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NEW CALDERÓN–ZYGMUND DECOMPOSITION
FOR SOBOLEV FUNCTIONS
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N. BADR (Lyon) and F. BERNICOT (Paris)

Abstract. We give a new Calderón–Zygmund decomposition for Sobolev spaces on
a doubling Riemannian manifold. Our hypotheses are weaker than those of the already
known decomposition which used classical Poincaré inequalities.
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1. Introduction. The purpose of this article is to weaken the assump-
tions of the Calderón–Zygmund decomposition for Sobolev functions. This
well-known tool was first stated by P. Auscher in [2]. It exactly corresponds
to the Calderón–Zygmund decomposition in the context of Sobolev spaces.

Let us briefly recall the ideas of such a decomposition. In [35], E. Stein
stated this decomposition for Lebesgue spaces as follows. Let (X, d, µ) be
a space of homogeneous type and p ≥ 1. Given a function f ∈ Lp(X), the
decomposition gives a precise way of partitioning X into two subsets: one
where f is essentially small (bounded in L∞ norm); the other a countable
collection of cubes where f is essentially large, but where some control of
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the function is obtained in L1 norm. This leads to the associated Calderón–
Zygmund decomposition of f , where f is written as the sum of “good” and
“bad” functions, using the above subsets.

This decomposition is a basic tool in harmonic analysis and in the study
of singular integrals. One of the applications is the following: an L2-bounded
Calderón–Zygmund operator is of weak type (1, 1) and so Lp-bounded for
every p ∈ (1,∞).

In [2], P. Auscher extended these ideas to Sobolev spaces. His decompo-
sition is the following:

Theorem 1.1. Let n ≥ 1, p ∈ [1,∞) and f ∈ D′(Rn) be such that
‖∇f‖Lp <∞. Let α > 0. Then one can find a collection (Qi)i of cubes and
functions g and bi such that

f = g +
∑
i

bi

and the following properties hold:

‖∇g‖L∞ ≤ Cα,

bi ∈W 1,p
0 (Qi),

�

Qi

|∇bi|p ≤ Cαp|Qi|,∑
i

|Qi| ≤ Cα−p
�

Rn
|∇f |p,

∑
i

1Qi ≤ N,

where C and N depend only on the dimension n and p.

The important point in this decomposition is that the functions bi are
supported in the corresponding balls, while the original Calderón–Zygmund
decomposition applied to ∇f would not give this.

The proof relies on an appropriate use of the Poincaré inequality and was
extended to doubling manifolds with the Poincaré inequality by P. Auscher
and T. Coulhon in [6].

This decomposition is used in many works and it appears in various forms
and extensions, for example in [6] (same proof on manifolds), [8] (on Rn but
with a doubling weight), in B. Ben Ali’s PhD thesis [16] and [5], [13] (the
Sobolev space is modified to adapt to Schrödinger operators), in N. Badr’s
PhD thesis [9] and [10, 11] (used toward interpolation of Sobolev spaces
on manifolds and measured metric spaces) and in [15] (Sobolev spaces on
graphs).

The aim of this article is to extend the proof using another kind of
“Poincaré inequality”. This work can be integrated with several recent
works, where the authors look for replacing mean value operators by others
in the definition of Hardy spaces or maximal operators (see [21, 19, 26, 30, 33]
etc.). Section 3 is mainly devoted to the proof of Calderón–Zygmund decom-
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positions for Sobolev functions (as in Theorem 1.1) in an abstract framework
of doubling Riemannian manifolds under assumptions involving a new kind
of Poincaré inequality. Then we give an application to the real interpolation
of Sobolev spacesW 1,p. In Section 4, we focus on a particular case (using the
heat semigroup) corresponding to the so-called pseudo-Poincaré inequalities.
These are weaker than the classical ones and ensure the Calderón–Zygmund
decomposition for Sobolev functions. We give some applications using this
improvement.

2. Preliminaries. Throughout this paper we will denote by 1E the
characteristic function of a set E, and by Ec the complement of E. If X is a
metric space, Lip will be the set of real Lipschitz functions on X, and Lip0

the set of compactly supported real Lipschitz functions on X. For a ball Q
in a metric space, λQ denotes the ball co-centered with Q and with radius
λ times that of Q. Finally, C will be a constant that may change from an
inequality to another, and we will write u . v to mean that there exists a
constant C such that u ≤ Cv, and u ' v to mean that u . v and v . u.

In this paper, M denotes a complete Riemannian manifold. We write µ
for the Riemannian measure on M , ∇ for the Riemannian gradient, | · | for
the length on the tangent space (omitting the subscript x for simplicity) and
‖ · ‖Lp for the norm on Lp := Lp(M,µ), 1 ≤ p ≤ ∞. We denote by Q(x, r)
the open ball of center x ∈M and radius r > 0.

We will use the positive Laplace–Beltrami operator ∆ defined by

∀f, g ∈ C∞0 (M), 〈∆f, g〉 = 〈∇f,∇g〉.

We deal with the Sobolev spaces of order 1, W 1,p := W 1,p(M), where the
norm is defined by

‖f‖W 1,p(M) := ‖f‖p +
∥∥ |∇f |∥∥

Lp
.

2.1. The doubling property

Definition 2.1 (Doubling property). LetM be a Riemannian manifold.
One says that M has the doubling property (D) if there exists a constant
C > 0 such that for all x ∈M and r > 0 we have

(D) µ(Q(x, 2r)) ≤ Cµ(Q(x, r)).

Lemma 2.2. Let M be a Riemannian manifold satisfying (D) and let
d = log2C. Then for all x, y ∈M and θ ≥ 1,

(1) µ(Q(x, θR)) ≤ Cθdµ(Q(x,R)).

Observe that if M satisfies (D) then

diam(M) <∞ ⇔ µ(M) <∞ (see [1]).
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Therefore if M is a complete Riemannian manifold satisfying (D) then
µ(M) =∞.

Theorem 2.3 (Maximal theorem, [22]). Let M be a Riemannian mani-
fold satisfying (D). Denote byM the uncentered Hardy–Littlewood maximal
function over open balls of M defined by

Mf(x) := sup
Q ball
x∈Q

|f |Q

where fE := −
	
E f dµ := µ(E)−1

	
E f dµ. Then for every p ∈ (1,∞],M is Lp-

bounded and moreover of weak type (1, 1) (1). Consequently, for s ∈ (0,∞),
the operatorMs defined by

Msf(x) := [M(|f |s)(x)]1/s

is of weak type (s, s) and Lp-bounded for all p ∈ (s,∞].

2.2. Classical Poincaré inequality

Definition 2.4 (Classical Poincaré inequality on M). We say that a
complete Riemannian manifold M admits the Poincaré inequality (Pq) for
some q ∈ [1,∞) if there exists a constant C > 0 such that, for every function
f ∈ Lip0(M) and every ball Q of M of radius r > 0, we have

(Pq)
(
−
�

Q

|f − fQ|q dµ
)1/q

≤ Cr
(
−
�

Q

|∇f |q dµ
)1/q

.

