VOL. 121

2010

NO. 2

ON κ-LINDELÖF SPACES

ΒY

ALEJANDRO RAMÍREZ-PÁRAMO (Puebla)

Abstract. We use the Hausdorff pseudocharacter to bound the cardinality and the Lindelöf degree of κ -Lindelöf Hausdorff spaces.

1. Introduction and preliminaries. Like compactness, the Lindelöf property has been generalized in different ways, by several authors: *linearly Lindelöf, strongly discretely linearly Lindelöf* and κ -Lindelöf spaces have been defined. Of course, for each property of Lindelöf type, \mathcal{P} , it is natural to consider the following two general questions:

QUESTION 1.1. Which additional conditions force a space X which satisfies \mathcal{P} to be Lindelöf?

QUESTION 1.2. Which theorems on Lindelöf spaces can be extended to spaces which satisfy \mathcal{P} ?

In [2] and [3] Arhangel'skiĭ and Buzyakova make a contribution in both directions for \mathcal{P} = linearly Lindelöf. In this paper we will do it for \mathcal{P} = κ -Lindelöf. In other words, we are interested in the following problems: (1) Which additional conditions force a κ -Lindelöf space to be Lindelöf? and (2) Which theorems on Lindelöf spaces can be extended to κ -Lindelöf spaces? In particular we will prove that: (1) the cardinality of a κ^+ -Lindelöf Hausdorff space with $H\psi(X) \leq \kappa$ is at most 2^{κ} , assuming that every closed subset A of X is a $G_{2^{\kappa}}$ -set. (2) The cardinality of a κ^+ -Lindelöf Hausdorff space with $H\psi(X) \leq \kappa$ is at most $2^{2^{\kappa}}$. (Here $H\psi(X)$ is the Hausdorff pseudocharacter of X; see Definition 1.3.)

We refer the reader to [7] and [9] for definitions and terminology on cardinal functions not explicitly given here. Let w, nw, L, s, χ , ψ , ψ_c and tdenote the following standard cardinal functions: weight, net weight, Lindelöf degree, spread, character, pseudocharacter, closed pseudocharacter and tightness, respectively. If ϕ is a cardinal function, then the hereditary version of ϕ , denoted $h\phi$, is defined by $h\phi(X) = \sup\{\phi(Y) : Y \subset X\}$. It is well known that ϕ is monotone if and only if $\phi = h\phi$.

²⁰¹⁰ Mathematics Subject Classification: Primary 54A25.

Key words and phrases: cardinal function, Lindelöf spaces.

DEFINITION 1.3 ([8]). The Hausdorff pseudocharacter of X, denoted $H\psi(X)$, is the smallest infinite cardinal κ such that for each $x \in X$, there is a collection \mathcal{B}_x of open neighborhoods of x, such that:

(1) $|\mathcal{B}_x| \leq \kappa$.

(2) If $x \neq y$ there are $V_x \in \mathcal{B}_x$ and $V_y \in \mathcal{B}_y$ such that $V_x \cap V_y = \emptyset$.

Let κ be an infinite cardinal, and let X be a set. Suppose that for each $x \in X$, \mathcal{V}_x is a family of subsets of X which contain x. For every $L \subseteq X$, let $L^* = \{x \in X : V \cap L \neq \emptyset \text{ for all } V \in \mathcal{V}_x\}$ (see Hodel [8]).

In the proofs of Theorems 2.9, 2.12 and 2.14 we will make use of the following result due to Hodel [8].

THEOREM 1.4 ([8]). Let κ be an infinite cardinal, and let X be a set. If for each $x \in X$, $\mathcal{V}_x = \{V_{\gamma}(x) : \gamma < \kappa\}$ is a family of subsets of X which contain x such that for $x \neq y$, there exists $\gamma \in \kappa$ such that $V_{\gamma}(x) \cap V_{\gamma}(y) = \emptyset$, then for every $L \subseteq X$:

- (1) $|L^*| \le |L|^{\kappa}$.
- (2) If $L = \bigcup_{\alpha < \kappa^+} E_{\alpha}^*$, where $\{E_{\alpha} : 0 \le \alpha < \kappa^+\}$ is a sequence of subsets of X with $\bigcup_{\beta < \alpha} E_{\beta}^* \subseteq E_{\alpha}$ for all $\alpha < \kappa^+$, then $L^* = L$.

