TRANSLATIVE PACKING OF A SQUARE WITH SEQUENCES OF SQUARES

BY

JANUSZ JANUSZEWSKI (Bydgoszcz)

Abstract. Let S be a square and let S' be a square of unit area with a diagonal parallel to a side of S. Any (finite or infinite) sequence of homothetic copies of S whose total area does not exceed $\frac{4}{9}$ can be packed translatively into S'.

1. Introduction. Let C, C_1, C_2, \ldots be convex bodies in the plane. We say that the sequence (C_i) can be packed translatively into C if there are translations σ_i such that σ_iC_i are subsets of C with mutually disjoint interiors. We say that the sequence (C_i) permits a translative covering of C if there are translations σ_i such that $C \subset \bigcup \sigma_iC_i$. The area of C is denoted by $|C|$.

Let S be a square. Moon and Moser showed in [5] that any sequence of squares homothetic to S can be packed translatively into S provided the total area of the squares in the sequence does not exceed $\frac{1}{2}|S|$. Additionally, any sequence of homothetic copies of S with total area not smaller than $3|S|$ permits a translative covering of S. In [4] it is shown that any sequence of homothetic copies of S whose total area is not smaller than $2.5|S'|$ permits a translative covering of S', where S' is a square with a diagonal parallel to a side of S. The aim of this paper is to give an analog of this result for packing. We show that if S' is a square with a diagonal parallel to a side of S, then any sequence of homothetic copies of S can be packed translatively into S' provided the total area of the copies does not exceed $\frac{4}{9}|S'|$. The bound of $\frac{4}{9}$ cannot be improved upon. The reason is that two homothetic copies of S, each of area greater than $\frac{2}{9}|S'|$, cannot be packed translatively into S' (see Fig. 1, left).

Various results concerning packings and coverings are discussed in [1–3].

2. Packing method. Denote by S' a square whose vertices are $(0, -1)$, $(1, 0)$, $(0, 1)$, $(-1, 0)$. Let S be a square with sides parallel to the coordinate axes, let (S_i) be a sequence of homothetic copies of S and let $a_1 \geq a_2 \geq \cdots$, where a_i denotes the side length of S_i, for $i = 1, 2, \ldots$.
We describe a method of translative packing of \(S_1, S_2, \ldots \) into \(S' \).

The first square from the sequence is packed into \(S' \) as low as possible, i.e.,

\[
\sigma_1 S_1 = \left\{ (x, y); -\frac{1}{2} a_1 \leq x \leq \frac{1}{2} a_1, -1 + \frac{1}{2} a_1 \leq y \leq -1 + \frac{3}{2} a_1 \right\}
\]

(see Figs. 1 and 2; in Figs. 2–7 each square \(\sigma_i S_i \) is denoted by the integer \(i \), for short).

We will pack \(S_2, S_3, \ldots \) into \(S' \) in layers. Let \(-1 < d < 1 \) and \(h > 0 \). By a \textit{layer} \(L \) of height \(h \) we mean \(\{(x, y); d \leq y \leq d + h\} \); by a \textit{container} we mean the intersection of a layer with \(S' \).

Each container is a polygon. The longest side of this polygon that is parallel to the \(x \)-axis is called the \textit{base} of the container. If there are two such sides, then we mean the lower one. The \textit{height} \(h(K) \) of a container \(K = L \cap S' \) is equal to the height of \(L \). We say that \(S_i \) is \(k \)-\textit{packed} into a container \(K \) if it is packed translatively into \(K \) so that one side of \(\sigma_i S_i \) is contained in the base of \(K \) and, at the same time, no point of the interior of \(K \) lying on the right side of \(\sigma_i S_i \) belongs to \(\sigma_1 S_1 \cup \cdots \cup \sigma_{i-1} S_{i-1} \).

Let

\[
L_2 = \left\{ (x, y); -1 + \frac{3}{2} a_1 \leq y \leq -1 + \frac{3}{2} a_1 + a_2 \right\}
\]

and let \(K_2 = L_2 \cap S' \). We declare that this container is \textit{basic} and \textit{2-open}. We \(k \)-pack the second square from the sequence into \(K_2 \) as far to the left as possible (see \(S_2 \) in Fig. 2).

