
COLLOQU IUM MATHEMAT ICUM
VOL. 90 2001 NO. 1

A NOTE ON CERTAIN SEMIGROUPS OF ALGEBRAIC NUMBERS

BY

MACIEJ RADZIEJEWSKI (Poznań)

Abstract. The cross number κ(a) can be defined for any element a of a Krull monoid.
The property κ(a) = 1 is important in the study of algebraic numbers with factorizations
of distinct lengths. The arithmetic meaning of the weaker property, κ(a) ∈ Z, is still
unknown, but it does define a semigroup which may be interesting in its own right. This
paper studies some arithmetic (divisor theory) and analytic (distribution of elements with
a given norm) properties of that semigroup and a related semigroup of ideals.

1. Notation. In the first section we consider a Krull monoidM (written
multiplicatively), i.e. a commutative cancellative semigroup with a unit, for
which there exists a group epimorphism v : (M) →

∐
i∈I Z of (M) (the

group of quotients of M) onto a free abelian group such that M = {x ∈
(M) : vi(x) ≥ 0 for all i ∈ I}, as defined in [5] and [6]. The concept of a Krull
monoid is equivalent to that of a semigroup with divisor theory, as shown
in [6]. Let ∂ : M → D, where D is a free abelian semigroup, be a divisor
theory for M with the class group written as Cl(M). We further assume
that Cl(M) is finite and that there are infinitely many prime elements of D
(prime divisors) in each class. The neutral element of Cl(M), the principal
class, is denoted as H(M). If a ∈ D, then [a] will denote the class of a in
the class group.
In the second section we apply the results obtained for general Krull

monoids to an algebraic number field K with the ring RK of algebraic in-
tegers and the semigroup I(RK) of non-zero integral ideals. We do it in
the obvious way by fixing M = R∗K (the multiplicative semigroup) and
∂ : R∗K → I(RK), ∂(a) = (a). All of our previous assumptions on M are
satisfied by R∗K for arbitrary K. In this case H denotes the class group of
K, h is the class number and H stands for the class of principal ideals.
The set of non-zero prime ideals of RK is written as P(RK). The Dedekind
zeta-function of K is denoted by ζK . We also adopt the standard shorthand
notation e(x) = exp(2πix).
If X ∈ Cl(M) and a ∈ M or a ∈ D, then ΩX(a) denotes, as usual, the

number of prime divisors of a in X. The cross number (cf. [4]) of elements
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of D and M is defined as

κ(a) =
∑

X∈Cl(M)

ΩX(a)
ordX

for a ∈ D, and
κ(a) = κ(∂(a))

for a ∈ M . This quantity was also called weight in [3] and Zaks–Skula
function in [1].
We will be concerned with the subset SM of M defined as

SM = {a ∈M : κ(a) ∈ Z}

and an analogous subset of D,

SM = {a ∈ D : κ(a) ∈ Z}.

In particular, for M = R∗K , we put SK = SM and SK = SM . The condition
κ(a) ∈ Z was considered by Śliwa for M = R∗K ([13], condition C0). Its
stronger version, (C) κ(a) = 1, is related to distinct lengths of factorizations
of an element into irreducibles. For example, if A consists of those elements
of M whose prime divisors all lie in a given set of classes, then all elements
of A have unique factorization lengths if and only if each irreducible element
in A satisfies (C). In this case κ(a) gives the length of factorization of any
a ∈ A (cf. [12] and also [11] and [14]).
This paper describes some of the intrinsic properties of SM and SM . In

the case of an algebraic number field we also give asymptotic formulae for
the number of elements of SK and SK whose norms do not exceed a given
bound.

This research was supported by grant No. 2 PO3A 024 17 of the State
Committee of Scientific Research (KBN) of Poland. The author wishes to
express his gratitude to Professor Jerzy Kaczorowski for his guidance and
help during the preparation of this paper.