2. κ -Lindelöf spaces

DEFINITION 2.1 ([1]). A topological space X is called κ -Lindelöf if every open cover \mathcal{U} of X with $|\mathcal{U}| \leq \kappa$ has a countable subcover.

It follows that every Lindelöf space is κ -Lindelöf for every infinite cardinal κ . However, a κ -Lindelöf space need not be Lindelöf (see [4]). On the other hand, every linearly Lindelöf space (every increasing open cover of X has a countable subcover) is ω_1 -Lindelöf. Of course, every topological space which can be represented as a countable union of subspaces each of which is κ -Lindelöf is itself κ -Lindelöf.

The next result is easy to prove.

THEOREM 2.2. The following are equivalent for a topological space X and an infinite cardinal number κ :

- (1) X is κ -Lindelöf.
- (2) For every collection \mathcal{F} of nonempty closed subsets of X with $|\mathcal{F}| \leq \kappa$ which satisfies the countable intersection property, $\bigcap \{F : F \in \mathcal{F}\} \neq \emptyset$.
- (3) For every collection \mathcal{F} of nonempty sets of X with $|\mathcal{F}| \leq \kappa$ which satisfies the countable intersection property, $\bigcap \{\overline{F} : F \in \mathcal{F}\} \neq \emptyset$.

One easily checks that if a subspace F of a topological space X is a κ -Lindelöf space, then for every collection \mathcal{U} of open subsets of X with $F \subseteq \bigcup \mathcal{U}$, there exists $\mathcal{V} \in [\mathcal{U}]^{\leq \omega}$ such that $F \subseteq \bigcup \mathcal{U}$.

Like Lindelöfness, κ -Lindelöfness is preserved by continuous mappings and closed subsets, which is easy to prove:

THEOREM 2.3. If X is a κ -Lindelöf space, then so is every closed subset and every continuous image of X.

It is clear from Definition 2.1 that if X is a κ -Lindelöf space for some infinite cardinal κ , then X is γ -Lindelöf for every infinite cardinal $\gamma \leq \kappa$. Now let κ be an infinite cardinal and suppose that X is γ -Lindelöf for every infinite cardinal $\gamma < \kappa$. Is it true that X is κ -Lindelöf? In the next result we give a partial affirmative answer to this question. The proof follows the pattern of Theorem 45 in [10].

THEOREM 2.4. Suppose that κ is a singular cardinal with $cf(\kappa) \neq \omega$ and X is a topological space that is θ -Lindelöf for every cardinal number $\omega \leq \theta < \kappa$. Then X is κ -Lindelöf.

Proof. Let $\mathcal{U} = \{U_{\alpha} : \alpha < \kappa\}$ be an open cover of X. Choose cardinals $\kappa_{\beta} < \kappa, \beta \in \mathrm{cf}(\kappa)$, for which $\sup\{\kappa_{\beta} : \beta \in \mathrm{cf}(\kappa)\} = \kappa$. For each $\beta \in \kappa$ let $V_{\beta} = \bigcup\{U_{\alpha} : \alpha < \kappa_{\beta}\}$ and $\mathcal{W} = \{V_{\beta} : \beta \in \mathrm{cf}(\kappa)\}.$

Clearly $\bigcup \mathcal{W} = X$ and $|\mathcal{W}| \leq \mathrm{cf}(\kappa) < \kappa$; hence, by hypothesis, there is $\mathcal{W}' \in [\mathcal{W}]^{\leq \omega}$ such that $X = \bigcup \mathcal{W}'$. Now, since $\mathrm{cf}(\kappa)$ is regular, there exists $\beta \in \mathrm{cf}(\kappa)$ such that $\bigcup \mathcal{W}' \subseteq \bigcup \{U_{\alpha} : \alpha < \kappa_{\beta}\}$. Thus $\{U_{\alpha} : \alpha < \kappa_{\beta}\}$ cover X and due to $\kappa_{\beta} < \kappa$, there exists $\mathcal{V} \in [\{U_{\alpha} : \alpha < \kappa_{\beta}\}]^{\leq \omega}$ such that $X = \bigcup \mathcal{V}$.

