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COALGEBRAS, COMODULES, PSEUDOCOMPACT ALGEBRAS

AND TAME COMODULE TYPE

BY

DANIEL SIMSON (Toruń)

Abstract. We develop a technique for the study of K-coalgebras and their repre-
sentation types by applying a quiver technique and topologically pseudocompact modules
over pseudocompact K-algebras in the sense of Gabriel [17], [19]. A definition of tame
comodule type and wild comodule type for K-coalgebras over an algebraically closed
field K is introduced. Tame and wild coalgebras are studied by means of their finite-
dimensional subcoalgebras. A weak version of the tame-wild dichotomy theorem of Drozd
[13] is proved for a class of K-coalgebras. By applying [17] and [19] it is shown that for any
length K-category A there exists a basic K-coalgebra C and an equivalence of categories
A ∼= C-comod. This allows us to define tame representation type and wild representation
type for any abelian length K-category.
Hereditary coalgebras and path coalgebras KQ of quivers Q are investigated. Tame

path coalgebras KQ are completely described in Theorem 9.4 and the following K-
coalgebra analogue of Gabriel’s theorem [18] is established in Theorem 9.3. An inde-
composable basic hereditary K-coalgebra C is left pure semisimple (that is, every left
C-comodule is a direct sum of finite-dimensional C-comodules) if and only if the quiver

CQ
∗ opposite to the Gabriel quiver CQ of C is a pure semisimple locally Dynkin quiver

(see Section 9) and C is isomorphic to the path K-coalgebra K(CQ). Open questions are
formulated in Section 10.

1. Introduction. Throughout this paper we fix field K. Given a K-
coalgebra C we denote by C-Comod the category of left C-comodules, and
by C-comod the full subcategory of C-Comod formed by comodules of finite
K-dimension. The category of right C-comodules is denoted by Comod-C.
It is well known (see [28], [56]) that every C-comodule M is a directed

union of finite-dimensional subcomodules and therefore the Grothendieck
category C-Comod is locally finite and C-comod is the full subcategory of
C-Comod consisting of objects of finite length (see [17], [34]).
One of the main aims of this paper is to introduce a concept of tame

comodule type, polynomial growth and wild comodule type forK-coalgebras
over an algebraically closed field K (see Definition 6.6), and to study tame
and wild coalgebras by means of their finite-dimensional subcoalgebras. In
particular, path coalgebras and hereditary left pure semisimple coalgebras C
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and their comodule categories C-comod are studied by means of the Gabriel
quiver CQ of C and nilpotent K-linear representations of CQ of finite length
(see Sections 8 and 9).

To make the exposition self-contained and elementary we collect in Sec-
tions 2, 3 and 4 the background facts on linear topological rings and modules,
coalgebras, comodules and their functorial relations with pseudocompact
algebras and pseudocompact modules in the sense of Gabriel [17]. Some
of our main tools in the study of comodules are the category isomorphism
C-Comod ∼= Dis(C∗) and a pair of duality functors

C-Comod
D̃1
⇄

D̃2

C∗-PC

described in Theorem 4.3, where C∗ = HomK(C,K) is the K-algebra dual
to C equipped with a profinite topology (3.4), Dis(C∗) is the category of
discrete right C∗-modules and C∗-PC is the category of pseudocompact left
C∗-modules. In particular, we get a pair of duality functors

C-comod
D
⇄

D
comod-C,

where comod-C is the category of finite-dimensional right C-comodules. If
C is finite-dimensional we get C-Comod ∼= Mod(C∗).

In Section 5 we recall from [43] the definition of a basic K-coalgebra.

By applying the duality functors D̃1 and D̃2 we associate a basic coalgebra
Cb with any K-coalgebra C in such a way that C-comod ∼= Cb-Comod.
We prove in Proposition 5.6 that Cb is uniquely determined by C, up to
K-coalgebra isomorphism. Moreover, we show in Corollary 5.10 that for
any abelian length K-category A there exist a directed family {Aβ}β of full
exact K-subcategories of A and an inverse system {Rβ, fβ,γ}β�γ of finite-
dimensional K-algebras Rβ connected by K-algebra surjections fβ,γ : Rγ →
Rβ such that

A =
⋃

β

Aβ ,

Aβ
∼= mod(Rβ), the embedding Aβ ⊆ Aγ is induced by fβ,γ for all β � γ,

and R = lim←−β{Rβ , fβ,γ} is a pseudocompact K-algebra.

This useful observation generalises a result in [43] and allows us to study
tame representation type of A by means of the representation type of the
finite-dimensional K-algebras Rβ . In general we would like to study global
properties of A by means of its local properties.