Remark 2.5. By density of C∞0 (M) in Lip0(M), we can replace Lip0(M)
by C∞0 (M).

Let us recall some known facts about Poincaré inequalities with varying q.
It is known that (Pq) implies (Pp) when p ≥ q (see [29]). Thus, if the set of
q such that (Pq) holds is not empty, then it is an interval unbounded on the
right. A recent result of S. Keith and X. Zhong (see [31]) asserts that this
interval is open in [1,∞):

Theorem 2.6. Let (X, d, µ) be a complete metric-measure space with µ
doubling and admitting a Poincaré inequality (Pq) for some 1 < q < ∞.
Then there exists ε > 0 such that (X, d, µ) admits (Pp) for every p > q − ε.

2.3. Estimates for the heat kernel. We recall the following off-
diagonal decay of the heat semigroup and the link between this decay and
the boundedness of the Riesz transform, the doubling property and the
Poincaré inequality. We refer the reader to the work of P. Auscher, T. Coul-
hon, X. T. Duong and S. Hofmann [7] and [6] for more details about all

(1) An operator T is of weak type (p, p) if there is C > 0 such that for any α > 0,
µ({x; |Tf(x)| > α}) ≤ (C/αp)‖f‖pp.
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these notions and how they are related. Let us consider the following two
inequalities:

(nhRp) ‖∇f‖p ≤ C(‖∆1/2f‖p + ‖f‖p)
and

(nhRRp) ‖∆1/2f‖p + ‖f‖p ≤ C‖∇f‖p.

Theorem 2.7. Let M be a complete doubling Riemannian manifold.

• The inequalities (nhR2) and (nhRR2) are always satisfied.
• ([23]) Assume that the heat kernel pt of the semigroup e−t∆ satisfies
the following pointwise estimate:

(DUE ) pt(x, x) .
1

µ(B(x, t1/2))
.

Then for all p ∈ (1, 2], (nhRp) and (nhRRp′) hold (2).
• ([28, Theorem 1.1]) Under (D), (DUE ) self-improves to the following
Gaussian upper bound:

(UE ) pt(x, y) .
1

µ(B(y, t1/2))
e−cd(x,y)

2/t.

Note that (UE ) implies L1-L∞ off-diagonal decay for (e−t∆)t>0.
• Under (UE ), the collection (

√
t∇e−t∆)t>0 has L2-L2 off-diagonal de-

cay.
• Under (DUE ) and by the analyticity of the heat semigroup, the follow-
ing pointwise upper bound for the kernel t ∂∂tpt of ∆e

−t∆ holds (see [25,
Theorem 4] and [28, Corollary 3.3]):

(2) t

∣∣∣∣ ∂∂tpt(x, y)
∣∣∣∣ . 1

µ(B(y, t1/2))
e−cd(x,y)

2/t.

Theorem 2.8 ([32, 34]). The conjunction of (D) and the Poincaré in-
equality (P2) on M is equivalent to the following Li–Yau inequality:

(LY )
1

µ(B(y, t1/2))
e−c1d(x,y)

2/t . pt(x, y) .
1

µ(B(y, t1/2))
e−c2d(x,y)

2/t,

with some constants c1, c2 > 0.

Theorem 2.9 ([7]). The Lp-boundedness of the Riesz transform ∇∆−1/2

implies

(Gp)
∥∥ |∇e−t∆| ∥∥

Lp→Lp . 1/
√
t.

Moreover, under (P2) and (Gp0) with p0 > 2, the collection (
√
t∇e−t∆)t>0

has Lp-Lp off-diagonal decay for every p ∈ [2, p0).

(2) The assumptions in [23] are even weaker.
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Remark 2.10. All these results were proved in their homogeneous ver-
sion, with homogeneous properties (Rp) and (RRp). The proofs were es-
sentially based on the well-known Calderón–Zygmund decomposition for
Sobolev functions. This tool was then extended to non-homogeneous Sobolev
spaces (see [10]). Thus by exactly the same proof, we can obtain non-homo-
geneous versions of all these results.

2.4. The K-method of real interpolation. We refer the reader to
[17], [18] for details on this theory. Here we only recall the essentials to be
used in what follows.

Let A0, A1 be two normed vector spaces embedded in a topological
Hausdorff vector space V . For each a ∈ A0 + A1 and t > 0, we define
the K-functional by

K(a, t, A0, A1) = inf
a=a0+a1

(‖a0‖A0 + t‖a1‖A1).

For 0 < θ < 1, 1 ≤ q ≤ ∞, we set

(A0, A1)θ,q =
{
a ∈ A0+A1 : ‖a‖θ,q =

(∞�
0

(t−θK(a, t, A0, A1))q
dt

t

)1/q

<∞
}
.

This is an exact interpolation space of exponent θ between A0 and A1 (see
[18, Chapter II]).

Definition 2.11. Let f be a measurable function on a measure space
(X,µ). The decreasing rearrangement of f is the function f∗ defined for every
t ≥ 0 by

f∗(t) = inf{λ; µ({x; |f(x)| > λ}) ≤ t}.
The maximal decreasing rearrangement of f is the function f∗∗ defined for
every t > 0 by

f∗∗(t) =
1
t

t�

0

f∗(s) ds.

Proposition 2.12.

• (f + g)∗∗ ≤ f∗∗ + g∗∗.
• (Mf)∗ ∼ f∗∗.
• µ({x; |f(x)| > f∗(t)}) ≤ t.
• ∀p ∈ (1,∞], ‖f∗∗‖p ∼ ‖f‖p.
We exactly know the functional K for Lebesgue spaces:

Proposition 2.13. For 0 < p0 < p1 ≤ ∞ we have

K(f, t, Lp0 , Lp1) '
(tα�

0

[f∗(s)]p0 ds
)1/p0

+ t
(∞�
tα

[f∗(s)]p1 ds
)1/p1

,

where 1/α = 1/p0 − 1/p1.
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3. New Calderón–Zygmund decompositions for Sobolev func-
tions. In the introduction, we recalled the main use of Calderón–Zygmund
decompositions for Sobolev functions. In the previously cited works, this de-
composition relies on Poincaré inequalities and some tricks with the mean
value operators. Here we present similar arguments with abstract operators,
requiring new “Poincaré inequalities”. Then we give some applications to real
interpolation of Sobolev spaces.

3.1. Decomposition using abstract “oscillation operators”. Let
A := (AQ)Q be a collection of operators (acting from W 1,p to W 1,p

loc ) indexed
by the balls of the manifold (AQ can be thought of to be similar to the mean
value operator over the ball Q).

Definition 3.1. We define a new maximal operator associated to this
collection: for 1 ≤ s ≤ p ≤ ∞ and all functions f ∈W 1,p,

MA,s(f)(x) := sup
Q;Q3x

1
µ(Q)1/s

‖AQ(f)‖W 1,s(Q) .