As we mentioned after Definition 2.1, every Lindelöf space is κ -Lindelöf. Now, it is not difficult to show that if X is a κ -Lindelöf space such that $\kappa \geq w(X)$ or $\kappa \geq nw(X)$, then X is Lindelöf. This fact suggests the next question.

QUESTION 2.5. For which infinite cardinals κ , does κ -Lindelöf imply Lindelöf?

In connection with the last question we have the following simple result.

PROPOSITION 2.6. Let X be a κ -Lindelöf space with $s(X) \leq \kappa$ such that \overline{D} is Lindelöf for every discrete subspace D of X. Then X is Lindelöf.

Proof. Let \mathcal{U} be an open cover of X. Since $s(X) \leq \kappa$, there exists $D \in [X]^{\leq \kappa}$ discrete and $\mathcal{V}_1 \in [\mathcal{U}]^{\leq \kappa}$ such that $X = \bigcup \mathcal{U} = \overline{D} \cup \bigcup \mathcal{V}_1$ (see Proposition 4.8 of [7]). Now, as $\overline{D} \subseteq \bigcup \mathcal{U}$ and \overline{D} is Lindelöf, there exists $\mathcal{V}_2 \in [\mathcal{U}]^{\leq \omega}$ such that $\overline{D} \subseteq \bigcup \mathcal{V}_1$. Then $\mathcal{V} = \mathcal{V}_1 \cup \mathcal{V}_2 \in [\mathcal{U}]^{\leq \kappa}$ and $X = \bigcup \mathcal{V}$. Thus, since X is κ -Lindelöf, there is $\mathcal{W} \in [\mathcal{V}]^{\leq \omega}$ (and therefore $\mathcal{W} \in [\mathcal{U}]^{\leq \omega}$) such that $\bigcup \mathcal{W} = X$.

COROLLARY 2.7. If X is a linearly Lindelöf space with $s(X) \leq \omega_1$ such that \overline{D} is Lindelöf for every discrete subspace D of X, then X is Lindelöf.

The author does not know the answer to the following question.

QUESTION 2.8. Let X be a topological space and suppose that \overline{D} is κ -Lindelöf for every discrete subspace D of X. Is X a κ -Lindelöf space?

Note that if X is a topological space with $s(X) = \omega$ and \overline{D} is κ -Lindelöf for every discrete subspace D of X, then X is κ -Lindelöf.

Arhangel'skiĭ and Buzyakova have proved in [2] that if X is a Tikhonov space with $t(X) = \kappa$ such that \overline{D} is Lindelöf for every discrete subspace D of X, then X is κ^+ -Lindelöf.

It is of interest whether Arhangel'skii's inequality and its generalizations hold in the class of ω_1 -Lindelöf spaces. In [4], Buzyakova proved that *ev*ery first countable ω_1 -Lindelöf Hausdorff space has cardinality at most $2^{2^{\kappa}}$; and countable pseudocharacter can be replaced by countable tighness plus closed pseudocharacter (see [4]).

In [8], Hodel obtained a very nice generalization of Arhangel'skii's inequality by showing that $|X| \leq 2^{L(X)H\psi(X)}$ for every Hausdorff space. This generalizes Arhangel'skii's inequality in that it replaces χ with $H\psi$ (the Hausdorff pseudocharacter), a local cardinal function that captures the Hausdorff property of X. At the same time $H\psi$ is a strengthening of ψ_c (the closed pseudocharacter) and so tightness can be omitted from the hypotheses. Hence it is natural to ask: Let X be a κ^+ -Lindelöf Hausdorff space with $H\psi(X) \leq \kappa$; is it true that (a) $|X| \leq 2^{\kappa}$; (b) $|X| \leq 2^{2^{\kappa}}$?

We will use the elementary submodels technique (see [5] or [6]) to obtain a couple of positive partial answers to (a).

Let κ be an infinite cardinal. Recall that a subset A of a space X is called a G_{κ} -set if there is a family \mathcal{V}_A of open subsets of X with $|\mathcal{V}_A| \leq \kappa$ such that $A = \bigcap \mathcal{V}_A$.

THEOREM 2.9. Let $X \in T_2$ be a κ^+ -Lindelöf space with $H\psi(X) \leq \kappa$ such that every closed subset $A \in [X]^{\leq 2^{\kappa}}$ is a $G_{2^{\kappa}}$ -set in X. Then $|X| \leq 2^{\kappa}$.

