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ON THE DAVENPORT CONSTANT AND GROUP ALGEBRAS

BY

DANIEL SMERTNIG (Graz)

Abstract. For a finite abelian group G and a splitting field K of G, let d(G, K)
denote the largest integer l ∈ N for which there is a sequence S = g1 · . . . · gl over G such
that (Xg1 − a1) · . . . · (Xgl − al) 6= 0 ∈ K[G] for all a1, . . . , al ∈ K×. If D(G) denotes the
Davenport constant of G, then there is the straightforward inequality D(G)−1 ≤ d(G, K).
Equality holds for a variety of groups, and a conjecture of W. Gao et al. states that equality
holds for all groups. We offer further groups for which equality holds, but we also give the
first examples of groups G for which D(G)−1 < d(G, K). Thus we disprove the conjecture.

1. Introduction and main result. Let G be an additive finite abelian
group. For a (multiplicatively written) sequence S = g1 ·. . .·gl over G, |S| = l
is called the length of S, and S is said to be zero-sum free if

∑
i∈I gi 6= 0

for every nonempty subset I ⊂ [1, l]. Let d(G) denote the maximal length of
a zero-sum free sequence over G. Then d(G) + 1 is the Davenport constant
of G, a classical constant from combinatorial number theory (for surveys
and historical comments, the reader is referred to [3], [8, Chapter 5], [7]).
In general, the precise value of d(G) (in terms of the group invariants of G)
and the structure of the extremal sequences is unknown; see [12, 1, 13, 10,
11, 4, 14, 15, 9] for recent progress.

The group algebras R[G] (over suitable commutative rings R) have
turned out to be powerful tools for a great variety of questions from combina-
torics and number theory, including ones involving the Davenport constant.
We recall the definition of an invariant (involving group algebras) which has
been used for the investigation of the Davenport constant since the 1960s.

For a commutative ring R, let d(G,R) ∈ N∪{∞} denote the supremum of
all l ∈ N having the following property: there is some sequence S = g1 · . . . ·gl
of length l over G such that

(Xg1 − a1) · . . . · (Xgl − al) 6= 0 ∈ R[G] for all a1, . . . , al ∈ R \ {0}.
If S is zero-sum free, R is an integral domain, a1, . . . , al ∈ R \ {0} and

f = (Xg1 − a1) · . . . · (Xgl − al) =
∑
g∈G

cgX
g,
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then c0 6= 0. Hence f 6= 0, and it follows that

d(G) ≤ d(G,R).

Theorem A below was proved by P. van Emde Boas, D. Kruyswijk and
J. E. Olson in the 1960s (in fact, they did not explicitly define the invari-
ants d(G,K) but got these results implicitly). Historical remarks and proofs
in the present terminology may be found in [7, Section 2.2] and [8, Theo-
rem 5.5.9]; see also [5].

Theorem A. Let G be a finite abelian group with exp(G) = n ≥ 2.

(i) Let K be a splitting field of G with char(K) - exp(G). Then

d(G,K) ≤ (n− 1) + n log
|G|
n
.

(ii) If G is a p-group, then d(G) = d(G,Z/pZ).

Note that for a cyclic group G of order n, the above upper bound implies
that d(G) = d(G,K) = n− 1, since d(Cn) ≥ n− 1 can be easily seen. Only
recently did W. Gao and Y. Li show that d(C2⊕C2n) = d(C2⊕C2n,K) ([6,
Theorem 3.3]). We extend their result, but we also show that Conjecture 3.4
in [6], stating that d(G) = d(G,K) for all groups G, does not hold. Here is
the main result of the present paper.

Theorem 1.1. Let G = Cp ⊕ Cpn with p ∈ P, n ∈ N and let K be a
splitting field of G.

(i) If p ≤ 3, then d(G) = d(G,K).
(ii) If p ≥ 5 and n ≥ 2, then d(G) < d(G,K).

2. Preliminaries. Let N denote the set of positive integers, P ⊂ N the
set of prime numbers, and let N0 = N ∪ {0}. For real numbers a, b ∈ R, we
set [a, b] = {x ∈ Z | a ≤ x ≤ b}. For n ∈ N and p ∈ P, let Cn denote a cyclic
group with n elements, vp(n) ∈ N0 the p-adic valuation of n with vp(p) = 1,
and Fp = Z/pZ the finite field with p elements.

LetG be an additive finite abelian group. Suppose thatG∼=Cn1⊕· · ·⊕Cnr
with 1 < n1 | · · · |nr. Then r = r(G) is the rank of G, nr = exp(G) is
the exponent of G, and we define d∗(G) =

∑r
i=1(ni − 1). If |G| = 1, then

exp(G) = 1, r(G) = 0, and we set d∗(G) = 0. If A,B ⊂ G are nonempty
subsets, then A + B = {a + b | a ∈ A, b ∈ B} is their sumset. We will
make use of the following theorem of Cauchy–Davenport (for a proof see [8,
Cor. 5.2.8.1]).

Lemma 2.1. Let G be a cyclic group of order p ∈ P and let A,B ⊂ G be
nonempty subsets. Then |A+B| ≥ min{|A|+ |B| − 1, p}.

Sequences over groups. Let F(G) be the (multiplicatively written)
free abelian monoid with basis G. The elements of F(G) are called sequences
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over G. We write sequences S ∈ F(G) in the form

S =
∏
g∈G

gvg(S) with vg(S) ∈ N0 for all g ∈ G.