Let us now define the assumptions that we need on the collection A.
Definition 3.2. 1) We say that for q ∈ [1,∞] (3), the manifold M

satisfies the Poincaré inequality (Pq) relative to the collection A if there is
a constant C such that for every ball Q (of radius rQ) and for all functions
f ∈W 1,p, p ≥ q,(

−
�

Q

|f −AQ(f)|q dµ
)1/q

≤ CrQ sup
s≥1

(
−
�

sQ

(|f |+ |∇f |)q dµ
)1/q

.

2) For 1 ≤ q ≤ r ≤ ∞, we say that the collection A satisfies Lq-Lr
off-diagonal estimates if

(a) there are constants C ′ > 0 and N ∈ N∗ such that for all equivalent
balls Q, Q′ (i.e. Q ⊂ Q′ ⊂ NQ) and all functions f ∈ W 1,p with
p ≥ q, we have

(3)
1

µ(Q)1/r
‖AQ(f)−AQ′(f)‖Lr(NQ) ≤ C ′rQ inf

NQ
Mq(|f |+ |∇f |),

(b) for every ball Q,

(4)
1

µ(Q)1/r
‖AQ(f)‖W 1,r(Q) ≤ C ′ inf

Q
Mq(|f |+ |∇f |).

Here is our main result:

Theorem 3.3. Let M be a complete Riemannian manifold satisfying
(D) and of infinite measure. Consider a collection A = (AQ)Q of operators
defined on M . Assume that M satisfies the Poincaré inequality (Pq) relative

(3) We take the supremum instead of the Lq average when q =∞.
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to the collection A for some q ∈ [1,∞), and that A satisfies Lq-Lr off-
diagonal estimates for some r ∈ (q,∞]. Let q ≤ p < r, f ∈ W 1,p and
α > 0. Then one can find a collection (Qi) of balls, functions g ∈ W 1,r and
bi ∈W 1,q with the following properties:

f = g +
∑
i

bi,(5)

‖g‖W 1,r . ‖f‖p/r
W 1,pα

1−p/r,
�

S
iQi

(|g|r + |∇g|r) dµ . αrµ
(⋃

i

Qi

)
,(6)

supp(bi) ⊂ Qi, ‖bi‖W 1,q . αµ(Qi)1/q,(7) ∑
i

µ(Qi) ≤ Cα−p
�
(|f |+ |∇f |)p dµ,(8) ∑

i

1Qi ≤ N.(9)

Remark 3.4. From the assumed Lq-Lr off-diagonal estimates for A and
Theorem 2.3, we deduce that the maximal operatorMA,q is continuous from
W 1,q to Lq,∞ and from W 1,p to Lp for p ∈ (q, r].

Proof. We follow the ideas of [10] where the result is proved for the
particular case

AQ(f) := −
�

Q

f dµ.

Let f ∈W 1,p and α > 0. Consider the set

Ω := {x ∈M ; Mq(|f |+ |∇f |)(x) +MA,q(f)(x) > α}.
We can assume that it is non-empty (otherwise the result is obvious with
g = f). With this assumption, the different maximal operators are of weak
type (p, p) so

(10) µ(Ω) ≤ Cα−p
(�
|f |p dµ+

�
|∇f |p dµ

)
<∞.

In particular Ω 6= M as µ(M) =∞. Let F be the complement of Ω. Since Ω
is an open set distinct from M , we can take a Whitney decomposition (Qi)
of Ω. That is, the balls Qi are pairwise disjoint and there exist two constants
C2 > C1 > 1, depending only on the metric, such that

1. Ω =
⋃
iQi with Qi = C1Qi and the balls Qi have the bounded overlap

property;
2. ri = r(Qi) = 1

2d(xi, F ) and xi is the center of Qi;
3. each ball C2Qi intersects F (C2 = 4C1 works) and we define Qi =

2C2Qi.

For x ∈ Ω, denote Ix = {i; x ∈ Qi}. By the bounded overlap property of
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the balls Qi, we have ]Ix ≤ N with an integer N . Fixing j ∈ Ix and using
the properties of the Qi’s, we easily see that 1

3ri ≤ rj ≤ 3ri for all i ∈ Ix. In
particular, Qi ⊂ 7Qj for all i ∈ Ix.

Condition (9) is nothing but the bounded overlap property of the Qi’s
and (8) follows from (9) and (10).

Observe that the doubling property and the fact that Qi ∩ F 6= ∅ yield

(11)
�

Qi

(|f |q + |∇f |q + |AQi(f)|q + |∇AQi(f)|q) dµ

≤
�

Qi

(|f |q + |∇f |q + |AQi(f)|q + |∇AQi(f)|q) dµ

≤ inf
Qi

[Mq(|f |+ |∇f |) +MA,q(f)]qµ(Qi)

≤ αqµ(Qi) . αqµ(Qi).

We now define the functions bi. Let (χi)i be a partition of unity of Ω as-
sociated to the covering (Qi), such that for all i, χi is a Lipschitz function
supported in Qi with

∥∥ |∇χi| ∥∥∞ . r−1
i . Set

bi := (f −AQi(f))χi.

It is clear that supp(bi) ⊂ Qi. Let us estimate ‖bi‖W 1,q(Qi)
. We have

�

Qi

|bi|q dµ =
�

Qi

|f −AQi(f)|q dµ .
�

Qi

|f |q dµ+
�

Qi

|AQi(f)|q dµ . αqµ(Qi).

We applied (11) in the last inequality. Since

∇((f −AQi(f))χi) = χi(∇f −∇AQi(f)) + (f −AQi(f))∇χi,
we have

�

Qi

|∇bi|q dµ .
�

Qi

|∇f −∇AQi(f)|q dµ+
1
rqi

�

Qi

|f −AQif |
q dµ.

The first term is estimated as above for bi. Thus�

Qi

|∇f −∇AQi(f)|q dµ . αqµ(Qi).

For the second term, the Poincaré inequality (Pq) (relative to the collec-
tion A) shows that

1
rqi

�

Qi

|f −AQi(f)|q dµ . sup
s≥1

µ(Qi)
µ(sQi)

�

sQi

(|f |q + |∇f |q) dµ . αqµ(Qi).

We used that for all s ≥ 1, sQi meets F and (11) for sQi in place of Qi.
Thus (7) is proved.
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Set g = f −
∑

i bi. It remains to prove (6). Since the sum is locally
finite on Ω, g is defined almost everywhere on M and g = f on F . Observe
that g is a locally integrable function on M . This follows from the fact that
b = f − g ∈ Lq here (for the homogeneous case, one can easily prove that
b ∈ L1

loc). Note that
∑

i χi = 1Ω and
∑

i∇χi = ∇1Ω. We then have

∇g = ∇f −
∑
i

∇bi(12)

= ∇f −
(∑

i

χi[∇f −∇AQi(f)]
)
−
∑
i

(f −AQi(f))∇χi

= 1F (∇f) +
∑
i

χi∇AQi(f)−
∑
i

AQi(f)∇χi − f∇1Ω.

