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ON SYSTEMS OF DIOPHANTINE EQUATIONS WITH
A LARGE NUMBER OF SOLUTIONS

BY

JERZY BROWKIN (Warszawa)

Abstract. We consider systems of equations of the form xi+xj = xk and xi ·xj = xk,
which have finitely many integer solutions, proposed by A. Tyszka. For such a system we
construct a slightly larger one with much more solutions than the given one.

1. Introduction. In the present paper we construct some systems of
diophantine equations of the form considered by A. Tyszka (see [T]) with a
large number of solutions.

Let

En := {x1 = 1, xi + xj = xk, xi · xj = xk : i, j, k ∈ {1, . . . , n}}.

We consider systems S of equations contained in En, and their integer
solutions. For simplicity we assume that the equation x1 = 1 does not belong
to S, but it is not an essential restriction.

We assume that the system S ⊆ En has a finite number NS of solutions.
Obviously 0 := (0, . . . , 0) is a solution, so NS ≥ 1. For a solution a :=
(a1, . . . , an) of S we denote (1) m(a) := max1≤j≤n aj . Let

MS := max
a

m(a),

where a runs over all solutions of S.
In an earlier preprint Tyszka conjectured that NS ≤ 2n, under the above

assumptions and notation. Later he found counterexamples with n ≥ 14 (2).
In the present paper we construct for n ≥ 16 an example of a system

S with NS much larger than 2n. Next we show that every system S ⊆ En

with a finite number of solutions, which has a solution a with a sufficiently
large m(a), can be extended to a system T with slightly more variables than
in S, which has a finite but large number of solutions. A precise statement
is given in Theorem 1.
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(1) It is not a mistake: We define m(a) to be max aj , and not max |aj |.
(2) See also the note at the end of the paper.
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2. An example. Let us consider the system

(1) x1 + x1 = x2, x1 · x1 = x2.

Obviously it has only two solutions (x1, x2) = (0, 0) and (2, 4).
Then we extend it adding the equations

(2) x2 · x2 = x3, x3 · x3 = x4, . . . , xm−1 · xm−1 = xm.

Obviously the system (1)–(2) has only two solutions (x1, . . . , xm)=(0, . . . , 0)
and (2, 4, 16, . . . , 22m−1

).
Now we consider the equations

(3)
y1 · y1 = y5, y2 · y2 = y6, y3 · y3 = y7,

y4 · y4 = y8, y5 + y6 = y9, y7 + y8 = y10.

From (3) it follows that y9 = y2
1 + y2

2 and y10 = y2
3 + y2

4.

Finally we consider the equations

(4) x1 + xm = xm+1, y9 + y10 = xm+1.

Denote by S the system (1)–(4). It depends on n := m + 11 variables.
Obviously, the zero solution of the system (1)–(2) extends, by (4) and (3),
only to the zero solution of the system S. The nonzero solution of (1)–(2)
leads, by (3) and (4), to the system

xm+1 = 22m−1
+ 2, xm+1 = y2

1 + y2
2 + y2

3 + y2
4.

Hence the number of nonzero solutions of the system S equals the number
of solutions of the equation

(5) 22m−1
+ 2 = y2

1 + y2
2 + y2

3 + y2
4.

The theorem of Jacobi (see [K]) says that for a positive integer k not divisible
by 4 the number of representations of k as the sum of four squares of integers
equals 8σ(k), where σ(k) is the sum of positive divisors of k.

Applying the Jacobi theorem we find that the number NS of solutions
of the system S equals

NS = 1 + 8σ(22m−1
+ 2) > 8 · 22m−1

= 22m−1+3 = 22n−12+3.

Consequently, NS > 2n if 2n−12 + 3 > n, which holds for n ≥ 16.

3. Extending of a system S. Let S ⊆ En be a system with a finite
number of solutions, which has a solution a with m(a) sufficiently large.
Before extending it to a larger system T we prove a lemma.

Lemma 1. If a system S ⊆ En has a finite number of solutions and has
a nonzero solution a = (a1, . . . , an), then
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(i) m(a) ≥ 0,
(ii) if m(a) = 0, then −a is also a solution of S, and m(−a) > 0.

Thus MS > 0.

Proof. If the system S is linear, then it has infinitely many solutions r ·a,
for r ∈ Z, and we get a contradiction. Therefore S is not linear, hence some
equation of the form xi · xj = xk belongs to S.

Suppose that m(a) < 0, i.e. at < 0 for 1 ≤ t ≤ n. Consequently, aiaj > 0
and aiaj = ak < 0, which gives a contradiction. This proves (i).