We call vg(S) the multiplicity of g in S, and we say that S contains g if
vg(S) > 0. A sequence S1 is called a subsequence of S if S1 |S in F(G)
(equivalently, vg(S1) ≤ vg(S) for all g ∈ G). If a sequence S ∈ F(G) is
written in the form S = g1 · . . . · gl, we tacitly assume that l ∈ N0 and
g1, . . . , gl ∈ G. For a sequence

S = g1 · . . . · gl =
∏
g∈G

gvg(S) ∈ F(G),

we call
|S| = l =

∑
g∈G

vg(S) ∈ N0

the length of S, and

σ(S) =
l∑

i=1

gi =
∑
g∈G

vg(S)g ∈ G

the sum of S. The sequence S is called a zero-sum sequence if σ(S) = 0, and
it is called zero-sum free if

∑
i∈I gi 6= 0 for all ∅ 6= I ⊂ [1, l] (equivalently, if

there is no nontrivial zero-sum subsequence). We denote by

• D(G) the smallest integer l ∈ N such that every sequence S over G of
length |S| ≥ l has a nontrivial zero-sum subsequence;

• d(G) the maximal length of a zero-sum free sequence over G.

Then D(G) is called the Davenport constant of G, and we trivially have

d∗(G) ≤ d(G) = D(G)− 1.

We will use without further mention the fact that equality holds for p-groups
and for groups of rank r(G) ≤ 2 ([8, Theorems 5.5.9 and 5.8.3]) (equality
holds for further groups, but not in general [7, Corollary 4.2.13]).

Group algebras and characters. Let R be a commutative ring
(throughout, we assume that R has a unit element 1 6= 0) and G a fi-
nite abelian group. The group algebra R[G] of G over R is a free R-module
with basis {Xg | g ∈ G} (built with a symbol X), where multiplication is
defined by (∑

g∈G
agX

g
)(∑

g∈G
bgX

g
)

=
∑
g∈G

(∑
h∈G

ahbg−h

)
Xg.

We viewR as a subset ofR[G] by means of a = aX0 for all a ∈ R. An element
of R is a zero-divisor [a unit] of R[G] if and only if it is a zero-divisor [a unit]
of R.
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Let K be a field, G a finite abelian group with exp(G) = n ∈ N, and
µn(K) = {ζ ∈ K | ζn = 1} the group of nth roots of unity in K. An nth
root of unity ζ is called primitive if ζm 6= 1 for all m ∈ [1, n − 1], and we
denote by µ∗n(K) ⊂ µn(K) the subset of all primitive nth roots of unity. We
denote by Hom(G,K×) = Hom(G,µn(K)) the character group of G with
values in K (whose operation is given by pointwise multiplication, with the
constant 1 function as identity), and we briefly set Ĝ = Hom(G,K×) if there
is no danger of confusion. Every character χ ∈ Ĝ has a unique extension to
a K-algebra homomorphism χ : K[G]→ K (again denoted by χ) acting by
means of

χ
(∑
g∈G

agX
g
)

=
∑
g∈G

agχ(g).

We call K a splitting field of G if |µn(K)| = n. Let K be a splitting field of G
and Ĝ = Hom(G,K×). We gather the properties needed later (for details see
[8, Section 5.5] and [2, §17]). We have char(K) - exp(G), |G| = |G| 1K ∈ K×,
G ∼= Hom(G,K×), and the map

Hom(G,K×)×G→ K×, (χ, g) 7→ χ(g),

is a nondegenerate pairing (that is, if χ(g) = 1 for all χ ∈ Ĝ, then g = 0,
and if χ(g) = 1 for all g ∈ G, then clearly χ = 1, the constant 1 function).

Furthermore, the orthogonality relations hold ([8, Proposition 5.5.2]),
and for every f ∈ K[G] we have (see [8, Proposition 5.5.2])

f = 0 ∈ K[G] if and only if χ(f) = 0 for every χ ∈ Hom(G,K×).

Moreover, if χ(f) 6= 0 for all χ ∈ Hom(G,K×), then f ∈ K[G]×; explicitly,
a simple calculation using the orthogonality relations shows that

f−1 =
1
|G|

∑
g∈G

( ∑
χ∈Hom(G,K×)

χ(−g)
χ(f)

)
Xg.

For a subgroup H ⊂ G, we set

H⊥ = {χ ∈ Ĝ | χ(h) = 1 for all h ∈ H}.

We clearly have a natural isomorphism H⊥ ∼= Ĝ/H.

3. Proof of the Theorem. We fix our notation, which will remain
valid throughout this section. Let G = Cm⊕Cmn with m ∈ N≥2, n ∈ N and
let e1, e2 ∈ G be such that G = 〈e1〉 ⊕ 〈e2〉, ord(e1) = m and ord(e2) = mn.
Furthermore, let K be a splitting field of G, ζ ∈ µ∗mn(K), and let ψ,ϕ ∈ Ĝ
be defined by ψ(e1) = ζn, ψ(e2) = 1 and ϕ(e1) = 1, ϕ(e2) = ζ. Then
ord(ψ) = m, ord(ϕ) = mn and Ĝ = 〈ψ〉 ⊕ 〈ϕ〉.

Note that, in the case m = p ∈ P,

θ : Fp × 〈ψ,ϕn〉 → 〈ψ,ϕn〉, (k + pZ, χ) 7→ χk,
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is an Fp-vector space structure on (〈ψ,ϕn〉, ·). Whenever 〈ψ,ϕn〉 is consid-
ered as an Fp-vector space it is with respect to θ.

Lemmas 3.1 and 3.2 below will allow us to restrict ourselves, in the
proof of Theorem 1.1(i), to sequences consisting of certain special elements.
Lemma 3.2 is a generalization of a statement used by W. Gao and Y. Li [6]
in their proof of the case m = 2.

Lemma 3.1. Let R be a commutative ring, g1 · . . . · gl ∈ F(G) a sequence
over G, and let a1, . . . , al ∈ R\{0} be such that (Xg1−a1) · . . . · (Xgl−al) =
0 ∈ R[G]. Then, for any k1, . . . , kl ∈ N, also (Xk1g1−ak11 )·. . .·(Xklgl−akll ) =
0 ∈ R[G].

