ‖p2 − p3‖B′ , a2 = ‖p3 − p1‖B′ , a3 = ‖p1 − p2‖B′ .

The class B′ can obviously be described as the class of o-symmetric bodies B′

for which B0 is inscribed in B′, that is, every vertex of B0 is a boundary point
of B′. Clearly, B ∈ B′. In what follows we distinguish several cases depending
on the properties of B and provide some B′ ∈ B′ satisfying V (B′) ≥ V (B)
or even V (B′) > V (B). The last two inequalities are obviously equivalent to
the inequalities VB′(T ) ≤ VB(T ) and VB′(T ) < VB(T ), respectively. In such
a way we single out a narrow subclass of bodies B′ from B′ which minimize
VB′(T ). The proof of the following claim is straightforward.
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Claim 1. For i = 1, 2, 3 let li be a supporting line of B at bi. Then
B′ := P (±l1,±l2,±l3) ∈ B′ and V (B′) ≥ V (B).

In view of the above claim, we see that if B 6= B′ := P (±l1,±l2,±l3)
with l1, l2, l3 as in the statement of the claim, then V (B′) > V (B), and
so minB′∈B′ VB(T ) is not attained at B. Hence we proceed with our con-
siderations for the case B = P (±l1,±l2,±l3). Clearly, in this case B is a
parallelogram or a hexagon.

The following two claims are concerned with the situation when every
side of B contains precisely one vertex of B0.

Claim 2. Assume that every side of B contains precisely one vertex of
B0 and that there exists a side I of B and a vertex v of B0 such that v ∈ I
and v does not bisect I. Then there exists B′ ∈ B′ such that V (B′) > V (B).

b3

l′3

l3

B0

Fig. 4

Without loss of generality we assume that v = b3. Then, by Lemma 6,
there exists a line l′3 obtained from l3 by a slight rotation around the point b3
such that the area of the triangle P (l′3,−l1,−l2) is strictly smaller than the
area of the triangle P (l3,−l1,−l2). Then we can set B′ := P (±l1,±l2,±l′3);
see Fig. 4.

Claim 3. Assume that every side of B contains precisely one vertex of
B0 and every side of B is bisected by a vertex of B0. Then a := a1 = a2 = a3

and VB(T ) = 1
8a

2.

By Lemma 7, B0 is an affine regular hexagon and V (B) = 4
3V (B0).

Furthermore, by Proposition 5(iv) we get a := a1 = a2 = a3. Applying the
previous observations and (11) we obtain

VB(T ) =
V (T )
V (B)

=
3V (T )
4V (B0)

=
1
8
a2,

which shows the assertion of the claim.

The following two claims are concerned with the case when some side
of B contains two vertices of B0.

Claim 4. Assume that B is a hexagon and some side of B contains two
vertices of B0. Then there exists B′ ∈ B′ such that V (B′) > V (B).
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Without loss of generality we may assume that l1 contains b1 and −b3.
Since B is a hexagon, we can set B′ := P (±l1,±l2), obtaining the assertion
of the claim.

Claim 5. Assume that B is a parallelogram and some side of B contains
two vertices of B0. Then there exists B′ ∈ B′ such that V (B′) ≥ V (B) and
every side of B′ lies in the affine hull of a side of B0.

Without loss of generality we assume that B = P (±l1,±l2) and l1 con-
tains b1 and −b3. If some vertex of B0 is also a vertex of B, there is nothing
to prove and we may just set B′ := B. Let us consider the opposite case.
Let ±v1,±v2 be vertices of B such that v1 is the intersection point of l1 and
−l2, and v2 is the intersection point of l1 and l2. Without loss of generality
we may also assume that ‖v2 − b2‖ ≤ ‖−v1 − b2‖ (that is, b2 is closer to the
vertex v2 of B than to −v1 in the non-strict sense). Let v′1 be the intersec-
tion point of l1 and aff{b3,−b2}. It is easy to see that conv{b2, v2,−b3} and
conv{b2,−v′1,−v1} are homothetic triangles, and that the former triangle
is smaller than the latter one. Thus, the assertion of the claim follows by
setting B′ := conv{±v′1,±v2}; see Fig. 5.

b1−b3

b2

v1v2 v′1

−v′1 −v1 −b1 b3

−b2

−v2
Fig. 5

There are precisely three parallelograms B′ satisfying the condition of
Claim 5. It turns out that we can determine which of them has the largest
area.