If m(a) = 0, then ai ≤ 0, aj ≤ 0, ak ≤ 0. Hence ak = aiaj ≥ 0, which
implies that ak = 0, aiaj = 0. Consequently, (−ai)(−aj) = 0 = −ak.

Therefore every nonlinear equation in S satisfied by a is also satisfied by
−a. Obviously the same holds for linear equations. Consequently, −a is a
solution of S.

Since m(a) = maxj aj = 0 and a 6= 0, we have minj aj < 0. Consequently,
m(−a) = maxj(−aj) = −minj aj > 0, which proves (ii).

We shall prove some relations between the numbers MS and NT , where T
is a system containing S, defined below. Roughly speaking, we prove that if a
system S has a solution a with a large value of m(a), then extending slightly
this system we get a system T with a finite number NT of solutions, and
this number is large. More precisely, a solution a of a system S with a large
m(a) extends to a large number of solutions of a slightly larger system T.

Theorem 1. Assume that a system S ⊆ En has a finite number of
solutions, and it has a nonzero solution. Then there is a system T ⊆ Em,
where m = n+ 23, with a finite number NT of solutions, containing S, and
satisfying

NT ≥M2
S .

Proof. Let a = (a1, , . . . , an) be a solution of S such that MS =m(a) = aj

for some j, 1 ≤ j ≤ n. From Lemma 1 it follows that MS > 0, thus aj > 0.
We define a system T ⊆ Em, where m = n+ 23, and the variables in T

are denoted by x1, . . . , xn, y1, . . . , y11, y
′
1, . . . , y

′
11, z. Namely

T = S ∪ U ∪ U ′ ∪W,
where

U = {y1 · y1 = y5, y2 · y2 = y6, y3 · y3 = y7, y4 · y4 = y8,

y5 + y6 = y9, y7 + y8 = y10, y9 + y10 = y11}.
The system U ′ is obtained from U by replacing yj by y′j for j = 1, . . . , 11.

Finally
W = {y11 + z = xj , z + xj = y′11},

where the index j is defined at the beginning of the proof.
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From the definition of the system U we get y11 = y2
1 + y2

2 + y2
3 + y2

4, and
similarly for y′11. Consequently, y11 and y′11 take only nonnegative values for
every solution of U, respectively U ′. Then from the system W it follows that

xj − z = y11 ≥ 0, xj + z = y′11 ≥ 0.

Consequently,

(6) −xj ≤ z ≤ xj , i.e. |z| ≤ xj .

We shall prove that the system T has a finite number of solutions. Let e =
(b1, . . . , bn, c1, . . . , c11, c

′
1, . . . , c

′
11, d) be a solution of T . Then b = (b1, . . . , bn)

is a solution of S, so there are only finitely many possibilities for the
n-tuples b, by assumption.

From (6) we get |d| ≤ bj , so the number of values of d is finite. Moreover,
from W we get c11 + d = bj , c

′
11 = d + bj . Hence c11 and c′11 are bounded.

Finally, from U and U ′ we get |ck| ≤ c11 and |c′k| ≤ c′11 for k = 1, . . . , 10.
We conclude that the number NT of solutions of T is finite.
Now we estimate from below the number of solutions e of T which are

of the form
e = (a1, . . . , an, c1, . . . , c11, c

′
1, . . . , c

′
11, d),

where (a1, . . . , an) is the solution of the system S fixed at the beginning of
the proof.

We choose arbitrarily the quadruple (c1, c2, c3, c4) of integers satisfy-
ing |ck| ≤

√
aj/2, k = 1, 2, 3, 4, and extend it (uniquely!) to a solution

(c1, . . . , c11) of the system U. Then

0 ≤ c21 + c22 + c23 + c24 ≤ 2aj .

Define d := aj − c11; then d+aj = 2aj − c11 ≥ 0. Consequently, d+aj is the
sum of the squares of four integers: d+ aj = c′ 21 + c′ 22 + c′ 23 + c′ 24 . Finally, we
extend (uniquely!) the quadruple (c′1, c

′
2, c
′
3, c
′
4) to a solution (c′1, . . . , c

′
11) of

the system U ′.

Thus we get a solution e of T. The number of solutions obtained in this
way is equal to the number of quadruples (c1, c2, c3, c4) satisfying |ck| ≤√
aj/2. This number is equal to (2b

√
aj/2c+1)4. One can easily verify that

2b
√
t/2c+ 1 ≥

√
t for every positive integer t.

Consequently,

NT ≥ (2b
√
aj/2c+ 1)4 ≥ √aj

4 = a2
j = M2

S .