Proof. For all i ∈ [1, l],

Xkigi − akii = (Xgi − ai)
ki−1∑
j=0

Xjgi(ai)ki−1−j ,

from which the lemma immediately follows.

Lemma 3.2. Let R be a commutative ring and

G0 = {e1} ∪
{
ke1 +

∏
p∈P, p|m

pupe2

∣∣∣ k ∈ [0,m− 1], up ∈ N0

}
.

Let M ∈ N be such that, for every sequence S = g1 · . . . · gM+1 ∈ F(G0),
there exist a1, . . . , aM+1 ∈ R \ {0} such that

f = (Xg1 − a1) · . . . · (XgM+1 − aM+1) = 0 ∈ R[G].

Then d(G,R) ≤M .

Proof. By Lemma 3.1 and the definition of d(G,R), it is sufficient to
show that every element g ∈ G is a multiple of an element in G0.

Let g = ke1 + le2 with k ∈ [0,m − 1] and l ∈ [0,mn − 1]. If l = 0,
then g is obviously a multiple of e1. Consider the case l 6= 0. Then l =∏
p∈P, p|m p

vp(l) · q with q ∈ [1,mn − 1] and gcd(q,m) = 1. Therefore there
exists an a ∈ [1,m − 1] with qa ≡ 1 mod m. From ord(e1) = m, it follows
that g = q(ake1 +

∏
p∈P, p|m p

vp(l)e2). Choosing k′ ∈ [0,m − 1] such that
k′ ≡ ak mod m, we obtain g = q(k′e1+

∏
p∈P, p|m p

vp(l)e2), which is a multiple
of an element in G0.

Lemma 3.3. Let g ∈ G and χ, χ′ ∈ Ĝ. Then χ′(g) = χ(g) if and only if
χ′ ∈ χ〈g〉⊥. Also

(i) 〈ke1 + e2〉⊥ = 〈ψϕ−nk〉 for k ∈ [0,m− 1];
(ii) 〈ϕn〉 ⊂ 〈ke1 +mle2〉⊥ for k ∈ [0,m− 1] and l ∈ [0, n− 1].
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Proof. Clearly χ′(g) = χ(g) if and only if χ−1χ′(g) = 1, i.e., χ′ ∈ χ〈g〉⊥.
(i) From ψ−1(ke1 +e2) = ζ−nk = ϕ−nk(ke1 +e2), it follows that 〈ψϕ−nk〉

⊂ 〈ke1 + e2〉⊥. Then ord(ke1 + e2) = mn and 〈ke1 + e2〉⊥ ∼= (G/〈ke1 + e2〉)∧
imply |〈ke1 + e2〉⊥| = m, from which 〈ke1 + e2〉⊥ = 〈ψϕ−nk〉 follows.

(ii) Observe that ϕn(ke1 + mle2) = ζnml = (ζnm)l = 1 implies 〈ϕn〉 ⊂
〈ke1 +mle2〉⊥.

Lemma 3.4. Let H ⊂ Ĝ and S = g1 · . . . · gl ∈ F(G). Then the following
statements are equivalent :

(a) There exist a1, . . . , al ∈ K× such that χ(
∏l
i=1(Xgi − ai)) = 0 for all

χ ∈ H.
(b) There exist s ∈ [0, l] and χ1, . . . , χs ∈ H such that H ⊂

⋃s
i=1 χi〈gi〉⊥.

(c) H = ∅ or there exist χ1, . . . , χl ∈ H such that H ⊂
⋃l
i=1 χi〈gi〉⊥.

Proof. For H = ∅ all statements are trivially true. Let H 6= ∅.
(a)⇒(b). The extension of χ ∈ Ĝ to K[G] is a K-algebra homomor-

phism, and thus

χ
( l∏
i=1

(Xgi − ai)
)

= 0

if and only if there is an i ∈ [1, l] with χ(Xgi − ai) = 0, i.e., χ(gi) = ai. Let

s = |{i ∈ [1, l] | there exists a χ ∈ H such that χ(gi) = ai}| ∈ [0, l].

Without restriction let g1, . . . , gs and a1, . . . , as be such that there exist
χi ∈ H with χi(gi) = ai for i ∈ [1, s]. Let χ ∈ H. Then, by assumption,
χ(gi) = ai for some i ∈ [1, s]. Therefore χ−1

i χ(gi) = 1, i.e. χ ∈ χi〈gi〉⊥.
(b)⇒(a). Let ai = χi(gi) for i ∈ [1, s] and let as+1 = · · · = al = 1. Let

χ ∈ H. Then, by assumption, there exists an i ∈ [1, s] such that χ ∈ χi〈gi〉⊥,
i.e., χ(gi) = χi(gi) = ai. Hence χ(Xgi − ai) = 0.

(b)⇔(c). Obvious.

Note that, in particular, d(G,K) is the supremum of all l ∈ N0 such that
there exists a sequence S = g1 · . . . · gl ∈ F(G) with

l⋃
i=1

χi〈gi〉⊥ ( Ĝ

for any choice of χ1, . . . , χl ∈ Ĝ. Or, equivalently, d(G,K)+1 is the minimum
of all l ∈ N0 such that, for any sequence S = g1 · . . . · gl ∈ F(G), there exist
χ1, . . . , χl ∈ Ĝ such that Ĝ can be covered as above:

Ĝ =
l⋃

i=1

χi〈gi〉⊥.
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Consider m = p ∈ P. Our strategy to find an upper bound on d(G,K) will
be to subdivide Ĝ into cosets modulo 〈ψ,ϕn〉 and cover each of these cosets
individually. Lemma 3.2 allows us to restrict ourselves to certain special
elements g ∈ G, and from Lemma 3.3, we see that for these g, the 〈g〉⊥
contain (or are) 1-dimensional subspaces, i.e., lines of the 2-dimensional Fp-
vector space 〈ψ,ϕn〉. Then, for χ ∈ 〈ψ,ϕn〉, χ〈g〉⊥ is an affine line in 〈ψ,ϕn〉
containing the “point” χ, and our task essentially boils down to covering n
copies of 〈ψ,ϕn〉 by such lines (where the slopes are fixed by S).