Proof. For each $x \in X$ fix a collection \mathcal{B}_x of open neighborhoods of x with $|\mathcal{B}_x| \leq \kappa$ such that if $x \neq y$, then there are $V_x \in \mathcal{B}_x$ and $V_y \in \mathcal{B}_y$ which satisfy $V_x \cap V_y = \emptyset$. Consider a chain of elementary submodels $\{\mathcal{M}_\alpha : \alpha \in \kappa^+\}$ such that $\{X, \tau, 2^\kappa\} \cup 2^\kappa \subseteq \mathcal{M}_0, \ \mathcal{M}_\alpha \in \mathcal{M}_{\alpha+1}, \ |\mathcal{M}_\alpha| \leq 2^\kappa \text{ and } \mathcal{M}_\alpha \text{ is closed}$ under κ -sequences, for every $\alpha < \kappa$. Let $\mathcal{M} = \bigcup \{\mathcal{M}_\alpha : \alpha \in \kappa^+\}$.

Claim: $X \cap \mathcal{M} = (X \cap \mathcal{M})^* = \{x \in X : V \cap (X \cap \mathcal{M}) \neq \emptyset \text{ for all } V \in \mathcal{B}_x\}.$ Indeed, it is clear that $X \cap \mathcal{M} \subseteq (X \cap \mathcal{M})^*$. Now, if $x \in (X \cap \mathcal{M})^*$, then there exists $A \in [X \cap \mathcal{M}]^{\leq \kappa}$ such that $x \in A^*$. Since $|A| \leq \kappa$ and κ^+ is regular, there exists $\alpha \in \kappa^+$ such that $A \subseteq \mathcal{M}_\alpha$. Moreover $A \in \mathcal{M}_\alpha$, hence $A^* \in \mathcal{M}_\alpha$. Now, from Theorem 1.4, $|A^*| \leq 2^{\kappa}$, so $A^* \subseteq \mathcal{M}_\alpha$. Thus $A^* \subseteq$ $\mathcal{M}_\alpha \subseteq X \cap \mathcal{M}_\alpha \subseteq X \cap \mathcal{M}$; hence $x \in X \cap \mathcal{M}$. Therefore $(X \cap \mathcal{M})^* \subseteq X \cap \mathcal{M}$.

From the claim we know that $X \cap \mathcal{M}$ is closed in X. Therefore $X \cap \mathcal{M}$ is κ^+ -Lindelöf. Moreover $X \cap \mathcal{M} = \bigcup \{ (X \cap \mathcal{M}_\alpha)^* : \alpha \in \kappa^+ \}.$

For every $\alpha \in \kappa$, we fix a family $\mathcal{V}_{(X \cap \mathcal{M}_{\alpha})^*}$ of open subsets of X with $|\mathcal{V}_{(X \cap \mathcal{M}_{\alpha})^*}| \leq 2^{\kappa}$ such that $\bigcap \mathcal{V}_{(X \cap \mathcal{M}_{\alpha})^*} = (X \cap \mathcal{M}_{\alpha})^*$.

The proof will be complete once we show that $X = X \cap \mathcal{M}$. Assume that there is $p \in X \setminus (X \cap \mathcal{M})$. Then for each $\alpha \in \kappa$, we can choose $U_{\alpha} \in \mathcal{V}_{(X \cap \mathcal{M}_{\alpha})^*}$ such that $p \notin U_{\alpha}$. Then $\mathcal{U} = \{U_{\alpha} : \alpha \in \kappa^+\}$ is an open covering of $X \cap \mathcal{M}$, so there exists $\mathcal{V} \in [\mathcal{U}]^{\leq \omega}$ such that $X \cap \mathcal{M} \subseteq \bigcup \mathcal{V}$.

Since $\mathcal{V} \subseteq \mathcal{M}$ and $|\mathcal{V}| \leq \kappa$, we have $\mathcal{V} \in \mathcal{M}$, so $\bigcup \mathcal{V} \in \mathcal{M}$. Thus $\bigcup \mathcal{V}$ covers X, which is a contradiction because $p \notin \bigcup \mathcal{V}$. Therefore $X = X \cap \mathcal{M}$. Thus $|X| \leq 2^{\kappa}$.