2. Arithmetic characterization. The set SM is a multiplicative sub-
set of M and thus a commutative semigroup with cancellation law. For
every a ∈ M there exists an element b ∈ SM such that a | b. In fact, if a1
and a2 are elements of D with a2 ∤ a1, then we can find b ∈ SM such that
a1 | ∂(b), but a2 ∤ ∂(b). Indeed, if a1 =

∏q
i=1 p

αi
i , pi being prime, then let

a3 =
∏q
i=1 p

αi
i q
αi(ord[pi]−1)
i , where each qi is a prime element not dividing

a2, qi ∈ [pi]. Obviously a3 is in the principal class, and any b ∈M such that
∂(b) = a3 satisfies our assertion. If a, b ∈ SM , then the relation a | b in M or
∂(a) | ∂(b) in D implies a | b in SM . It is easy to check that those conditions
are necessary and sufficient for the semigroup homomorphism ∂ restricted
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to SM to define a divisor theory for SM (cf. [8]). Analogous remarks apply
to the set SM .
It is convenient to introduce a semigroup homomorphism f : D → C∗,

f(a) = e(κ(a)).

Since SM = ker f , the class group of SM is given by Cl(SM ) ∼= im f =
µm ∼= Cm, where m = maxX∈Cl(M) ordX is the exponent of Cl(M). Now
we compute the quotient group M/SM (or, equivalently, (M)/(SM )) and
the class group of SM .

Theorem 1. Let M be a Krull monoid with a finite class group Cl(M) ∼=
Cd1 ⊕ . . .⊕ Cdk , d1 | d2 | . . . | dk = m, having infinitely many prime divisors
in each class. Additionally , let d0 = 1. We have

M/SM ∼=

{
Cm if 2 ∤ m

dk−1
,

Cm/2 otherwise.
(i)

Cl(SM ) ∼=

{
Cl(M)⊕ Cm if 2 ∤ m

dk−1
,

Cl(M)⊕ Cm/2 otherwise.
(ii)

Proof. (i) Obviously M/SM ∼= f(H(M)) < µm. If 2 ∤ m
dk−1
, then we

choose classesX1, X2 such that ordX1 = ordX1X2 = m and ordX2 = dk−1.
Now, if p1, p2, p3, p4 are prime, p1 ∈ X1, p2 ∈ X2, p3 ∈ X1X2, p4 ∈ X−11
and r = (2mdk−1 −m+ dk−1)/(2dk−1) then p

r+1
1 p2p

m−1
3 pr4 is in the princi-

pal class and f(pr+11 p2p
m−1
3 pr4) = e(1/m), so f(H(M)) = µm.

Suppose now that 2 | mdk−1 . Since f(pq) = e(2/m) for p ∈ X, q ∈ X−1,

ordX = m, we have µm/2 < f(H(M)). Let F = {X ∈ Cl(M) : Xm/2 = 1}.
Clearly Cl(M)/F ∼= C2, so if p

α1
1 · . . . · p

αl
l is in the principal class with pi

prime, pi ∈ Xi, then
∑
Xi 6∈F

αi ≡ 0 (mod 2). Note that m/ordX is even if
and only if X ∈ F . Therefore

l∑

i=1

mαi
ordXi

≡
∑

Xi 6∈F

mαi
ordXi

≡
∑

Xi 6∈F

αi ≡ 0 (mod 2).

Hence f(H(M)) < µm/2 and consequently f(H(M)) = µm/2.
To prove (ii), let πi, i = 1, . . . , k, denote the projection of Cl(M) onto

the summand Cdi of Cd1 ⊕ . . .⊕ Cdk and let f̃ : D → Cm,

f̃(a) = mκ(a) (modm).

Put G = Cd1 ⊕ . . . ⊕ Cdk ⊕ Cm. The homomorphism ι : D → G, ι(a) =
(π1([a]), . . . , πk([a]), f(a)), induces an isomorphism of Cl(SM ) onto the sub-
group im ι of G. If 2 ∤ m

dk−1
, then by (i), |Cl(SM )| = |G|, so Cl(SM ) ∼= G.

Similarly, if 2 | mdk−1 , then (G : im ι) = 2 and we show that im ι = F =
{(a1, . . . , ak+1 ∈ G : ak + ak+1 ≡ 0 (mod 2)}. Indeed, for any prime p ∈ D
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we have 2 ∤πk[p] if and only if 2 ∤ f̃(p), hence κ(p) ⊂ F and the result fol-
lows.