It is shown in Section 6 that any K-coalgebra C of tame comodule type
is a directed union of finite-dimensional K-coalgebras Cβ of tame comodule
type, and the finite-dimensional K-algebras C∗β are of tame representation
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type. If C is such that dimK Ext
1
C(S, S

′) is finite for every pair S, S′ of
simple left C-comodules, then C is of wild comodule type if and only if
C is a directed union of finite-dimensional subcoalgebras Cβ such that the
finite-dimensional K-algebras C∗β are of wild representation type. Hence we
conclude that such K-coalgebras of tame comodule type are not of wild
comodule type, and K-coalgebras of wild comodule type are not of tame
comodule type. Unfortunately we are able to prove a tame-wild dichotomy
type theorem of Drozd [13] only for a class of K-coalgebras.

A connection between finite representation type and pure semisimplicity
for coalgebras is given in Section 7. In particular, it is shown that left pure
semisimple coalgebras are of tame comodule type, and basic coalgebras C
of finite comodule type are finite-dimensional and there is an equivalence of
categories C-Comod ∼= Mod(C∗).

Hereditary coalgebras and path coalgebras KQ of quivers Q are investi-
gated in Section 9. It is shown in Proposition 8.13 thatKQ is hereditary. We
recall that a K-coalgebra C is called hereditary if the category C-Comod of
left C-comodules is hereditary, that is, Ext2C(M,N) = 0 for all M and N in
C-Comod, or equivalently, epimorphic images of injective C-comodules are
injective C-comodules. It was shown in [30] that the definition is left-right
symmetric (see also [11]).

Path coalgebras KQ of tame comodule type are completely described
in Theorem 9.4. Wild and fully wild path coalgebras are also investigated.
A characterisation of left pure semisimple hereditary basic coalgebras is
given in Theorem 9.3. This is a coalgebra analogue of Gabriel’s well known
characterisation [18] of representation-finite quivers Q asserting that the
path K-algebra KQ of a finite connected quiver Q is representation-finite
(or equivalently, left pure semisimple, see [1]) if and only if the underly-
ing graph of Q is one of the Dynkin diagrams An, n ≥ 1, Dn, n ≥ 4,
E6, E7, E8.

A basic reduction tool for our study of comodules over path coalgebras
KQ of arbitrary quivers Q is Proposition 8.1(d) asserting that the category
KQ∗-comod is equivalent to the category of nilpotent K-linear representa-
tions of Q of finite length.

We recall from [32] that if Q is any of the pure semisimple infinite quivers

A
(s)
∞ , ∞A

(s)
∞ , D

(s)
∞ presented in Table 9.2 of Section 9 and s ≥ 1, then there ex-

ists at least one indecomposable non-injective comodule X in KQ∗-comod
such that there is no almost split sequence 0 → X → Y → Z → 0 in
the category KQ∗-comod. However, by Proposition 7.3, given a left pure
semisimple coalgebra C, every indecomposable non-projective comodule Z
in C-comod has an almost split sequence 0 → X → Y → Z → 0 in
C-comod.
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The reader is referred to [11], [28] and [56] for the coalgebra and comodule
terminology, to [6], [15], [17] and [34] for the category theory terminology,
and to [2], [21] and [44] for the representation theory terminology.
Given a ring R with an identity element we denote by J(R) the Jacobson

radical of R. We recall that an artinian ring R is said to be connected if R
is not decomposable in a product of rings; and R is said to be basic if
R/J(R) ∼= F1 × . . . × Fm, where F1, . . . , Fm are division rings. We denote
by Mod(R) the category of all right R-modules and by mod(R) the full
subcategory of Mod(R) formed by finitely generated R-modules. If R is a
K-algebra, we denote by Modlf(R) the full subcategory of Mod(R) formed
by the locally finite-dimensional R-modules, that is, the modules that are
directed unions of finite-dimensional right R-submodules [23]. Given a right
R-module M we denote by socM the socle of M , that is, the sum of all
simple R-submodules of M .

The concepts of tame comodule type, wild comodule type and the main
results of this paper were presented during ICRA-IX at Beijing Normal
University in August 2000 (see [48]).

2. Linear topological rings and modules. For convenience of the
reader we collect from [3], [16], [17], [25] and [33] some facts on linear topo-
logical rings and modules, and on pseudocompactK-algebras and their pseu-
docompact modules (see also [59]).
By a topological ring we mean a ring R equipped with a topology such

that addition and multiplication are continuous. A topological ring is said
to be right linear topological if R has a basis (of neighborhoods of zero)
consisting of right ideals. We state without proof the following useful results.

Lemma 2.1. Let R be a right linear topological ring. Then the open right
ideals of R satisfy the following conditions.