For each \(i \geq 3 \) we proceed as follows. Assume that the translations \(\sigma_1, \ldots, \sigma_{i-1} \) have already been provided, that the \((i - 1)\)-open containers have been defined and that the basic containers \(K(j) \), for some \(j < i \), are defined.
1. If there is an \((i - 1)\)-open container \(K\) into which \(S_i\) can be \(k\)-packed and if \(a_i \geq \frac{1}{2}h(K)\), then each \((i - 1)\)-open container is \(i\)-open. Denote by \(K(i)\) the lowest \(i\)-open container into which \(S_i\) can be \(k\)-packed. We \(k\)-pack \(S_i\) into \(K(i)\) as far to the left as possible (see \(S_4, S_5\) and \(S_7\) in Fig. 2).

2. If there is an \((i - 1)\)-open container \(K\) into which \(S_i\) can be \(k\)-packed and if \(a_i < \frac{1}{2}h(K)\), then let \(m\) be an integer such that \(2^{-m-1}h(K) < a_i \leq 2^{-m}h(K)\). Each \((i - 1)\)-open container is divided into \(2^m\) containers of height \(2^{-m}h(K)\). Only the newly created containers of height \(2^{-m}h(K)\) are \(i\)-open. Denote by \(K(i)\) the lowest \(i\)-open container into which \(S_i\) can be \(k\)-packed. We \(k\)-pack \(S_i\) into \(K(i)\) as far to the left as possible (see \(S_3\) in Fig. 2).

3. If there is no \((i - 1)\)-open container \(K\) into which \(S_i\) can be \(k\)-packed, then we create a new layer \(L(i)\) of height \(a_i\) directly above the highest layer. We declare that the container \(K(i) = L(i) \cap S'\) is basic. Moreover, only \(K(i)\) is \(i\)-open. We \(k\)-pack \(S_i\) into \(K(i)\) as far to the left as possible (see \(S_6\) in Fig. 2).

3. Packing density in basic containers. In this section we show that a large part of each basic container is filled with packed squares.

Lemma. Assume that \(K\) is a basic container, that \(S_p\) is the first square from the sequence packed into \(K\), that \(S_{q+1}\) is the first square which cannot be packed into \(K\) by the method presented in Section 2 and that \(q \geq p + 1\). Then the total area of the squares packed into \(K\) is greater than \(\frac{4}{9}|K|\).

Proof. Consider two cases depending on the size of the last square packed into \(K\).

Case 1: \(a_q \geq \frac{1}{2}a_p\). Let \(R\) be the set of points of \(K\) lying between the right side of \(\sigma_pS_p\) and the straight line containing the left side of \(\sigma_qS_q\) (see
Fig. 3. Obviously,

\[\sum_{i=p+1}^{q-1} |S_i| \geq \frac{1}{2} |R| \]

(if \(q = p + 1 \), then \(R = \emptyset \) and the sum on the left-hand side of this inequality is meant to be zero).

We show that

\[|S_p| + |S_q| > \frac{4}{9} |K \setminus R|. \]

First consider the case where \(K \) is a trapezoid. Since \(\left(\frac{3}{2}a_q - a_p \right)^2 \geq 0 \) it follows that

\[3a_qa_p - a_p^2 \leq \frac{9}{4}a_q^2. \]

As a consequence,

\[|K \setminus R| < 2a_p^2 + (3a_q - a_p)a_p < \frac{9}{4}a_p^2 + \frac{9}{4}a_q^2 = \frac{9}{4}(|S_p| + |S_q|) \]

(see Fig. 3 (left), where \(v < 3a_q - a_p \)).

Now consider the case where \(K \) is a hexagon. Denote by \(b \) and \(c \) the length of the sides of \(K \) parallel to the \(x \)-axis and let \(t = a_p - \frac{1}{2}|b - c| \) (see Fig. 4).

If \(t \leq a_q \), then we argue as in the case where \(K \) is a trapezoid (see Fig. 3, right).