In 1960 Carlitz [2] showed that all elements of R∗K have unique factor-
ization lengths if and only if h(K) ≤ 2. The following corollary is essentially
the Carlitz theorem.

Corollary 1. For an algebraic number field K we have SK = R∗K if
and only if h(K) ≤ 2.

3. Analytic properties of SK and SK. Although generally SK and
SK are not arithmetic semigroups (as defined in [7]), the next theorem shows
that there is a degree of regularity in the distribution of their elements. Let
m be as defined previously and let σ and t denote the real and imaginary
parts of the complex variable s.

Theorem 2. For every algebraic number field K and every complex
number s with Re s > 1, we have

∑

a∈SK∩H

1
N(a)s

=
1

|Cl(SK)|
ζK(s) +

r∑

j=1

gj(s)
(s− 1)wj

+ gr+1(s)

and
∑

a∈SK

1
N(a)s

=
1

|Cl(SK)|
ζK(s) +

l∑

j=1

hj(s)
(s− 1)zj

+ hl+1(s),

where wj , j = 1, . . . , r, and zj , j = 1, . . . , l, are complex numbers whose real
parts are in the range [0, 1 − δ], δ being a constant depending only on H,
δ > 0, and gj , j = 1, . . . , r + 1, hj , j = 1, . . . , l + 1, are complex functions
with a regular , single-valued analytic continuation in the region

D =
{
σ + it : 2 ≥ σ > 1−

c1
log(|t|+ 2)

}

with a constant c1 > 0 depending only on K. Moreover , in the same region,
we have gj(s) = O((|t|+2)Rewj log

c2(|t|+3)), j = 1, . . . , r+1, and hj(s) =
O((|t|+2)Re zj logc2(|t|+3)), j = 1, . . . , l+1, with a constant c2 > 0 depending
only on K.

First, we introduce a family of functions (analogous to L-functions) suit-
able for our problem. Any character ψ of Cl(SK) defines a completely mul-
tiplicative function on I(RK). We refer to this function as ψ as well. Set

L(s, ψ) =
∑

a∈I(RK)

ψ(p)
N(a)s

(Re s > 1)

=
∏

p∈P(RK)

1
1− ψ(p)/N(p)s

.
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The function L(s, ψ) is holomorphic in the half-plane Re s > 1. In case
ψ ∈ Ĥ we get L(s, ψ) = L(s, ψ), where L(s, ψ) is a Hecke L-function (or
Hecke zeta-function, cf. [10, p. 343]), but in general the properties of L(s, ψ)
are not as nice as those of L(s, ψ).
Theorem 1(ii) shows that ψ can be represented as a product ψ = ψ1ψ2,

where ψ1 is a character of H and ψ2 is a character of I(RK)/SK . If H is as
in the first case of the theorem (i.e. 2 ∤ m

dk−1
), then the choice of ψ1 and ψ2

is unique. In the second case (2 | mdk−1 ) we have exactly two choices, because
Cl(SK) is identified with a subgroup of index 2 of H × I(RK)/SK , so ψ
has 2 extensions to H × I(RK)/SK . We substitute ψ2(a) = f(a)k for some
k ∈ {0, . . . ,m− 1}. Now, for Re s > 1,

L(s, ψ) =
∏

X∈H

∏

p∈X

1
1− ψ1(X) e(k/ordX)/N(p)s

= exp
( ∑

X∈H

∑

p∈X

ψ1(X) e(k/ordX)
N(p)s

)
· ξ1(s)

= exp
( ∑

X∈H

ψ1(X) e
(

k

ordX

)∑

p∈X

1
N(p)s

)
· ξ1(s)

= exp
(∑

χ∈Ĥ

(
1
h

∑

X∈H

e
(

k

ordX

)
ψ1(X)χ(X)

)
logL(s, χ)

)
· ξ2(s)

= exp
( ∑

χ∈Ĥ

a(k, ψ1χ) logL(s, χ)
)
· ξ2(s),

where

a(k, χ) =
1
h

∑

X∈H

e
(

k

ordX

)
χ(X)

for all χ ∈ Ĥ and ξ1, ξ2 are Dirichlet series with abscissas of absolute con-
vergence ≤ 1/2.
We can see that L(s, ψ) is essentially a product of complex powers of

Hecke L-functions. The rest of the proof consists of two lemmas.