Claim 6. Let m1,m2,m3 be the lines given by

m1 := aff{b1,−b3}, m2 := aff{b2,−b1}, m3 := aff{b3,−b2}.
Then the area of P (±m1,±m3) is not less than the area of P (±m1,±m2)
and P (±m2,±m3).

By Proposition 5(i) there exists a non-singular affine transformation A
such that equalities (9) and (10) are satisfied. In view of (7) and (8) we
may assume, without loss of generality, that A is the identity. We have
B0 = P (±m1,±m2,±m3). The triangles conv{m1 ∩ m3, b1,−b2} and
conv{−(m1 ∩m2),−b2, b3} have equal angles at their common vertex −b2.
The side conv{−b2,−(m1 ∩ m2)} of conv{−(m1 ∩ m2),−b2, b3} is not
longer than the side conv{b1,−b2} = conv{(−1, 0)>, (0, 1)>} of conv{m1 ∩
m3, b1,−b2}, since −(m1 ∩ m2) is a point lying on the segment
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conv{(0, 1)>, (1, 2)>}; see also Fig. 6. Furthermore, the side conv{−b2, b3}
of conv{−(m1∩m2),−b2, b3} is not longer than the side conv{−b2,m1∩m3}
of conv{m1 ∩m3, b1,−b2}, since

b3 ∈ conv{−b1,−b2, (1, 1)>}
and

conv{(−1, 1)>, b1,−b2} ⊆ conv{m1 ∩m3, b1,−b2}.
The latter implies that the area of conv{−(m1 ∩m2),−b2, b3} is not larger
than the area of conv{m1 ∩ m3, b1,−b2}. Analogously, we can also show
that the area of conv{−b1, b3,m2 ∩ m3} is not larger than the area of
conv{−b1, b2,−(m1 ∩ m3)}. Consequently, the areas of the parallelograms
P (±m1,±m2) and P (±m2,±m3) are not larger than the area of P (±m1,
±m3), which is the assertion of Claim 6.

b1

b2

b3

−b1

−b2

−b3

m1 ∩m3

m2 ∩m3

m1 ∩m2
−(m1 ∩m3)

−(m2 ∩m3)

−(m1 ∩m2)

(2, 1)>

(−1, 1)>

Fig. 6

Let us evaluate VB(T ) for the case B = P (±m1,±m3). We set α1 :=
a1/a3 and α2 := a2/a3 so that b3 = (α1, α2)>. The linem1 can be determined
by the parametric equation (1− t1)(−b3) + t1b1 with the parameter t1 ∈ R,
and the line m3 by the parametric equation (1− t2)b3 + t2(−b2) with t2 ∈ R.
The parameters t1, t2 correspond to the point m1 ∩m3 if

(1− t1)(−b3) + t1b1 = (1− t2)b3 + t2(−b2).

Rearranging the terms we arrive at the equation

t1(b1 + b3) + t2(b2 + b3) = 2b3
with unknowns t1 and t2. This equation can be reformulated in the matrix
form [

α1 − 1 α1

α2 α2 − 1

][
t1

t2

]
= 2

[
α1

α2

]
.
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By Cramer’s rule, ti = ∆i/∆ for i = 1, 2, where

∆ := (α1 − 1)(α2 − 1)− α1α2 = 1− α1 − α2,

∆1 := −2α1, ∆2 := −2α2.

Thus,

t1 =
2α1

α1 + α2 − 1
, t2 =

2α2

α1 + α2 − 1
.

Consequently,

m1∩m3 = (1− t2)b3 + t2(−b2)=(α1 + α2 − 1)−1((α1−α2−1)b3 +2α2(−b2))

= (α1 + α2 − 1)−1

[
(α1 − α2 − 1)α1

(1 + α1 − α2)α2

]
,

and so

V (P (±m1,±m3)) = 2(α1 + α2 − 1)−1

∣∣∣∣∣α1 (α1 − α2 − 1)α1

α2 (1 + α1 − α2)α2

∣∣∣∣∣
= 2(α1 + α2 − 1)−1α1α2

∣∣∣∣∣1 α1 − α2 − 1
1 1 + α1 − α2

∣∣∣∣∣= 4α1α2

α1 + α2 − 1
.