Before doing so, we study some simple configurations in Lemmas 3.5
and 3.6. The main part of the proof for the cases m ∈ {2, 3} then follows
in Lemma 3.7. It is based on the proof by Gao and Li of the case m = 2,
but is stated in terms of group characters instead of working with the group
algebra directly.

Lemma 3.5. Let s ∈ [0,m] and let S = g1 · . . . · gs+(m−s)m ∈ F(G) be
such that either g1 = · · · = gs = ke1 + e2 with k ∈ [0,m− 1] or g1, . . . , gs ∈
{ke1 + mle2 | k ∈ [0,m − 1], l ∈ N0}. Then there exist χ1, . . . , χs+(m−s)m

such that 〈ψ,ϕn〉 ⊂
⋃s+(m−s)m
i=1 χi〈gi〉⊥.

Proof. Let L = 〈ψϕ−nk〉 in the case g1 = · · · = gs = ke1 + e2, and let
L = 〈ϕn〉 otherwise. Since L is a subgroup of 〈ψ,ϕn〉 and has cardinality
|L| = m, there exist τ1, . . . , τm ∈ 〈ψ,ϕn〉 such that 〈ψ,ϕn〉 =

⊎m
i=1 τiL. By

Lemma 3.3, L ⊂ 〈gi〉⊥ for i ∈ [1, s]. Then

〈ψ,ϕn〉 ⊂
s⋃
i=1

τi〈gi〉⊥ ∪
m⊎

i=s+1

τiL.

For j ∈ [s+ 1, s+ (m− s)m], let χ′j ∈ 〈gj〉⊥, and let L = {λ1, . . . , λm}.
Then, for i ∈ [s+ 1,m],

τiL = {τiλj | j ∈ [1,m]} ⊂
m⋃
j=1

τiλjχ
′−1
s+(i−(s+1))m+j〈gs+(i−(s+1))m+j〉⊥.

Lemma 3.6. Let m = p ∈ P, g ∈ {ke1 + ple2 | k ∈ [0, p− 1], l ∈ N0} and
S =

∏p−1
i=0 (ie1 + e2)g. Then 〈ψ,ϕn〉 ⊂

⋃p−1
i=0 〈ie1 + e2〉⊥ ∪ 〈g〉⊥.

Proof. By Lemma 3.3,
p−1⋃
i=0

〈ψϕ−ni〉 ∪ 〈ϕn〉 ⊂
p−1⋃
i=0

〈ie1 + e2〉⊥ ∪ 〈g〉⊥.

Let ψkϕnl ∈ 〈ψ,ϕn〉 with k, l ∈ [0, p − 1]. In the case k = 0, clearly ϕnl ∈
〈ϕn〉. Otherwise, there exists an i ∈ [0, p − 1] such that −ik ≡ l mod p.
Hence ψkϕnl = (ψϕ−ni)k ∈ 〈ψϕ−ni〉.
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Lemma 3.7. Let m = p ∈ P, G1 = {e1} ∪ {ke1 + pue2 | k ∈ [0, p − 1],
u ∈ N}, and

G0 = {e1} ∪ {ke1 + pue2 | k ∈ [0, p− 1], u ∈ N0}
= {ke1 + e2 | k ∈ [0, p− 1]} ]G1.

If, for all sequences T = h1 · . . . · hrp−1 ∈F(G0) with r ∈ [2,min{p − 1,
n + 1}] and vg(T ) < p for all g ∈ G0 as well as

∑
g∈G1

vg(T ) < p, there
exist χ1, . . . , χrp−1 ∈ Ĝ such that

⋃r−2
i=0 ϕ

i〈ψ,ϕn〉 ⊂
⋃rp−1
i=1 χi〈hi〉⊥, then

d(G,K) = d∗(G).

Proof. Since d∗(G) ≤ d(G) ≤ d(G,K) always holds, it is sufficient to
show that d(G,K) ≤ d∗(G) = (pn−1)+(p−1) = (n+1)p−2. By Lemma 3.2,
it is sufficient to show that, for any sequence S = g1 · . . . ·g(n+1)p−1 ∈ F(G0),
there exist a1, . . . , a(n+1)p−1 ∈ K× such that

f =
(n+1)p−1∏

i=1

(Xgi − ai) = 0 ∈ K[G].

To see this, we will use Lemma 3.4 to show that there exist χ1, . . . , χ(n+1)p−1

such that

Ĝ =
n−1⊎
i=0

ϕi〈ψ,ϕn〉 ⊂
(n+1)p−1⋃

i=1

χi〈gi〉⊥.

We group the elements of S into as many p-tuples of the forms (e2,
. . . , e2), (e1 + e2, . . . , e1 + e2), . . . , ((p − 1)e1 + e2, . . . (p − 1)e1 + e2) and
(g′1, . . . , g

′
p) ∈ Gp1 as possible to obtain l ∈ [0, n] such tuples. Without re-

striction, let these p-tuples be (g1, . . . , gp), . . . , (g(l−1)p+1, . . . , glp).
For each i ∈ [1, l], the tuple (g(i−1)p+1, . . . , gip) fulfills the conditions of

Lemma 3.5 with s = p. Therefore, there exist χ(i−1)p+1, . . . , χip such that

ϕn−i〈ψ,ϕn〉 ⊂
ip⋃

j=(i−1)p+1

χj〈gj〉⊥.