The definition of F and the Lebesgue differentiation theorem yield
1F (|f | + |∇f |) ≤ α µ-a.e. We deduce (with an interpolation inequality)
that for 1/r = θ/p,

‖1F (|f |+ |∇f |)‖Lr . ‖1F (|f |+ |∇f |)‖θLp‖1F (|f |+ |∇f |)‖1−θL∞

. ‖f‖p/r
W 1,pα

1−p/r.

We control the second term on the right hand side of (12) using the off-
diagonal decay of A, (4). We recall that Qi = 2C2Qi. We deduce that

(13)
∥∥ |∇AQi(f)|

∥∥
Lr(Qi)

. µ(Qi)1/r inf
Qi

Mq(|f |+ |∇f |) . αµ(Qi)1/r.

The last inequality is due to the fact that Qi ∩ F 6= ∅. Then the bounded
overlap property of the covering (Qi)i gives us∥∥∥∑

i

χi|∇AQi(f)|
∥∥∥
Lr

.
(∑

i

∥∥ |∇AQi(f)|
∥∥r
Lr(Qi)

)1/r

.
(
αr
∑
i

µ(Qi)
)1/r

. αµ(Ω)1/r.

We claim that a similar estimate holds for h =
∑

i[AQi(f)− f ]∇χi, that is,
‖h‖Lr . α(µ(Ω))1/r.

To prove this, we fix a point x ∈ Ω and let Qj be a Whitney ball con-
taining x. For all i ∈ Ix, as rQi ' rQj , we have

‖AQi(f)−AQj (f)‖Lr(Qi) . rjµ(Qj)1/rα.

Indeed, since Qi ⊂ 7Qj , this is a direct consequence of the assumed
off-diagonal decay and the fact that 10Qi ∩ F 6= ∅. Using

∑
i∇χi(x) = 0,
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we deduce that

‖h‖Lr(Qj) .
∑
i∈Ix

‖AQi(f)−AQj (f)‖Lr(Qj)r
−1
j(14)

. Nαµ(Qj)1/r . αµ(Qj)1/r.

Using again the bounded overlap property of the (Qi)i’s, it follows that

‖h‖Lr . αµ(Ω)1/r.

Hence ∥∥ |∇g|∥∥
Lr(Ω)

. αµ(Ω)1/r.

Then (8) and the Lr estimate of |∇g| on F yield ‖∇g‖Lr . ‖f‖p/r
W 1,pα

1−p/r.
Let us now estimate ‖g‖Lr . We have g = f1F +

∑
iAQi(f)χi. Since

|f |1F ≤ α, we still need to estimate ‖
∑

iAQi(f)χi‖Lr . Note that as in (13),
we similarly have, for every i,

(15) ‖AQi(f)‖Lr(Qi) . αµ(Qi)1/r.

As above, this last inequality yields (thanks to the bounded overlap property
of the (Qi)i)

‖g‖Lr(Ω) . α(µ(Ω))1/r.

Finally, (8) and the Lr estimate of g on F yield ‖g‖Lr . ‖f‖p/r
W 1,pα

1−p/r.
Thus we proved that g belongs to W 1,r with the desired boundedness.

Remark 3.5. Note that in this decomposition, ∇1Ω corresponds to a
singular distribution, supported in ∂Ω. In the previous proof, we assumed
that the distribution ∇1Ω corresponds to a function, vanishing almost ev-
erywhere. The estimate (14) shows that h (considered as an L1

loc-function)
satisfies the right property. We also have to check that h can be considered
as an L1

loc-function. This is due to the fact that∑
i,j

[AQj (f)χj − f ]∇χi = 0

in the distributional sense. This equality shows that when we are close to
supp(

∑
∇χi) = ∂Ω, the corresponding operator AQj tends to the identity

operator, due to the Poincaré inequality. We do not detail this technical
problem and refer to [4].

Remark 3.6. In the case where the operator AQ is the mean value op-
erator over the ball Q, the assumption “MA,q =Mq is continuous fromW 1,p

to Lp,∞” is always satisfied. The Poincaré inequality (Pq) corresponds to the
“classical one” (in fact it is weaker since the classical one only involves the
Lq(Q) norm of the gradient of the function). Moreover Lq-L∞ off-diagonal
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estimates hold obviously. Thus, we recover the well-known Calderón–Zyg-
mund decomposition in Sobolev spaces.

3.2. Application to real interpolation of Sobolev spaces. As de-
scribed in [11], such a Calderón–Zygmund decomposition in Sobolev spaces
is sufficient to obtain a real interpolation result for Sobolev spaces.

Theorem 3.7. Let M be a complete Riemannian manifold of infinite
measure satisfying (D) and admitting the Poincaré inequality (Pq) for some
q ∈ [1,∞) relative to the collection A. Assume that A satisfies Lq-Lr off-
diagonal estimates for an r ∈ (q,∞]. Then for 1 ≤ s ≤ p < r ≤ ∞ with
p > q, the space W 1,p is a real interpolation space between W 1,s and W 1,r.
More precisely

W 1,p = (W 1,s,W 1,r)θ,p
where θ ∈ (0, 1) is such that

1
p

=
1− θ
s

+
θ

r
<

1
q
.

We do not detail the proof and refer the reader to [11] for the link between
such a Calderón–Zygmund decomposition and interpolation results. We just
briefly explain the main steps of the proof.

Proof. It is sufficient to prove that there exists C > 0 such that for every
f ∈W 1,p and t > 0,

K(f, t,W 1,s,W 1,r) . t
r
r−s [|f |q∗∗ + |∇f |q∗∗]1/q(t

rs
r−s )(16)

+ t
[ ∞�
t
rs
r−s

(M(|f |+ |∇f |)q)∗r/q(u) du
]1/r

.

We consider the previous Calderón–Zygmund decomposition for f with

α = α(t) = [Mq(|f |+ |∇f |) +MA,q(f)]q∗
1
q (t

rs
r−s ).

We write f =
∑

i bi + g = b + g where (bi)i and g satisfy the properties of
Theorem 3.3. From the bounded overlap property of the Bi’s, it follows that

‖b‖sW 1,s ≤ N
∑
i

‖bi‖sW 1,s . α(t)s
∑
i

µ(Bi) . α(t)sµ(Ωt),

with Ωt =
⋃
iBi. For g, we have as in [11, proof of Theorem 4.2, p. 15]�

Ft

(|g|r + |∇g|r) dµ =
�

Ft

(|f |r + |∇f |r) dµ

.
∞�

t
rs
r−s

(M(|f |+ |∇f |)q)∗
r
q (u) du

+ t
rs
r−s (|f |q∗∗ + |∇f |q∗∗)

r
q (t

rs
r−s )
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where Ft is the complement of Ωt. For the Sobolev norm of g in Ω, we
use the estimate of the Calderón–Zygmund decomposition. Moreover, since
(Mf)∗ ∼ f∗∗ and (f + g)∗∗ ≤ f∗∗ + g∗∗ (cf. [17], [18]) and thanks to the
Lq-Lr off-diagonal assumption on A, we have

α(t) . |f |q∗∗
1
q (t

rs
r−s ) + |∇f |q∗∗

1
q (t

rs
r−s ).