Thus, for B = P (±m1,±m3) we get

VB(T ) = V (T )/V (B) =
1
2
a1a2 ·

1
4

(α1 + α2 − 1)
1

α1α2
=

1
8
a2

3(α1 + α2 − 1)

=
1
8
a3(a1 + a2 − a3).

Summarizing all the claims above, we see that minB′∈B′ VB(T ) is attained
for B = P (±m1,±m3) (assuming that (9) and (10) hold true with A equal
to the identity) or for B satisfying the assumptions of Claim 3. Since for a :=
a1 = a2 = a3 one has 1

8a3(a1 + a2 − a3) = 1
8a

2, we see that minB′∈B′ VB(T )
is attained for B = P (±m1,±m3). This proves the lower bound in (1) and
Proposition 2(ii).

It remains to prove the converse statement in Theorem 1. Assume that
0 < a1 ≤ a2 ≤ a3, a1 +a2 ≥ a3 and (1) is satisfied. Above we have shown the
existence of normed planes M2(B′) and M2(B′′) such that for some points
p′1, p

′
2, p
′
3 ∈M2(B′) and p′′1, p

′′
2, p
′′
3 ∈M2(B) one has

a1 = ‖p′2 − p′3‖B′ , a2 = ‖p′3 − p′1‖B′ , a3 = ‖p′1 − p′2‖B′ ,
a1 = ‖p′′2 − p′′3‖B′′ , a2 = ‖p′′3 − p′′1‖B′′ , a3 = ‖p′′1 − p′′2‖B′′ ,

and

VB′(T ′) =
1
8
a3(a1 + a2 − a3), VB′′(T ′′) =

a1a2a3

2(a1 + a2 + a3)
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for T ′ := conv{p′1, p′2, p′3} and T ′′ := conv{p′′1, p′′2, p′′3}. In view of (7) and (8),
without loss of generality we may assume that pi := p′i = p′′i for i = 1, 2, 3.
Hence we also have T := T ′ = T ′′. For 0 ≤ t ≤ 1 letM2(Bt) be the normed
plane with the norm satisfying

‖x‖Bt = (1− t)‖x‖B′ + t‖x‖B′′

for every x ∈ R2. For every 0 ≤ t ≤ 1 we obviously have

a1 = ‖p2 − p3‖Bt , a2 = ‖p3 − p1‖Bt , a3 = ‖p1 − p2‖Bt .

Furthermore, Bt is equal to B′ and B′′ for t = 0 and t = 1, respectively.
In view of continuity of V (Bt) in the parameter t, for some 0 ≤ t ≤ 1
the equality VBt(T ) = A is satisfied. This proves the converse statement in
Theorem 1.

Proof of Corollary 3. Let us prove the main statement. Assume that
T is a triangle in M2, possibly degenerate to a segment, and set P :=
PB(T ), D := DB(T ), and A := VB(T ). Then the inequality 2D ≤ P is
an obvious consequence of the triangle inequality. The proof of P ≤ 3D is
straightforward. The inequality 1

8D(P−2D) ≤ A is a direct reformulation of
the left hand side of (1). Now let us obtain the inequality A ≤ 1

8(P −D)2D.
We may assume that T is not degenerate to a segment. Let a1, a2, a3 be the
side lengths of T with a1 ≤ a2 ≤ a3. Then a3 = D. We have

A
(1)

≤ a1a2D

2P
=

D

8P
((a1 + a2)2− (a1− a2)2) ≤ D

8P
(a1 + a2)2 =

(P −D)2D
8P

.

This finishes the proof of necessity. For the proof of sufficiency we consider
an arbitrary triple P,D,A with P > 0, D > 0, A ≥ 0 that satisfies (6).
Then, putting a3 := D and a1 := a2 := 1

2(P −D), we readily get from (6)
the inequalities a1 ≤ a2 ≤ a3 and a3 ≤ a1 + a2. The converse statement of
the corollary follows from the converse statement of Theorem 1.
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