It remains to show that χlp+1, . . . , χ(n+1)p−1 can be chosen such that

n−l−1⋃
i=0

ϕi〈ψ,ϕn〉 ⊂
(n+1)p−1⋃
j=lp+1

χj〈gj〉⊥.

In the case l ≥ n, this is trivially so, and hence we assume l ≤ n − 1. We
denote by T = glp+1 · . . . · g(n+1)p−1 the subsequence of S consisting of the
remaining elements. We have |T | = |S|−lp = (n+1−l)p−1. In the process of
creating p-tuples, we partitioned the elements of G0 into p+1 different types.
If there were at least p elements of one type, we could create another tuple,
in contradiction to the maximal choice of l. Thus we must have vg(T ) < p
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for all g ∈ G0,
∑

g∈G1
vg(T ) < p, and |T | ≤ (p + 1)(p − 1) = p2 − 1, which

implies n+ 1− l ≤ p.
Altogether, we have n+1−l ∈ [2, p]. In the case n+1−l ≤ p−1, we set r =

n+1− l ∈ [2,min {p− 1, n+ 1}]. Then, by assumption, χlp+1, . . . , χ(n+1)p−1

can be chosen such that
r−2⋃
i=0

ϕi〈ψ,ϕn〉 ⊂
(n+1)p−1⋃
j=lp+1

χj〈gj〉⊥.

Since r − 2 = n− l − 1, this already means Ĝ ⊂
⋃(n+1)p−1
i=1 χi〈gi〉⊥.

In the case n+ 1− l = p, we have |T | = p2− 1 = (p+ 1)(p− 1). This can
only happen if each of the p + 1 different types of elements occurs exactly
p− 1 times. Therefore

T =
p−1∏
j=0

(je1 + e2)p−1 ·
p−2∏
i=0

hj =
p−2∏
i=0

( p−1∏
j=0

(je1 + e2) · hi
)

with h0, . . . , hp−2 ∈ G1. Without restriction, for i ∈ [0, p−2], let glp+i(p+1)+1·
. . . · glp+i(p+1)+(p+1) =

∏p−1
j=0(je1 + e2) · hi. For every i ∈ [0, p − 2], we set

χlp+i(p+1)+1 = · · · = χlp+i(p+1)+(p+1) = ϕi. Then, from Lemma 3.6 it follows

that ϕi〈ψ,ϕn〉 ⊂
⋃i(p+1)+(p+1)
j=i(p+1)+1 χlp+j〈glp+j〉⊥. Since n − l − 1 = p − 2, this

again implies Ĝ ⊂
⋃(n+1)p−1
i=1 χi〈gi〉⊥.

Proof of Theorem 1.1(i). For p = 2, i.e. G = C2 ⊕ C2n, the conclusion
follows trivially from Lemma 3.7, since there are no admissible sequences.

Consider p = 3, i.e., G = C3 ⊕ C3n. Let G1 = {e1} ∪ {ke1 + 3ue2 | k ∈
[0, 2], u ∈ N} and G0 = {e2, e1 + e2, 2e1 + e2} ] G1. Then, by Lemma 3.7,
it is sufficient to show that, for T = h1 · . . . · h5 ∈ F(G0), we can choose
χ1, . . . , χ5 ∈ Ĝ such that 〈ψ,ϕn〉 ⊂ χ1〈h1〉⊥ ∪ . . . ∪ χ5〈h5〉⊥. We divide the
elements into four types: e2, e1 + e2, 2e1 + e2 and elements from G1. Since
|T | = 5, one of these types must occur at least twice. Without restriction, let
h1 and h2 be of the same type. Thus we have either h1 = h2 = ke1 + e2 for
some k ∈ [0, 2], or h1, h2 ∈ G1. Then T fulfills the conditions of Lemma 3.5
with s = 2, and it follows that χ1, . . . , χ5 can be chosen such that 〈ψ,ϕn〉 ⊂⋃5
i=1 χi〈hi〉⊥.

Lemma 3.8 below recapitulates a few simple facts, which are well known
in the context of affine lines, and will be used extensively in the construction
of a counterexample in the case p ≥ 5 and n ≥ 2.

Lemma 3.8. Let m = p ∈ P, g1 = k1e1 + e2, g2 = k2e1 + e2 with
k1, k2 ∈ [0, p− 1], χ ∈ Ĝ and χ1, χ2 ∈ χ〈ψ,ϕn〉.

(i) χ−1χi〈gi〉⊥ = ϕnsi〈gi〉⊥ with si ∈ [0, p− 1] for i ∈ {1, 2}.
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(ii) χ−1χi〈gi〉⊥ = {ψuϕnv | u, v ∈ [0, p − 1] with kiu + v ≡ si mod p}
for i ∈ {1, 2}.

(iii) (a) |χ1〈g1〉⊥ ∩ χ2〈g2〉⊥| = 1 if and only if g1 6= g2.
(b) |χ1〈g1〉⊥ ∩ χ2〈g2〉⊥| = 0 if and only if g1 = g2 and s1 6= s2.
(c) |χ1〈g1〉⊥ ∩ χ2〈g2〉⊥| = p if and only if g1 = g2 and s1 = s2.

Proof. (i) Let i ∈ {1, 2} and χ−1χi = ψuiϕnvi with ui, vi ∈ [0, p − 1].
By Lemma 3.3(i), we have 〈gi〉⊥ = 〈ψϕ−nki〉. Therefore ϕ−n(kiui+vi)χ−1χi =
ψuiϕ−nkiui ∈ 〈gi〉⊥, and hence χ−1χi〈gi〉⊥ = ϕnsi〈gi〉⊥ with si ∈ [0, p − 1]
chosen such that si ≡ kiui + vi mod p.