The choice of α(t) implies µ(Ωt) ≤ t
rs
r−s (cf. [17], [18]). Finally (16) follows

from the fact that

K(f, t,W 1,s,W 1,r) ≤ ‖b‖W 1,s + t‖g‖W 1,r

and the good estimates of ‖b‖W 1,s and ‖g‖W 1,r .

Remark 3.8. As explained in [10, 11], to interpolate the non-homoge-
neous Sobolev spaces, it is sufficient to assume local doubling (Dloc) and
local Poincaré inequality (Pqloc) relative to A. Under these assumptions, we
restrict to balls Q of sufficiently small radius.

We now give a homogeneous version of all these results and then give
applications.

3.3. Homogeneous version. We begin by recalling the definition of
homogeneous Sobolev spaces on a manifold.

LetM be a C∞ Riemannian manifold of dimension n. For 1 ≤ p ≤ ∞, we
define Ė1,p to be the vector space of distributions ϕ with |∇ϕ| ∈ Lp, where
∇ϕ is the distributional gradient of ϕ. We equip Ė1,p with the seminorm

‖ϕ‖Ė1,p =
∥∥ |∇ϕ|∥∥

Lp
.

The homogeneous Sobolev space Ẇ 1,p is then the quotient space Ė1,p/R.

Remark 3.9. 1. For all ϕ ∈ Ė1,p, ‖ϕ‖Ẇ 1,p =
∥∥ |∇ϕ|∥∥

Lp
, where ϕ denotes

the class of ϕ.
2. The space Ẇ 1,p is a Banach space (see [27]).

We then have the homogeneous versions of all our results. We only state
them, their proofs being the same as in the non-homogeneous case with a few
modifications due to the homogeneous norm.

Let A := (AQ)Q be a collection of operators (acting from Ẇ 1,p to Ẇ 1,p
loc )

indexed by the balls of the manifold. We define analogously a new homoge-
neous maximal operator associated to this collection: for 1 ≤ s ≤ p ≤ ∞
and all functions f ∈ Ẇ 1,p,

ṀA,s(f)(x) := sup
Q;Q3x

1
µ(Q)1/s

∥∥ |∇AQ(f)|
∥∥
Ls(Q)

.

The assumptions that we need on the collection A are then the following:
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Definition 3.10. 1) We say that for q ∈ [1,∞), the manifoldM satisfies
the homogeneous Poincaré inequality (Ṗq) relative to the collection A if there
is a constant C such that for every ball Q (of radius rQ) and for all functions
f ∈ Ẇ 1,p with p ≥ q,

(Ṗq)
(
−
�

Q

|f −AQ(f)|q dµ
)1/q

≤ CrQ sup
s≥1

(
−
�

sQ

|∇f |q dµ
)1/q

.

2) We say that the collection A satisfies Lq-Lr homogeneous off-diagonal
estimates if

(a) there are constants C ′ > 0 and N ∈ N∗ such that for all equivalent
ballsQ, Q′ (i.e.Q ⊂ Q′ ⊂ NQ,N ∈ N∗) and all functions f ∈ Ẇ 1,p

with p ≥ q, we have
1

µ(Q)1/r
‖AQ(f)−AQ′(f)‖Lr(NQ) ≤ C ′rQ inf

NQ
Mq(|∇f |);

(b) for every ball Q,

(17)
1

µ(Q)1/r
∥∥ |∇AQ(f)|

∥∥
Lr(Q)

≤ C ′ inf
Q
Mq(|∇f |).

Then we get the homogeneous version of the Calderón–Zygmund decom-
position:

Theorem 3.11. Let M be a complete Riemannian manifold satisfying
(D) and of infinite measure. Consider a collection A = (AQ)Q of operators
defined on M . Assume that M satisfies the Poincaré inequality (Ṗq) relative
to the collection A for some q ∈ [1,∞) and that A satisfies Lq-Lr homoge-
neous off-diagonal estimates for an r ∈ (q,∞]. Let f ∈ Ẇ 1,p and α > 0.
Then one can find a collection (Qi) of balls and functions g ∈ Ẇ 1,r and
bi ∈ Ẇ 1,q with the following properties:

f = g +
∑
i

bi,(18)

‖g‖Ẇ 1,r . ‖f‖p/r
Ẇ 1,p

α1−p/r,
�

S
iQi

|∇g|r dµ . αrµ
(⋃

i

Qi

)
,(19)

supp(bi) ⊂ Qi, ‖bi‖Ẇ 1,q . αµ(Qi)1/q,(20) ∑
i

µ(Qi) ≤ Cα−p
�
|∇f |p dµ,(21) ∑

i

1Qi ≤ N.(22)

This decomposition will give us the following homogeneous interpolation
result:
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Theorem 3.12. Let M be a complete Riemannian manifold of infinite
measure satisfying (D) and admitting the Poincaré inequality (Ṗq) for some
q ∈ [1,∞) relative to the collection A. Assume that A satisfies Lq-Lr homo-
geneous off-diagonal estimates for an r ∈ (q,∞]. Then for 1 ≤ s ≤ p < r
≤ ∞ with p > q, the space Ẇ 1,p is a real interpolation space between Ẇ 1,s

and Ẇ 1,r. More precisely

Ẇ 1,p = (Ẇ 1,s, Ẇ 1,r)θ,p
where θ ∈ (0, 1) is such that

1
p

=
1− θ
s

+
θ

r
<

1
q
.

4. Pseudo-Poincaré inequalities and applications

4.1. The particular case of “pseudo-Poincaré inequalities”. From
[2, 3], we know that under (D), the Poincaré inequality (Pq) guarantees
the assumptions of Theorem 3.3 when AQ is the mean value operator over
the ball Q. This permits proving a Calderón–Zygmund decomposition for
Sobolev functions.

The aim of this subsection is to show, using a particular choice of op-
erators AQ, that our assumptions are weaker than the classical Poincaré
inequality used in the already known decomposition.

Let ∆ be the positive Laplace–Beltrami operator and set AQ := e−r
2
Q∆

for each ball Q of radius rQ. In all this section, we work with these operators.
In order to obtain a Calderón–Zygmund decomposition as in Theorem 3.3,
we need to put some assumptions on (AQ)Q as those in Section 3.

According to this choice of operators, we define “pseudo-Poincaré inequal-
ities”.