If \(t > a_q \), then

\[|K \setminus R| < 2a_p^2 - \left(\frac{t}{\sqrt{2}} \right)^2 + a_p(2a_q + t - a_p) = a_p^2 + 2a_p a_q - \frac{1}{2}t^2 + a_p t \]
TRANSLATIVE PACKING OF A SQUARE

277

(see Fig. 4, where \(w < 2a_q + t - a_p \)). Consequently,

\[|K \setminus R| < a_p^2 + 2a_pa_q - \frac{1}{2}a_p^2 + a_q^2 = \frac{3}{2}a_p^2 + 2a_pa_q. \]

Since

\[\frac{9}{4}a_p^2 - \frac{3}{2}a_q^2 - 2a_pa_q + \frac{9}{4}a_q^2 > \frac{3}{4}a_p^2 - \frac{3\sqrt{3}}{2}a_p a_q + \frac{9}{4}a_q^2 = \left(\frac{\sqrt{3}}{2}a_p - \frac{3}{2}a_q \right)^2 \geq 0 \]

it follows that

\[|K \setminus R| < \frac{9}{4}a_p^2 + \frac{9}{4}a_q^2 = \frac{9}{4}(|S_p| + |S_q|). \]

We conclude from (1) and (2) that

\[\sum_{i=p}^{q} |S_i| > \frac{4}{9} |K|. \]

Case 2: \(a_q < \frac{1}{2}a_p \). Let \(m \) be an integer such that \(2^{-m-1}a_p < a_q \leq 2^{-m}a_p \). Denote by \(K_q(1), \ldots, K_q(2^m) \) the \(q \)-open containers of height \(2^{-m}a_p \) obtained by partitioning \(K \). For each \(i \in \{1, \ldots, 2^m\} \) denote by \(s_q(i) \) the maximum value of the \(x \)-coordinate on \((\sigma_1S_1 \cup \cdots \cup \sigma_qS_q) \cap \text{Int} \ K_q(i) \). Let \(R_q(i) \) be the set of points of \(K_q(i) \) lying between the right side of \(\sigma_pS_p \) and the straight line \(x = s_q(i) \) and let \(R_q = \bigcup_{i=1}^{2^m} R_q(i) \). By the description of the packing method we deduce that

\[\sum_{i=p+1}^{q} |S_i| \geq \frac{1}{2} |R_q| \]

(see Fig. 5). Moreover,

\[|K \setminus R_q| < \frac{3}{2}a_p^2 + 2^m \cdot \frac{3}{2} \cdot (2^{-m}a_p)^2 = \frac{3}{2}a_p^2 + \frac{3}{2} \cdot 2^{-m}a_p^2 \leq a_p^2 \left(\frac{3}{2} + \frac{3}{4} \right) = \frac{9}{4}|S_p|. \]

Consequently,

\[\sum_{i=p}^{q} |S_i| > \frac{4}{9} |K|. \]

\[\blacksquare \]
4. The main result

THEOREM. Assume that S is a square and that S' is a square with a diagonal parallel to a side of S. Any (finite or infinite) sequence of homothetic copies of S can be packed translatively into S' provided the total area of the copies does not exceed $\frac{4}{9} |S'|$.

Proof. Due to the affine invariant nature of the problem we can assume that the vertices of S' are $(0, -1), (1, 0), (0, 1), (-1, 0)$. Let (S_i) be a sequence of homothetic copies of S and let $\sum |S_i| \leq \frac{4}{9} |S'|$. Denote by a_i the side length of S_i for $i = 1, 2, \ldots$. Without loss of generality we can assume that $a_1 \geq a_2 \geq \cdots$.

We show that S_1, S_2, \ldots can be packed translatively into S'.

Suppose that it is impossible to pack S_1, S_2, \ldots into S' by the method described in Section 2. Let S_z be the first square which cannot be packed into S'. Denote by K_{l+1} the set of the points of S' with y-coordinate not greater than $-1 + \frac{3}{2} a_1$. All basic containers are denoted by K_2, \ldots, K_{l+1} in such a way that K_i is higher than K_j provided $i > j$ ($l = 3$ and $z = 8$ in Fig. 2). Moreover, let K_i^+ be the set of points of S' lying above the base of K_i. Into $K_{l+1} = K(z)$ no square has been packed—this container is z-open, but it is impossible to pack translatively S_z into K_{l+1}.