(a) If I1, I2 are open right ideals, then I1 ∩ I2 is open.
(b) If I1 ⊆ I2 are right ideals and I1 is open then I2 is open.
(c) If I1 is an open right ideal , then so is (I1 : r) = {s ∈ R; rs ∈ I1}

for each r ∈ R.

Lemma 2.2. Let R be any ring and let F be a set of right ideals of R
satisfying the following two conditions:

(i) For any I1, I2 in F there is I3 ∈ F such that I3 ⊆ I1 ∩ I2.
(ii) If I1 ∈ F and r ∈ R, then there is I2 ∈ F such that I2 ⊆ (I1 : r).

Then there exists a unique right linear topology on R having F as a basis.

Let R be a right topological ring. By a topological right R-module we
mean a right R-moduleM equipped with a topology such that addition and
multiplication M × R → M are continuous. If the topology on R is right
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linear, a topological right R-moduleM is said to be right linear topological if
M has a basis (of neighborhoods of zero) consisting of right R-submodules. If
R is a right linear topological ring, we denote by Dis(R) the full subcategory
of Mod(R) formed by the discrete R-modules, that is, linear topological right
R-modules with the discrete topology.

The following result is easily verified.

Lemma 2.3. Let R be a right linear topological ring with a basis F .

(a) A right R-module M is discrete if and only if for each m ∈ M the
annihilator (0 : m) = {s ∈ R; ms = 0} is open in R.

(b) The category Dis(R) is closed under subobjects, factor objects and
arbitrary direct sums in Mod(R).

(c) Dis(R) is a Grothendieck category and the modules R/I, with I ∈ F ,
form a set of generators of Dis(R). In particular , Dis(R) has enough injec-
tive objects.

The final part of (c) follows from the well known fact that any Grothen-
dieck category has enough injective objects (see [6], [34]).

Definition 2.4 (Gabriel [17]). LetK be a field. AK-algebraR is said to
be a pseudocompact algebra if R is a Hausdorff linear topological K-algebra,
R admits a basis F consisting of two-sided ideals such that dimK R/I is finite
for all I ∈ F and the natural K-algebra homomorphism R→ lim←−I∈F R/I is
an isomorphism.

A pseudocompact K-algebra R is said to be basic if the factor algebra
R/J(R) of R modulo its Jacobson radical J(R) is a product of division rings.

A right linear topological R-module M is called a pseudocompact R-
module if M has a basis consisting of right R-submodules N such that
dimKM/N is finite and the natural R-homomorphism M → lim←−N M/N
is an isomorphism.

We denote by PCK the category of all pseudocompactK-algebras. Given
an algebra R in PCK , we denote by R-PC and PC-R the categories of
pseudocompact left R-modules and right R-modules, respectively. Given
pseudocompact R-modules M and N we denote by homR(M,N) the K-
vector space of all continuous R-homomorphisms from M to N .

Following Gabriel [17] (see also Brumer [5, p. 448]) we define a pair of
duality functors

(2.5) Dis(R)
D1
⇄

D2

R-PC

as follows. Given a right R-module M in Dis(R) we set D1(M) = M∗ =
HomK(M,K) and we view D1(M) as a left R-module in a natural way. We
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define a linear topology on D1(M) by taking as a basis the submodules

N⊥γ = {ϕ ∈ HomK(M,K); ϕ(Nγ) = 0},

where Nγ runs through all finitely generated submodules of M . It follows
from Lemma 2.3(a) that every such N is annihilated by an open ideal I of
R, that is, Nγ is a finitely generated module over the finite-dimensional
K-algebra R/I. Hence dimK Nγ is finite and therefore dimKM

∗/N⊥γ =

dimK N
∗
γ is finite. Since obviously M

∗ ∼= lim←−Nγ N
∗
γ
∼= lim←−Nγ M

∗/N⊥γ , the
left R-module D1(M) =M

∗ is pseudocompact.

Given a pseudocompact left R-module L ∼= lim←−β L/Lβ in R-PC, where
Lβ is an open submodule of L, we set D2(L) = homK(L,K), that is, D2(L)
consists of all ϕ ∈ HomK(L,K) such that Kerϕ contains an open submodule
Lβ of L. It follows from Lemma 2.3(a) that the right R-module D2(L) ∼=
lim−→β(L/Lβ)

∗ is discrete. The functors D1 and D2 are defined for morphisms
in a natural way.

For the proof of the following useful result we refer to [17] (see also [5,
Proposition 2.3]).

Proposition 2.6. Let R be a pseudocompact K-algebra.

(a) The category R-PC of pseudocompact left R-modules is abelian with
exact inverse limits and enough projective objects.

(b) A pseudocompact R-module P is projective in R-PC if and only if
P is a direct summand of a direct product of copies of R with the product
topology.

(c) Every finitely generated discrete R-module is of finite K-dimension.