COROLLARY 2.10 ([2]). Let X be a first countable ω_1 -Lindelöf Hausdorff space such that every closed subset $A \in [X]^{\leq 2^{\omega}}$ is a $G_{2^{\omega}}$ -set in X. Then $|X| \leq 2^{\omega}$.

DEFINITION 2.11 ([1]). Let X be a topological space. A subspace $Y \subseteq X$ is κ -Lindelöf in X if for each open covering \mathcal{U} of X with $|\mathcal{U}| \leq \kappa$ there is $\mathcal{V} \in [\mathcal{U}]^{\leq \omega}$ such that $Y \subseteq \bigcup \mathcal{V}$.

THEOREM 2.12. Let X be a Hausdorff space with $H\psi(X) \leq \kappa$, and let Y be a dense subspace of X which is 2^{κ} -Lindelöf in X. Then $|X| \leq 2^{\kappa}$.

Proof. Assume that \mathcal{M} is an elementary submodel of some sufficiently large fragment of the universe with $|\mathcal{M}| \leq 2^{\kappa}$ such that \mathcal{M} is closed under κ -sequences and $\{X, Y, \tau, 2^{\kappa}\} \cup 2^{\kappa} \subseteq \mathcal{M}$.

For each $x \in X$ fix a collection \mathcal{B}_x of open neighborhoods of x with $|\mathcal{B}_x| \leq \kappa$ such that if $x \neq y$, then there are $V_x \in \mathcal{B}_x$ and $V_y \in \mathcal{B}_y$ with $V_x \cap V_y = \emptyset$.

Note that $Y \cap \mathcal{M} = (Y \cap \mathcal{M})^* = \{x \in X : V \cap (Y \cap \mathcal{M}) \neq \emptyset$ for all $V \in \mathcal{B}_x\}$; hence $Y \cap \mathcal{M}$ is closed in X, and thus actually in Y. Moreover $Y \cap \mathcal{M}$ is 2^{κ} -Lindelöf in X.

Claim: $Y \subseteq Y \cap \mathcal{M}$. Indeed, assume that there is $p \in Y \setminus (Y \cap \mathcal{M})$. Then for every $y \in Y \cap \mathcal{M}$, there are $U_y \in \mathcal{B}_y$ and $V_p \in \mathcal{B}_p$ such that $U_y \cap V_p = \emptyset$. Clearly $\mathcal{U} = \{U_y \in \mathcal{B}_y : y \in Y \cap \mathcal{M}\} \cup \{X \setminus (Y \cap \mathcal{M}) \text{ is an open cover of } X$ with cardinality $\leq 2^{\kappa}$. Since $Y \cap \mathcal{M}$ is 2^{κ} -Lindelöf in X, there is $\mathcal{V} \in [\mathcal{U}]^{\leq \omega}$ such that $Y \cap \mathcal{M} \subseteq \bigcup \{V : V \in \mathcal{V}\}$. Since $\mathcal{V} \subseteq \mathcal{M}$ (note that $\mathcal{B}_y \subseteq \mathcal{M}$ for every $y \in Y \cap \mathcal{M}$) and $|\mathcal{V}| \leq \kappa$, we have $\mathcal{V} \in \mathcal{M}$, so $\bigcup \mathcal{V} \in \mathcal{M}$. Thus \mathcal{V} covers Y, which is a contradiction because $p \notin \bigcup \mathcal{V}$. Hence $Y \subseteq Y \cap \mathcal{M}$.

Now, from our claim, we see that $|Y| \leq 2^{\kappa}$ and, in virtue of the fact that $X = Y^*$, Theorem 1.4 implies that $|X| \leq 2^{\kappa}$.

COROLLARY 2.13 ([1]). Let X be a Hausdorff space with $\chi(X) \leq \kappa$, and let Y be a subspace of X which is dense in X and 2^{κ} -Lindelöf in X. Then $|X| \leq 2^{\kappa}$.

The proof of the next theorem is similar to the proof of Lemma 3.1 in [4].

THEOREM 2.14. Let $X \in T_2$ be a κ^+ -Lindelöf space with $H\psi(X) \leq \kappa$. Then $L(X) \leq 2^{\kappa}$.