(ii) In view of Lemma 3.3(i) we have, for u, v ∈ [0, p − 1], ψuϕnv ∈
χ−1χi〈gi〉⊥ = ϕnsi〈ψϕ−nki〉 if and only if ψuϕnv = ψwϕn(si−kiw) for some
w ∈ [0, p − 1]. This is the case if and only if u ≡ w mod p and v ≡ si −
kiw mod p, i.e., if and only if u ≡ w mod p and kiu+ v ≡ si mod p (recall
by Lemma 3.3(i) that 〈gi〉⊥ ⊂ 〈ψ,ϕn〉).

(iii) By (ii), we have χ−1χ1〈g1〉⊥∩χ−1χ2〈g2〉⊥ = {ψuϕnv | u, v ∈ [0, p−1]
with k1u+ v ≡ s1 mod p and k2u+ v ≡ s2 mod p}. Since

|χ−1χ1〈g1〉⊥ ∩ χ−1χ2〈g2〉⊥| = |χ1〈g1〉⊥ ∩ χ2〈g2〉⊥|,
it is sufficient to consider the number of solutions of the linear system

k1u+ v ≡ s1 mod p and k2u+ v ≡ s2 mod p

for u, v ∈ [0, p − 1] over Fp. In the case g1 6= g2, i.e., k1 6= k2, it possesses
a unique solution. In the case g1 = g2, it has no solution for s1 6= s2. For
s1 = s2, the two equations coincide, and we obtain p solutions.

In the construction of the counterexamples, we use the same charac-
terization of d(G,K), derived from Lemma 3.4, as in the proof of Theo-
rem 1.1(i)—except that now we show that it is not possible to cover Ĝ
with such subsets. To do so, we first consider a special type of sequence in
Lemma 3.9, which will turn out to be the only one which cannot be dis-
carded with simpler combinatorial arguments, to be given in the proof of
Theorem 1.1(ii) that follows the lemma.

Lemma 3.9. Let m = p ∈ P, p ≥ 5 and k1, k2, k3 ∈ [0, p− 1] be distinct.
Let l ∈ [2, p− 1],

T = (k1e1 + e2)l(k2e1 + e2)l(k3e1 + e2)l ∈ F(G),

and χ ∈ Ĝ. For i ∈ [1, 3] and j ∈ [1, l], let χi,j ∈ Ĝ. Then∣∣∣( 3⋃
i=1

l⋃
j=1

χi,j〈kie1 + e2〉⊥
)
∩ χ〈ψ,ϕn〉

∣∣∣ < l(3p− 2l).

Proof. We set gi = kie1 + e2 for i ∈ [1, 3]. Let i ∈ [1, 3] and j ∈ [1, l]. We
can assume χi,j ∈ χ〈ψ,ϕn〉 as otherwise χi,j〈gi〉⊥ ∩ χ〈ψ,ϕn〉 = ∅ (because
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〈gi〉⊥ = 〈ψϕ−nki〉 ⊂ 〈ψ,ϕn〉). Using Lemma 3.8(i), we can furthermore
assume χ−1χi,j = ϕnsi,j with si,j ∈ [0, p − 1]. We can then also assume
si,j 6= si,j′ for j′ ∈ [1, l] \ {j}, since otherwise χi,j〈gi〉⊥ = χi,j′〈gi〉⊥.

For i ∈ [1, 3], let Ei =
⋃l
j=1 χi,j〈gi〉⊥. Then( 3⋃

i=1

l⋃
j=1

χi,j〈gi〉⊥
)
∩ χ〈ψ,ϕn〉 = E1 ∪ E2 ∪ E3

and

|E1 ∪ E2 ∪ E3| =
3∑
i=1

|Ei| −
∑

1≤i<i′≤3

|Ei ∩ Ei′ |+ |E1 ∩ E2 ∩ E3|.

For i, i′ ∈ [1, 3] distinct, we will show that |Ei| = lp, |Ei ∩ Ei′ | = l2 and
|E1 ∩ E2 ∩ E3| < l2. Then |E1 ∪ E2 ∪ E3| < 3lp− 3l2 + l2 = l(3p− 2l).

Let i ∈ [1, 3]. By Lemma 3.8(iii)(b), χi,j〈gi〉⊥ ∩ χi,j′〈gi〉⊥ = ∅ for j, j′ ∈
[1, l] with j 6= j′, and |〈gi〉⊥| = |〈ψϕ−nki〉| = p (by Lemma 3.3(i)). Therefore
|Ei| = lp.

Let i, i′ ∈ [1, 3] be distinct. For j, j′ ∈ [1, l] distinct, we have χi,j〈gi〉⊥ ∩
χi,j′〈gi〉⊥ = ∅ and χi′,j〈gi′〉⊥ ∩ χi′,j′〈gi′〉⊥ = ∅ (by Lemma 3.8(iii)(b)). This
implies that in the formula

Ei ∩ Ei′ =
( l⋃
j=1

χi,j〈gi〉⊥
)
∩
( l⋃
j′=1

χi′,j′〈gi′〉⊥
)

=
l⊎

j=1

l⊎
j′=1

(χi,j〈gi〉⊥ ∩ χi′,j′〈gi′〉⊥),

the union is disjoint. By Lemma 3.8(iii)(a), |χi,j〈gi〉⊥ ∩ χi′,j′〈gi′〉⊥| = 1 for
j, j′ ∈ [1, l], and therefore |Ei ∩ Ei′ | = l2.

Assume |E1 ∩ E2 ∩ E2| ≥ l2. Then, since |E1 ∩ E2| = l2, it follows that
|E1 ∩ E2 ∩ E3| = l2. For a ∈ Z, let a = a + pZ ∈ Fp. Let u, v ∈ [0, p − 1].
By Lemma 3.8(ii), we have χψuϕnv ∈ E1 ∩ E2 ∩ E3 if and only if there are
bi ∈ {si,1, . . . , si,l}, for i ∈ [1, 3], such that

k1u+ v = b1, k2u+ v = b2, k3u+ v = b3.