Lemma 1. With k, χ and a(k, χ) defined as above, we have a(k, χ) = 1 if
fkχ = χ0 (the trivial character) and Re a(k, χ) ∈ [−1, 1) otherwise. More-
over , Re a(k, χ) − ⌊Re a(k, χ)⌋ < 1 − δ for some constant δ > 0 depending
only on H.

Proof. To obtain the equality in the first case, observe that ifX ∈ H and
p ∈ X is a prime ideal, then e(k/ordX)χ(X) = fkχ(p) = 1. On the other
hand, if fkχ 6= χ0, then we can find a prime ideal p such that fkχ(p) 6= 1.
We have e(k/ord[p])χ([p]) 6= 1 and each e(k/ordX)χ(X) is an mth root
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of unity, so −1 ≤ Re a(k, χ) < 1. The last assertion is obvious, since the
number of possible values of a(k, χ) is finite for any H.

Lemma 2. If ψ is a character of Cl(SK), ψ 6= χ0, then, for Re s > 1,
L(s, ψ) = g(s)/(s− 1)w, where g(s) is a regular complex function defined in
D and w is a complex number with 0 ≤ Rew ≤ 1 − δ for some constant
δ > 0 depending only on H. Moreover , g(s) = O((|t|+ 2)Rew logc2(|t|+ 3))
in D for some constant c2 depending only on K.

Proof. By [10, pp. 356 and 372], logL(s, χ) has a regular analytic con-
tinuation in D for all χ ∈ Ĥ \ {χ0}, so

exp
( ∑

χ∈Ĥ\{χ0}

a(k, ψ1χ) logL(s, χ)
)
· ξ2(s)

is regular inD. Let z=a(k, ψ1). The remaining factor exp(a(k, ψ1) log ζK(s))
can be written either as (s− 1)zζzK(s)/(s− 1)

z, in case Re z ≥ 0, or as
(s− 1)z+1ζzK(s)/(s− 1)

z+1, in case Re z < 0, and we put w = z or w = z+1
accordingly. The function (s−1)wζzK(s) is regular inD (again by [10, pp. 356
and 372]) and we have 0 ≤ Rew ≤ 1− δ taking δ from Lemma 1. The final
upper bound is evident from the property

logL(s, χ) = O(log log(|t|+ ee)), s ∈ D, |t| > 1, χ ∈ Ĥ,

quoted in [9].

Now it is enough to note that for Re s > 1,

∑

a∈SK∩H

1
N(a)s

=
1
mh

m−1∑

k=0

∑

χ∈Ĥ

L(s, fkχ)

and
∑

a∈SK

1
N(a)s

=
1
m

m−1∑

k=0

L(s, fk).

By Lemma 2 our theorem is proved.

Corollary 2. For an algebraic number field K let SK(x) denote the
number of non-associated elements of SK whose norms do not exceed x and
let SK(x) denote the number of ideals in SK whose norms do not exceed x,
x > 0. Then

SK(x) =
cx

|Cl(SK)|
+O

(
x

(log x)δ

)

and

SK(x) =
cx

|Cl(SK)|
+O

(
x

(log x)δ

)
,

where c = ress=1 ζK(s) and δ > 0 is a constant depending only on H.
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Proof. We are going to use the Main Lemma from [9], a Tauberian-type
theorem which gives an upper bound for the error term. For the statement
of the Main Lemma we refer the reader to [9]. Here we use it only in its
simplest form (q = 0) and disregard most of the terms of the estimate. By
Theorem 2 both of our functions fulfill the assumptions of case II of the
Lemma and we get, for SK ,

SK(x) =
cx

|Cl(SK)|

(
1 +

r∑

j=1

Qj(log log x)
(log x)1−wj

)
+O

(
x(log log x)c3

log x

)

where each Qj is a complex polynomial with coefficients depending on K.
The result for SK is analogous. Taking δ from Theorem 2 we arrive at the
desired conclusion.
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