Definition 4.1 (Pseudo-Poincaré inequality onM). We say that a com-
plete Riemannian manifold M admits the pseudo-Poincaré inequality (P̃q)
for some q ∈ [1,∞) if there exists a constant C > 0 such that, for every
function f ∈ C∞0 and every ball Q of M of radius r > 0, we have

(P̃q)
(
−
�

Q

|f − e−r2∆f |q dµ
)1/q

≤ Cr sup
s≥1

(
−
�

sQ

|∇f |q dµ
)1/q

.

Pseudo-Poincaré inequalities correspond to what we called the Poincaré
inequality relative to this collection A (the homogeneous version; we can also
consider the non-homogeneous one).

We begin by showing that the pseudo-Poincaré inequalities are implied
by the classical Poincaré inequalities. We denote

(q0) q0 := inf{q ∈ [1,∞); (Pq) holds}.
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Proposition 4.2. Let M be a complete manifold satisfying (D) and
admitting the Poincaré inequality (Pq) for some 1 ≤ q <∞.

1. If q0 < 2 then the pseudo-Poincaré inequality (P̃q) holds.
2. If q0 ≥ 2, we moreover assume (DUE ). Then (P̃q) also holds.

Before proving this proposition, we give the following covering lemma.

Lemma 4.3. Let M be a complete manifold satisfying (D). Let Q a ball
of radius rQ. Then there exists a bounded covering (Qj)j of Q with balls of
radius t1/2 for 0 < t ≤ r2Q. Moreover, for s ≥ 1, the collection (sQj)j is an
s-covering of sQ, that is,

sup
x∈sQ

]{j; x ∈ sQj} . sd,

where d is the homogeneous dimension of the manifold.

Proof. We choose a maximal collection (Q(xj , t1/2/3))j of disjoint balls
in Q. Then we set Qj = Q(xj , t1/2), which is a covering of Q.

Fix x ∈ sQ and denote Jx := {j; x ∈ sQj}. Pick j0 ∈ Jx (if Jx 6= ∅, there
is nothing to prove). By (D), we have

(]Jx)µ(sQj0) . (]Jx)sdµ
(

1
3
Qj0

)
. sd

∑
j∈Jx

µ

(
1
3
Qj

)

. sdµ

( ⋃
j∈Jx

1
3
Qj

)
. sdµ(Q(x, 2st1/2)) . sdµ(sQj0),

where we used the fact that the balls 1
3Qj are disjoint and all have equivalent

measure when j ∈ Jx.
Proof of Proposition 4.2. Consider a ball Q of radius r > 0. We deal with

the semigroup and write the oscillation as follows:

f − e−r2∆f = −
r2�

0

d

dt
e−t∆f dt =

r2�

0

∆e−t∆f dt.

Now we apply arguments used in [7, Lemma 3.2]. Using the completeness of
the manifold, we have(

1
µ(Q)

�

Q

∣∣∣r2�
0

∆e−t∆f dt
∣∣∣q dµ)1/q

.
r2�

0

(
1

µ(Q)

�

Q

|∆e−t∆f |q dµ
)1/q

dt

.
r2�

0

(
1

µ(Q)

∑
j

�

Qj

|∆e−t∆(f−fQj )|q dµ
)1/q

dt,

where (Qj)j is a bounded covering of Q with balls of radius t1/2 as in Lem-
ma 4.3. Fix t ∈ (0, r2) and set Ck(Qj) := 2k+1Qj \ 2kQj for k ≥ 1 and
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C0(Qj) = 2Qj . Then, arguing as in Lemma 3.2 of [7],

S :=
∑
j

�

Qj

|∆e−t∆(f − fQj )|q dµ

.
∑
j

�

Qj

t−q
∣∣∣∣ �
M

e−cd(x,y)
2/t

µ(Q(y,
√
t))

(f(y)− fQj ) dµ(y)
∣∣∣∣q dµ(x)

.
∑

j,k;k≥0

�

Qj

t−qµ(2k+1Qj)q−1
�

Ck(Qj)

e−cqd(x,y)
2/t

µ(Q(y,
√
t))q
|f(y)− fQj |q dµ(y) dµ(x).

Hence

S .
∑

j,k;k≥1

t−qµ(2k+1Qj)q−1

×
�

Ck(Qj)

( �

{x; d(x,y)≥2k−1
√
t}

e−cqd(x,y)
2/t dµ(x)

) |f(y)− fQj |q

µ(Q(y,
√
t))q

dµ(y)

+
∑
j

t−q
1

µ(Qj)q
µ(2Qj)q−1

�

2Qj

( �

Qj

dµ(x)
)
|f(y)− fQj |q dµ(y)

.
∑
j

t−q
∑
k≥1

e−cq4
k
2kdq

�

Ck(Qj)

|f(y)− fQj |q dµ(y)

+
∑
j

t−q
�

2Qj

|f(y)− fQj |q dµ(y)

.
∑
j

t−q
∑
k≥1

e−cq4
k
2kdq

�

2k+1Qj

|f(y)− f2k+1Qj |
q dµ(y)

+
k+1∑
l=1

µ(2k+1Qj)
µ(2lQj)

|f2lQj − f2l−1Qj |+
∑
j

t−q
�

2Qj

|f(y)− fQj |q dµ(y)

.
∑
j

t−q
∑
k≥1

e−cq4
k
2Mktq/2

k+1∑
l=1

�

2lQj

|∇f |q dµ+
∑
j

t−qtq/2
�

2Qj

|∇f |q dµ.

We used (2), (Pq), and the fact that µ(Q(y,
√
t)) ∼ µ(Qj) for y ∈ 2Qj , and

1
µ(Q(y,

√
t))
≤ C 2kd

µ(2k+1Qj)
for y ∈ Ck(Qj), k ≥ 1.

We also used the fact that for s, t > 0,�

{x; d(x,y)≥
√
t}

e−cd(x,y)
2/s dµ(x) ≤ Ce−ct/sµ(Q(y,

√
s))

thanks to (D) (see Lemma 2.1 in [24]).
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Since (2lQj)j is a 2l-bounded covering of 2lQ, we deduce that∑
j

�

2lQj

|∇f |q dµ . 2ld
�

2lQ

|∇f |q dµ ≤ 4ldµ(Q) sup
s≥1
−
�

sQ

|∇f |q dµ,

where d is the homogeneous dimension of the doubling manifold. Thus, it
follows that(

1
µ(Q)

�

Q

∣∣∣r2�
0

∆e−t∆(f) dt
∣∣∣q dµ)1/q

.
[r2�

0

t−1/2 dt
]
sup
s≥1

(
−
�

sQ

|∇f |q dµ
)1/q

,

which ends the proof.

Before we prove off-diagonal estimates under the classical Poincaré in-
equality, let us recall the following result:

Proposition 4.4 ([6]). Let M be a complete Riemannian manifold sat-
isfying (D) and (P2). Then there exists p0 > 2 such that the Riesz transform
R := ∇∆−1/2 is Lp-bounded for 1 < p < p0.