Proof. Let \mathcal{U} be an arbitrary open cover of X. For each $\alpha < \kappa^+$ define a subset A_{α} of X with $|A_{\alpha}| \leq \kappa$ as follows:

- (1) $A_0 = \emptyset$.
- (2) Since $|\bigcup\{A_{\beta}: \beta < \alpha\}| \leq \kappa$, we have $|(\bigcup\{A_{\beta}: \beta < \alpha\})^*| \leq 2^{\kappa}$ (Theorem 1.4), where $Z^* = \{x \in X: V \cap Z \neq \emptyset \text{ for all } V \in \mathcal{B}_x\}$; hence there exists $\mathcal{U}_{\alpha} \in [\mathcal{U}]^{\leq 2^{\kappa}}$ such that $(\bigcup\{A_{\beta}: \beta < \alpha\})^* \subseteq \bigcup \mathcal{U}_{\alpha}$. Choose $x_{\alpha} \in X \setminus \bigcup\{\bigcup \mathcal{U}_{\beta}: \beta \leq \alpha\}$. If no such point exists then stop the inductive definition. Otherwise, put $A_{\alpha} = (\bigcup\{A_{\beta}: \beta < \alpha\})$ $\cup \{x_{\alpha}\}$.

To finish the proof, note that for some step $\alpha < \kappa^+$ our process must stop (to see this, assume the contrary and use the fact that if $A = \bigcup \{A_{\alpha}^* : \alpha < \kappa^+\}$ then $A = A^*$ to obtain a contradiction). Hence, there exists $\alpha < \kappa^+$ such that $X \subseteq \bigcup \{\bigcup \mathcal{U}_{\beta} : \beta \leq \alpha\}$.

COROLLARY 2.15. If $X \in T_2$ is a κ^+ -Lindelöf space with $H\psi(X) \leq \kappa$, then $|X| \leq 2^{2^{\kappa}}$.

COROLLARY 2.16. Assume GCH. If X is a κ^+ -Lindelöf Hausdorff space with $H\psi(X) \leq \kappa$, then X is Lindelöf and $|X| \leq 2^{\kappa}$.

COROLLARY 2.17. Assume CH. If X is a linearly Lindelöf Hausdorff space with $H\psi(X) \leq \omega$, then X is Lindelöf and $|X| \leq 2^{\omega}$.

COROLLARY 2.18 ([4]). If X is a κ^+ -Lindelöf Hausdorff space with $\chi(X) \leq \kappa$, then $L(X) \leq 2^{\kappa}$ and $|X| \leq 2^{2^{\kappa}}$.

Acknowledgments. The author is grateful to Ricardo Cruz-Castillo for his help with the revisions of this paper.

REFERENCES

- A. V. Arhangel'skii, A generic theorem in the theory of cardinal invariants of topological spaces, Comment. Math. Univ. Carolin. 36 (1995), 305–327.
- [2] A. V. Arhangel'skiĭ and R. Z. Buzyakova, On linearly Lindelöf and strongly discretely Lindelöf spaces, Proc. Amer. Math. Soc. 127 (1999), 2449–2458.
- [3] —, —, On some properties of linearly Lindelöf spaces, Topology Proc. 23 (1998), 1–11.
- [4] R. Z. Buzyakova, Cardinalities of some Lindelöf and ω₁-Lindelöf T₁/T₂-spaces, Topology Appl. 143 (2004), 209–216.
- [5] A. Dow, An introduction to applications of elementary submodels to topology, Topology Proc. 13 (1995), 17–72.
- [6] A. Fedeli and S. Watson, *Elementary submodels and cardinal functions*, Topology Proc. 20 (1995), 91–110.

- [7] R. Hodel, Cardinal functions I, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, Amsterdam, 1984, 1–61.
- [8] —, Combinatorial set theory and cardinal function inequalities, Proc. Amer. Math. Soc. 111 (1991), 567–575.
- I. Juhász, Cardinal Functions in Topology—Ten Years Later, Math. Centrum, Amsterdam, 1980.
- [10] R. M. Stephenson, *Initially κ-compact and related spaces*, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, Amsterdam, 1984, 603–632.

Alejandro Ramírez-Páramo Facultad de Ciencias de la Electrónica Universidad Autónoma de Puebla Av. San Claudio y 18 Sur Col. Jardines de San Manuel Ciudad Universitaria Puebla, Pue. 72570, México E-mail: aparamo@ece.buap.mx

> Received 14 August 2009; revised 12 April 2010

(5255)