First we show that $l \geq 2$. Since $|S_1| \leq \frac{4}{9} |S'| < \frac{1}{2} |S'|$ it follows that $l \geq 1$ ($|S_1| = \frac{1}{2} |S|$ in Fig. 1, right). If $l = 1$, then $\frac{3}{2} a_1 + \frac{3}{2} a_2 > 2$ (see Fig. 1 (left), where $\frac{3}{2} a_1 + \frac{3}{2} a_2 = 2$). Consequently,

$$a_1^2 + a_2^2 > a_1^2 + \left(\frac{4}{3} - a_1 \right)^2 \geq \frac{8}{9} = \frac{4}{9} |S'|,$$

which is a contradiction.

Obviously,

$$S' = K_1^+ \cup K_2 \cup \cdots \cup K_{l-1} \cup K_l^+. \tag{3}$$

Observe that

$$|S_1| \geq \frac{4}{9} |K_1^+| \tag{4}$$

(see Fig. 6, left).

Denote by $\sigma_r S_r$ the first square packed into K_l. We show that

$$\sum_{i=r}^{z} |S_i| > \frac{4}{9} |K_l^+|. \tag{5}$$

Let T_l be the smallest right-angled isosceles triangle containing K_l^+. Obviously, if K_l is a trapezoid, then $T_l = K_l^+$. Denote by b_l the length of the hypotenuse of T_l and denote by b_{l+1} the length of the base of K_{l+1}.
Observe that $z \leq r + 2$. If $z \geq r + 3$, then $2a_r + a_{r+1} + 2a_{r+2} \leq b_l$ (see Fig. 6, right). Since $2a_r + 3a_{r+2} \leq b_l$ and $b_{l+1} = b_l - 2a_r$ it follows that $3a_{r+2} \leq b_{l+1}$, i.e., S_z can be packed into K_{l+1}, which is a contradiction.

There are two possibilities: either $z = r + 1$ or $z = r + 2$.

If $z = r + 1$, then $2a_r + 2a_z > b_l$ (see Fig. 7, left). Consequently,
\[
|S_r| + |S_z| > a_r^2 + \left(\frac{1}{2} b_l - a_r \right)^2 = 2a_r^2 - a_r b_l + \frac{1}{4} b_l^2 \geq \frac{1}{8} b_l^2 \geq \frac{1}{2} |K_l^+| > \frac{4}{9} |K_l^+|.
\]

If $z = r + 2$, then $2a_r + a_{r+1} + 2a_z > b_l$ (see Fig. 7, right). Consequently,
\[
|S_r| + |S_{r+1}| + |S_z| = a_r^2 + a_{r+1}^2 + a_z^2 > a_r^2 + a_{r+1}^2 + \left(\frac{1}{2} b_l - a_r - \frac{1}{2} a_{r+1} \right)^2.
\]

By using the standard method of finding the minimum of a function of two variables it is easy to check that this value is not less than $\frac{1}{9} b_l^2 \geq \frac{4}{9} |K_l^+|$.

It is easy to see that if $j \in \{2, \ldots, l\}$ and if only one square is packed into K_j, then $j = l$ (as in Fig. 7, left). Consequently, at least two squares are packed into K_j for $j = 2, \ldots, l - 1$. By (3)–(5) and by the Lemma we deduce that
\[
\sum_{i=1}^{z} |S_i| > \frac{4}{9} (|K_1^+| + |K_2| + \cdots + |K_{l-1}| + |K_l^+|) = \frac{4}{9} |S'|,
\]
which is a contradiction. ■
Acknowledgements. The author thanks Andrzej Derdziński for discovering a gap in the proof of the Theorem and for helpful comments on an earlier version of this paper.

REFERENCES

Janusz Januszewski
Institute of Mathematics and Physics
University of Technology and Life Sciences
Kaliskiego 7
85-796 Bydgoszcz, Poland
E-mail: januszew@utp.edu.pl

Received 15 April 2009;
revised 21 May 2010