We now let

p0 := sup{p ∈ (2,∞); ∇∆−1/2 is Lp-bounded},(p0)
s0 := sup{s ∈ (1,∞]; (Gs) holds}.(s0)

Remark 4.5. Note that the doubling property (D) and (DUE ) imply,
for p ∈ (1, 2], the Lp-boundedness of ∇∆−1/2, which implies (Gp) (see Sub-
section 2.3) and that s0 ≥ p0 > 2.

For the second off-diagonal condition (4), we obtain:

Proposition 4.6. Let M be a complete manifold. Assume that M satis-
fies (D) and admits the classical Poincaré inequality (Pq) for some q ∈ [1,∞)
as in Definition 2.4. Consider the estimate

(23) MA,r(f) .Mq(|f |+ |∇f |).
1. If q0 < 2, then (23) holds for all r ∈ (q, s0).
2. If q0 ≥ 2, assume moreover (DUE ) and that s0 > q. Then (23) holds

for all r ∈ (q, s0).

Consequently, (4) holds for all r ∈ (q, s0).

Proof. It is sufficient to prove the following inequalities:

(24)
(
−
�

Q

|e−r2∆f |r dµ
)1/r

≤ CMq(|f |)(x)

and

(25)
(
−
�

Q

|∇e−r2∆f |r dµ
)1/r

≤ CMq(|∇f |)(x)

for every x ∈ M and every ball Q containing x. We do not detail the proof
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as it uses an argument analogous to [7, Subsection 3.1, Lemma 3.2 and the
end of that subsection]. For example, (25) is essentially inequality (3.12) in
Section 3 of [7] where q0 = 2. We just mention that for (24), we use the Lr
contractivity of the heat semigroup, (D) and (DUE ). For (25), we moreover
need the following Lr Gaffney estimates for ∇e−t∆ with r ∈ (q0, s0). We say
that (∇e−t∆)t>0 satisfies the Lp Gaffney estimate if there exist C,α > 0
such that for all t > 0, E, F closed subsets of M and f supported in E,

(Gap)
∥∥√t|∇e−t∆f |∥∥

Lp(F )
≤ Ce−αd(E,F )2/t‖f‖Lp(E).

In the case where q0 ≥ 2, interpolating the already known (Ga2) with (Gs)
for every 2 < s < s0, we get (Gap) for 2 < p < s0. When q0 < 2, since in
this case (Gs) holds for all 1 < s < 2 and 2 < s < s0, interpolating again
(Gs) and (Ga2), we obtain (Gap) for all 1 < p < s0.

It remains to check (3).

Proposition 4.7. Let M be a complete manifold satisfying (D) and
admitting the classical Poincaré inequality (Pq) for some 1 ≤ q <∞. Then

1. If q0 < 2, for r > q, the collection A satisfies the Lq-Lr off-diagonal
estimates (3).

2. If q0 ≥ 2, the same result holds under the additional assumption
(DUE ).

Proof. Take two equivalent balls Q0, Q1, say Q0 ⊂ Q1 ⊂ 10Q0 with ra-
dius r0 (resp. r1). We have chosen a numerical factor 10 just for convenience.
We have to prove that

(26)
(

1
µ(Q0)

�

10Q0

|e−r20∆f − e−r21∆f |r dµ
)1/r

. r0 inf
10Q0

Mq(|f |+ |∇f |).

This is a consequence of

(27)
(

1
µ(Q0)

�

10Q0

|e−r20∆f − e−400r20∆f |r dµ
)1/r

. r0 inf
10Q0

Mq(|f |+ |∇f |)

and

(28)
(

1
µ(Q0)

�

10Q0

|e−400r20∆f − e−r21∆f |r dµ
)1/r

. r0 inf
10Q0

Mq(|f |+ |∇f |).

We use the fact that

e−r
2
0∆f − e−400r20∆f = e−r

2
0∆[1− e−399r20∆](f)

and
e−400r20∆f − e−r21∆f = −e−r21∆[1− e−((20r0)2−r21)∆](f).

We only deal with (27); (28) is handled similarly. From (D) and (DUE),
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we know that (UE ) holds and so we have very fast L1-L∞ decay for the
semigroup, which permits us to gain integrability from Lq to Lr. It follows
that(

1
µ(Q0)

�

10Q0

|e−r20∆f − e−400r20∆f |r dµ
)1/r

.
∑
j≥0

e−γ4
j

(
1

µ(Q0)

�

Cj(Q0)

|f − e−399r20∆f |q dµ
)1/q

,

where the dyadic coronas Cj(Q0) appear (see again [7, Lemma 3.2 and the
end of Subsection 3.1]). Then we use (D) and (Pq). For each j, we choose a
bounded covering (Qji )i of 2j+1Q0 with balls of radius

√
399r0 and obtain

1
µ(Q0)

�

Cj(Q0)

|f − e−399r20∆f |q dµ .
1

µ(Q0)

∑
i

�

Qji

|f − e−399r20∆f |q dµ

.
1

µ(Q0)

∑
i

�

Qji

|f − e−399r20∆f |q dµ

.
1

µ(Q0)

∑
i

rq0µ(Qji ) sup
s≥1
−
�

sQji

|∇f |q dµ

.
1

µ(Q0)

∑
i

rq0µ(Qji ) sup
s≥1

2dj
(
−
�

s2j+1Q0

|∇f |q dµ
)

.
1

µ(Q0)

∑
i

rq0µ(Qji )2
dj inf
Q0

M(|∇f |q)

. rq02
dj µ(2j+1Q0)

µ(Q0)
(inf
Q0

Mq(|∇f |))q

. rq02
2dj(inf

Q0

Mq(|∇f |))q.

We applied (Pq) in the third inequality. In the fourth inequality, we used
that sQji ⊂ 2j+1sQ0 and thanks to (D), µ(2j+1sQ0) . µ(sQji )2

jd. Then we
applied the bounded overlap property in the sixth inequality.

Summing over j, we obtain the desired inequality (27). Similarly we prove
(28), which completes the proof of (26).

We get the following corollary:

Corollary 4.8. Assume that M is complete, satisfies (D) and admits
the classical Poincaré inequality (Pq) for some q ∈ [1,∞). If q0 ≥ 2, we
moreover assume (DUE ) and s0 > q. Then the assumptions of Theorem 3.3
and 3.7 hold. We have the pseudo-Poincaré inequality (P̃q) and A satisfies
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Lq-Lr off-diagonal estimates for r ∈ (q, s0).

Conclusion. When q < 2, the assumptions of Theorem 3.3 (for this par-
ticular choice of A) are weaker than the Poincaré inequality and are sufficient
to get the Calderón–Zygmund decomposition.