Remark 1. In the proof of Theorem 1 we did not use essentially the
assumption that MS = aj . In fact, we have proved that for a fixed index j,
1 ≤ j ≤ n, and every solution a of S with aj > 0 there are at least a2

j
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solutions of T extending a. Therefore

NT ≥
∑

a

a2
j ,

where a runs over all solutions of S with aj > 0, where j is fixed.

4. An asymptotic result. Improving slightly the argument in the
proof of Theorem 1 we can get a better asymptotic result.

Theorem 2. Consider a family of systems S ⊆ En, where n depends
on S, with finite numbers of solutions. Assume that the values of MS are
not bounded. For each S let T be the extended system defined in the proof of
Theorem 1. Then

NT ≥ 2π2M2
S +O(MS logMS) as MS →∞.

Proof. As in the proof of Theorem 1, we shall describe the solutions of
the system T which have the form

e = (a1, . . . , an, c1, . . . , c11, c
′
1, . . . , c

′
11, d),

where a = (a1, . . . , an) is a solution of S with aj = MS > 0 for some fixed j.
We look for all quadruples of integers (c1, c2, c3, c4) such that

0 ≤ c21 + c22 + c23 + c24 ≤ 2aj = 2MS .

Their number equals
2MS∑
k=0

r4(k),

where r4(k) is the number of representations of a nonnegative integer k as
the sum of four squares of integers.

Then we extend (uniquely!) the quadruple (c1, c2, c3, c4) to a solution of
the system U. Next we define d := aj − c11, hence −aj ≤ d ≤ aj . Since
d+ aj ≥ 0, there are integers c′1, c

′
2, c
′
3, c
′
4 (not unique, in general) satisfying

d+aj = c′ 21 +c′ 22 +c′ 23 +c′ 24 .We extend (uniquely!) the quadruple (c′1, c
′
2, c
′
3, c
′
4)

to a solution of the system U ′.

In this way we get some solutions of T extending the solution a of S.
Thus the number of these solutions of T can be estimated from below by∑2MS

k=0 r4(k).
There are known exact and asymptotic formulas for this sum. By a the-

orem of Jacobi (see [K]) we have∑
k≤x

r4(k) = 8
∑
k≤x

σ(k)− 32
∑

k≤x/4

σ(k).
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By the well known asymptotic formula∑
k≤x

σ(k) =
π2

12
x2 +O(x log x) as x→∞,

we get ∑
k≤x

r4(k) =
π2

2
x2 +O(x log x) as x→∞.

Therefore

NT ≥
2MS∑
k=0

r4(k) =
π2

2
(2MS)2 +O(MS logMS)

= 2π2M2
S +O(MS logMS)

as MS →∞.

5. Another example. We apply Theorems 1 and 2 to the system
S ⊆ Em considered in [T],

S = {x1 + x1 = x2, x1 · x1 = x2,

x2 · x2 = x3, x3 · x3 = x4, . . . , xm−1 · xm−1 = xm}.

It has a unique nonzero solution a = (a1, . . . , am) = (2, 4, 16, . . . , 22m−1
)

with m(a) = am = 22m−1
= MS . The extension T of S, defined in the proof

of Theorem 1, has n = m+ 23 variables. Then, by Theorem 1, we get

NT ≥M2
S = 22m

= 22n−23
.

Consequently, NT > 2n if 2n−23 > n, which holds for n ≥ 28.
By the asymptotic result in Theorem 2 we get

NT ≥ 2π2M2
S +O(MS logMS) = 2π222n−23

+O(2n−2+2n−24
)

as n→∞.
Note added in proof (October 2010). Recently we have obtained coun-

terexamples with n ≥ 10. Namely, let us consider the system

(7)
x1 = 1, x1 + x1 = x2,

x2 · x2 = x3, x3 · x3 = x4, . . . , xk−1 · xk−1 = xk.

It has the unique solution xj = 22j−2
for 2 ≤ j ≤ k. Then we extend it by

adding the equations

(8) y1 · y2 = xk, y3 · y4 = xk, . . . , y2m−1 · y2m = xk.

Every y2i−1, 1 ≤ i ≤ m, is an arbitrary divisor of xk = 22k−2
, hence y2i−1 =

±2ri , 0 ≤ ri ≤ 2k−2. It follows that y2i−1 can take 2(2k−2 + 1) = 2k−1 + 2
values. Then the corresponding value of y2i is determined uniquely.
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Therefore the number NS of solutions of the system S given by (7) and
(8) equals (2k−1 + 2)m. The number of variables in S is n = k + 2m.

We have NS > 2m(k−1), hence NS > 2n holds if m(k − 1) ≥ k + 2m,
equivalently, if k(1− 1/m) ≥ 3. This inequality is valid for every pair (k,m)
with m ≥ 2, k ≥ 6, hence for every n = k + 2m ≥ 10.
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