Since k1, k2 and k3 are pairwise distinct, (k1, 1), (k2, 1) and (k3, 1) are
pairwise Fp-linearly independent. For i ∈ [1, 3], define Φi : χ〈ψ,ϕn〉 → Fp
by Φi(χψuϕnv) = kiu + v. Then the linear independence of (k1, 1) and
(k2, 1) implies that Φ = (Φ1, Φ2) : χ〈ψ,ϕn〉 → F2

p is bijective. We have
Φ(E1∩E2∩E3) ⊂ {s1,1, . . . , s1,l}×{s2,1, . . . , s2,l}, and as l2 = |E1∩E2∩E3|
≤ |{s1,1, . . . , s1,l} × {s2,1, . . . , s2,l}| = l2, equality holds. In particular,
Φ1(E1 ∩ E2 ∩ E3) = {s1,1, . . . , s1,l} and Φ2(E1 ∩ E2 ∩ E3) = {s2,1, . . . , s2,l}.

Because (k1, 1), (k2, 1) and (k3, 1) are pairwise Fp-linearly independent,
there exist x, y ∈ F×p such that (k3, 1) = x(k1, 1) + y(k2, 1). Hence Φ3 =
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xΦ1 + yΦ2. Now |xΦ1(E1 ∩E2 ∩E3)| = |yΦ2(E1 ∩E2 ∩E3)| = l. Also, since
x, y 6= 0, we find (just as for Φ) that (xΦ1, yΦ2) : χ〈ψ,ϕn〉 → F2

p is a bijective
map. Thus, in view of |xΦ1(E1 ∩ E2 ∩ E3)| = |yΦ2(E1 ∩ E2 ∩ E3)| = l and
|E1 ∩E2 ∩E3| = l2, we see (xΦ1, yΦ2)(E1 ∩E2 ∩E3) = xΦ1(E1 ∩E2 ∩E3)×
yΦ2(E1 ∩ E2 ∩ E3). Therefore

Φ3(E1 ∩ E2 ∩ E3) = xΦ1(E1 ∩ E2 ∩ E3) + yΦ2(E1 ∩ E2 ∩ E3),

where the inclusion “⊂” is obvious and “⊃” follows since for any α, β ∈
E1 ∩ E2 ∩ E3 we can find θ ∈ E1 ∩ E2 ∩ E3 such that (xΦ1(α), yΦ2(β)) =
(xΦ1(θ), yΦ2(θ)), and so in particular xΦ1(α) + yΦ2(β) = xΦ1(θ) + yΦ2(θ)
= Φ3(θ). From the Cauchy–Davenport Theorem (Lemma 2.1), it then fol-
lows that |Φ3(E1 ∩ E2 ∩ E3)| ≥ min {2l − 1, p} > l, a contradiction, since
Φ3(E1 ∩ E2 ∩ E3) ⊂ {s3,1, . . . , s3,l}.

Proof of Theorem 1.1(ii). Consider m = p ∈ P≥5 and n ≥ 2. Let
k1, . . . , k4 ∈ [0, p − 1] be pairwise distinct and set gi = kie1 + e2 ∈ G for
i ∈ [1, 4]. Furthermore, set m1 = (n − 2)p + (p − 1), m2 = m3 = p − 1 and
m4 = 2. We consider the sequence

S =
4∏
i=1

gmii ∈ F(G)

and, for any choice of χi,j ∈ Ĝ for i ∈ [1, 4] and j ∈ [1,mi], we will show
that

4⋃
i=1

mi⋃
j=1

χi,j〈gi〉⊥ ( Ĝ.

Then, by Lemma 3.4 and the definition of d(G,K),

d(G,K) ≥ |S| = p+ pn− 1 > p+ pn− 2 = d∗(G).

Let χi,j ∈ Ĝ for i ∈ [1, 4] and j ∈ [1,mi] be arbitrary. Assume, to the
contrary,

⋃4
i=1

⋃mi
j=1 χi,j〈gi〉⊥ = Ĝ. For i ∈ [1, 4] and j, j′ ∈ [1,mi] distinct,

we can assume χi,j〈gi〉⊥ 6= χi,j′〈gi〉⊥.
For any permutation σ ∈ Sn (which will be fixed later),

Ĝ =
n⊎
ν=1

ϕσ(ν)〈ψ,ϕn〉.

For given i ∈ [1, 4] and j ∈ [1,mi], Lemma 3.3 yields χi,j〈gi〉⊥ ⊂ ϕσ(ν)〈ψ,ϕn〉
for a unique ν ∈ [1, n]. For i ∈ [1, 4] and ν ∈ [1, n], we can therefore define

B
(ν)
i =

{
χi,j | j ∈ [1,mi] with χi,j〈gi〉⊥ ⊂ ϕσ(ν)〈ψ,ϕn〉

}
.

We also define n(ν) = max {|B(ν)
i | | i ∈ [1, 4]} as well as l(ν) =

∑4
i=1|B

(ν)
i |,

for ν ∈ [1, n].
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Let ν ∈ [1, n]. By assumption,

ϕσ(ν)〈ψ,ϕn〉 =
4⋃
i=1

⋃
χ∈B(ν)

i

χ〈gi〉⊥.

Thus, since |〈ψ,ϕn〉| = p2 and |〈gi〉⊥| = p for all i ∈ [1, 4], we have l(ν) ≥ p.
On the other hand, n(ν) ≤ p because otherwise there would exist i ∈ [1, 4]
and j, j′ ∈ [1,mi] distinct such that χi,j〈gi〉⊥∩χi,j′〈gi〉⊥ 6= ∅; but this would
already imply χi,j〈gi〉⊥ = χi,j′〈gi〉⊥, contrary to assumption.