We also have the homogeneous version:

Corollary 4.9. Assume that M is complete, satisfies (D) and admits
the classical Poincaré inequality (Pq) for some 1 ≤ q < ∞. If q0 ≥ 2, we
moreover assume (DUE ). Let A := (AQ)Q with AQ := e−r

2
Q∆. Then the

assumptions of Theorems 3.11 and 3.12 hold. We have the pseudo-Poincaré
inequality (P̃q) and A satisfies homogeneous Lq-Lr off-diagonal estimates for
r ∈ (q, s0).

4.2. Application to reverse Riesz transform inequalities. We refer
the reader to [6, 7] for the study of the so-called (RRp) inequalities:

(RRp) ‖∆1/2f‖Lp .
∥∥|∇f |∥∥

Lp
.

We know that (RR2) is always satisfied and that (D) and (DUE ) implies
(RRp) for all p ∈ (2,∞). For the exponents lower than 2, P. Auscher and
T. Coulhon obtained the following result ([6]):

Theorem 4.10. Let M be a complete non-compact doubling Riemannian
manifold. Moreover assume that the classical Poincaré inequality (Pq) holds
for some q ∈ (1, 2). Then for all p ∈ (q, 2), (RRp) is satisfied.

This result is based on a Calderón–Zygmund decomposition for Sobolev
functions. Using our new assumptions, we also obtain the following improve-
ment:

Theorem 4.11. Assume that M is complete, satisfies (D) and admits
the pseudo-Poincaré inequality (P̃q) for some q ∈ (1, 2). If in addition, the
collection A satisfies Lq-L2 off-diagonal estimates, then (RRp) holds for all
p ∈ (q, 2).

Remark 4.12. Corollary 4.8 shows that these new assumptions are
weaker than the Poincaré inequality (Pq).

We do not prove this result and refer the reader to [6]. The proof is
exactly the same as it relies on the Calderón–Zygmund decomposition.

Remark 4.13. We mention two other works of the authors [20, 14]. In
[20], the assumption (RRp) plays an important role in proving some maximal
inequalities in dual Sobolev spaces W−1,p, which do not require Poincaré
inequalities. So it might be important to know how to prove (RRp) without
the Poincaré inequality.
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4.3. Application to Gagliardo–Nirenberg inequalities. We devote
this subsection to the study of Gagliardo–Nirenberg inequalities. We refer
the reader to [12] for a recent work on this subject.

Definition 4.14. For α < 0, we define the Besov space Bα
∞,∞ to be the

set of all measurable functions f such that

‖f‖Bα∞,∞ := sup
t>0

t−α/2‖e−t∆f‖L∞ <∞.

We have the following equivalence (Lemma 2.1 in [12]):

‖f‖Bα∞,∞ ∼ sup
t>0

t−α/2‖e−t∆(f − e−t∆f)‖L∞ .

Then the so-called Gagliardo–Nirenberg inequalities are

(29) ‖f‖l .
∥∥ |∇f |∥∥θ

p
‖f‖1−θ

B
θ/(θ−1)
∞,∞

where θ = p/l for some p, l ∈ [1,∞).
We first recall one of the main results of [12]:

Theorem 4.15. LetM be a complete non-compact Riemannian manifold
satisfying (D) and (Pq) for some 1 ≤ q < ∞. Moreover, assume that M
satisfies the global pseudo-Poincaré inequalities (P ′q) and (P ′∞). Then (29)
holds for all q ≤ p < l <∞.

Here, the global pseudo-Poincaré inequality (P ′q) for some q ∈ [1,∞]
corresponds to

(P ′q) ‖f − e−t∆f‖Lq ≤ Ct1/2
∥∥ |∇f |∥∥

Lq
.

Theorem 4.15 requires global pseudo-Poincaré inequalities and some
Poincaré inequalities with respect to balls. These two kinds of inequalities are
quite different as they deal with oscillations with respect to the semigroup
(for the pseudo-Poincaré inequalities) and to the mean value operators (for
the Poincaré inequalities). We saw in the previous subsection that Poincaré
inequalities imply pseudo-Poincaré inequalities. That is why we are looking
for assumptions requiring only the Poincaré inequality, getting around the
assumed global pseudo-Poincaré inequalities.

We begin by showing that pseudo-Poincaré inequalities related to balls
yield global pseudo-Poincaré inequalities.

Proposition 4.16. Let M be a complete Riemannian manifold satisfy-
ing (D) and admitting the pseudo-Poincaré inequality (P̃q) for some 1 ≤ q
<∞. Then the global pseudo-Poincaré inequality (P ′q) holds.

Proof. Let t > 0. Pick a countable set {xj}j∈J ⊂M such that

M =
⋃
j∈J

Q(xj ,
√
t) =:

⋃
j∈J

Qj
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and for all x ∈M , x belongs to no more than N1 balls Qj . Then

‖f − e−t∆f‖qq ≤
∑
j

�

Qj

|f − e−t∆f |q dµ .
∑
j

tq/2
�

Qj

|∇f |q dµ

. N1t
q/2

�

M

|∇f |q dµ.

Remark 4.17. It is easy to see that the global pseudo-Poincaré inequal-
ity (P ′∞) is satisfied under (D) and (DUE ) (see for instance [12, p. 499]).

Using Propositions 4.16, 4.2 and Theorem 4.15, we get the following
improvement of Theorem 1.2 in [12]:

Theorem 4.18. Let M be a complete Riemannian manifold satisfying
(D) and admitting the Poincaré inequality (Pq) for some 1 ≤ q < ∞. If
q0 ≥ 2, we moreover assume (DUE ). Then (29) holds for all q ≤ p < l <∞.

Using our new assumptions, we also get the following Gagliardo–Niren-
berg theorem:

Theorem 4.19. Assume thatM satisfies the hypotheses of Theorem 3.12
with AQ = e−r

2
Q∆ and that r = ∞. Moreover, assume (DUE ). Then (29)

holds for all q ≤ p < l <∞.

Proof. The proof is analogous to that of Theorems 1.1 and 1.2 in [12].
We use our homogeneous interpolation result of Theorem 3.12. Also we need
our non-homogeneous interpolation result of Theorem 3.7. It holds thanks
to (24) which is true under (D) and (DUE ). Moreover, (P ′q) is satisfied and
(P ′∞) holds thanks to (D) and (DUE ).

As a corollary, we obtain

Theorem 4.20. Consider a complete Riemannian manifoldM satisfying
(D) and (Pq) for some 1 ≤ q <∞, and assume that there exists C > 0 such
that for every x, y ∈M and t > 0,

(G) |∇xpt(x, y)| ≤
C√

tµ(B(y,
√
t))
.

((G) is equivalent to the assumption (G∞).) In the case where q0 > 2, we
moreover assume (DUE ). Then inequality (29) holds for all q ≤ p < l <∞.

Proof. In the case where q ≤ 2, this result is already in [12]. For q0 ≥ 2,
we are under the hypotheses of Theorem 4.19 thanks to Subsection 4.1 and
since (G) implies that r =∞.
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