Fix σ ∈ Sn so that there is a k ∈ N0 such that n(1), . . . , n(k) < p and
n(k+1) = · · · = n(n) = p. Since mi < p for i ≥ 2, we see (for ν ∈ [1, n]) that
n(ν) = p is only possible if |B(ν)

1 | = p. As m1 = (n − 2)p + (p − 1), this is
possible for at most n− 2 different ν ∈ [1, n]. Thus k ≥ 2.

We can also estimate |
⋃4
i=1

⋃
χ∈B(ν)

i

χ〈gi〉⊥| in a different way: Assume

for the purpose of showing (1) below that n(ν) = |B(ν)
1 | ≥ |B

(ν)
2 | ≥ |B

(ν)
3 |

≥ |B(ν)
4 | (the other cases are handled identically). Each of the characters

χ ∈ B
(ν)
1 contributes χ〈g1〉⊥, and therefore exactly p characters, to the

union. Each of the characters χ ∈ B
(ν)
2 contributes at most p − |B(ν)

1 |
characters, since |χ1〈g1〉⊥ ∩ χ〈g2〉⊥| = 1 for all χ1 ∈ B

(ν)
1 . Similarly, each

of the characters χ ∈ B
(ν)
3 contributes at most p − max{|B(ν)

1 |, |B
(ν)
2 |} =

p − |B(ν)
1 | characters, since |χ1〈g1〉⊥ ∩ χ〈g3〉⊥| = 1 for all χ1 ∈ B

(ν)
1 and

|χ2〈g2〉⊥ ∩ χ〈g3〉⊥| = 1 for all χ2 ∈ B(ν)
2 . Continuing this thought for B(ν)

4 ,
we obtain

p2 =
∣∣∣ 4⋃
i=1

⋃
χ∈B(ν)

i

χ〈gi〉⊥
∣∣∣ ≤ p|B(ν)

1 |+ (p− |B(ν)
1 |)

4∑
i=2

|B(ν)
i |

= pn(ν) + (p− n(ν))(l(ν) − n(ν)).

Therefore

(1) (n(ν) − (l(ν) − p))(n(ν) − p) = pn(ν) + (p− n(ν))(l(ν) − n(ν))− p2 ≥ 0.

Thus either n(ν) ≥ p (and therefore already n(ν) = p), or n(ν) ≤ l(ν) − p.
For ν ∈ [1, k], we obtain n(ν) ≤ l(ν) − p. Since |B(ν)

4 | ≤ m4 = 2, we also
have l(ν) =

∑4
i=1|B

(ν)
i | ≤ 3n(ν) + 2. Then

3l(ν) ≥ 3n(ν) + 3p = 3n(ν) + 2 + 3p− 2 ≥ l(ν) + 3p− 2,

and hence l(ν) ≥ 3
2p − 1 for all ν ∈ [1, k]. Because of

∑n
i=1 l

(ν) = |S| =
pn+(p−1) and l(ν) ≥ n(ν) = p for all ν ∈ [k+1, n], we have l(1) + · · ·+ l(k) ≤
pk + (p− 1). For the remainder of the argument, we assume ν ∈ [1, k].
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Then, by the above,
∑k

i=1,i 6=ν l
(ν) ≥ (k − 1)(3

2p− 1), and hence

(2) (k − 1)
(

3
2p− 1

)
+ l(ν) ≤ pk + (p− 1),

which implies

l(ν) ≤ pk + (p− 1)− (k − 1)
(

3
2p− 1

)
= pk + p− 1− 3

2kp+ k + 3
2p− 1

= 3
2p+ (p− 2)− 1

2
k(p− 2).

Hence, as k ≥ 2, it follows that l(ν) ≤ b32pc (1). Together with l(ν) ≥ d32p−1e,
this implies l(ν) = 3

2p−
1
2 .

Since |B(1)
4 | + · · · + |B

(k)
4 | ≤ m4 = 2 and k ≥ 2, there exists a ν ∈ [1, k]

with |B(ν)
4 | ≤ 1. Then

|B(ν)
1 |, . . . , |B

(ν)
3 | ≤ n

(ν) ≤ l(ν) − p = 1
2(p− 1),

|B(ν)
4 | ≤ 1 and

∑4
i=1|B

(ν)
i | = l(ν) = 3

2(p− 1) + 1. Therefore we must have

|B(ν)
1 | = |B

(ν)
2 | = |B

(ν)
3 | = n(ν) = 1

2(p− 1)

and |B(ν)
4 | = 1.

With the help of Lemma 3.9, we now show that this leads to a contra-

diction. Consider T = g
1
2
(p−1)

1 g
1
2
(p−1)

2 g
1
2
(p−1)

3 ∈ F(G). Then, by Lemma 3.9
(with l = 1

2(p− 1) and χ = ϕσ(ν)),∣∣∣ 3⋃
i=1

⋃
χ′∈B(ν)

i

χ′〈gi〉⊥
∣∣∣ < 1

2(p− 1)(2p+ 1).

Thus, with B
(ν)
4 = {τ},

p2 =
∣∣∣( 3⋃

i=1

⋃
χ′∈B(ν)

i

χ′〈gi〉⊥
)
∪ τ〈g4〉⊥

∣∣∣ ≤ ∣∣∣ 3⋃
i=1

⋃
χ′∈B(ν)

i

χ′〈gi〉⊥
∣∣∣+ (p− n(ν))

< 1
2(p− 1)(2p+ 1) + 1

2(p+ 1) = p2,

a contradiction.
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(1) Alternatively (2), together with l(ν) ≥ 3
2
p − 1, p ≥ 5 and k ≤ 2, already implies

k = 2, which yields the same estimate for l(ν).
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