(d) The contravariant functors D1 and D2 in (2.5) are dualities of cat-
egories such that D1 ◦D2 ∼= id and D2 ◦D1 ∼= id.

An interesting application of pseudocompact algebras and their pseudo-
compact modules in the study of hereditary abelian categories with Serre
duality can be found in a recent preprint [35].

3. Coalgebras and pseudocompact algebras. Let K be a field. We
recall (see [28], [56]) that a (unitary) K-coalgebra C is a non-zero K-vector
space C together with K-linear maps ∆ : C → C⊗C (comultiplication) and
ε : C → K (counity) satisfying the coassociativity condition (∆⊗ idC)∆ =
(idC ⊗∆)∆ and the counity conditions (ε⊗ idC)∆ = idC , (idC ⊗ε)∆ = idC ,
under the identification C ⊗ K ∼= C ∼= K ⊗ C, where we set ⊗ = ⊗K .
A subcoalgebra of a K-coalgebra C is a K-vector subspace D of C such that
∆(D) ⊆ D ⊗ D ⊆ C ⊗ C. A coalgebra C is said to be simple if C has no
non-zero subcoalgebras. The following result is often called the fundamental
coalgebra structure theorem (see [28], [56]).
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Theorem 3.1. (a) Every finite-dimensional subspace of a K-coalgebra
C is contained in a finite-dimensional subcoalgebra of C.

(b) Any K-coalgebra is a directed union of finite-dimensional subcoal-
gebras.

A K-linear map f : C → C ′ between K-coalgebras C and C ′ is a coal-
gebra homomorphism if ∆′f = (f ⊗ f)∆ and ε′f = ε. We denote by CoalgK
the category of K-coalgebras together with coalgebra homomorphisms. It
is well known that CoalgK has arbitrary coproducts and direct limits. An
important role in our study of coalgebras is played by the duality functors

(3.2) CoalgK
D1
⇄

D2

PCK

defined as follows. Given a K-coalgebra C we equip the K-vector space

C∗ = HomK(C,K)

with the K-algebra structure given by the induced maps

C∗ ⊗ C∗ → (C ⊗ C)∗
∆∗
→ C∗

(convolution product [28], [56]) and ε∗ : K → C∗. We also define a linear
profinite topology on the algebra C∗ taking for its basis the two-sided ideals

(3.3) H⊥ = {ϕ ∈ HomK(C,K); ϕ(H) = 0},

where H runs through all finite-dimensional subcoalgebras of C. It follows
from Lemma 2.2 that we have defined a linear topology such that C∗ is a
pseudocompact K-algebra. For this we note that according to Theorem 3.1
the coalgebra C is a directed union of its finite-dimensional subcoalgebras
Hβ and therefore

(3.4) C∗ ∼= lim←−
Hβ

H∗β
∼= lim←−
Hβ

C∗/H⊥β .

Note also that dimK C
∗/H⊥β = dimK H

∗
β is finite. We call C

∗ the convolution
pseudocompact K-algebra associated with C. It is well known that all open
one-sided ideals of C∗ are closed (see [58] and [59, Section 1] for references).

We define the functor D1 of (3.2) by assigning to any K-coalgebra C the
K-algebra D1(C) = C

∗ equipped with the profinite topology defined above.
The functor D1 is defined on coalgebra homomorphisms in an obvious way.

Now let R ∼= lim←−I∈F R/I be a pseudocompact K-algebra with a ba-
sis F of neighborhoods of zero consisting of two-sided ideals I such that
dimK R/I <∞. Consider the topologically K-dual space to R,

R◦ = homK(R,K),

where homK(R,K) consists of all K-linear functionals ϕ : R→ K such that
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Kerϕ contains an open ideal from F . It follows that

(3.5) R◦ = homK(R,K) ∼= homK(lim←−
I∈F

R/I,K) ∼= lim−→
I∈F

(R/I)∗

where (R/I)∗ = HomK(R/I,K) = homK(R/I,K), because dimK R/I is
finite. The K-algebra structure on the finite-dimensional K-algebra R/I
induces a dual K-coalgebra structure on (R/I)∗ in such a way that the
K-linear map (R/I2)

∗ → (R/I1)
∗ induced by the algebra surjection R/I1 →

R/I2 is a coalgebra embedding for all ideals I1 ⊆ I2 in F . This defines a
unique coalgebra structure on R◦ such that (R/I)∗ is a subcoalgebra of R◦

for all I in F (cf. [23, Section 3.3]). It follows from the definition of the
profinite linear topology on C∗ applied to C = R◦ that there are functorial
isomorphisms

(R◦)∗ = (lim−→
I∈F

(R/I)∗)∗ ∼= lim←−
I∈F

(R/I)∗∗ ∼= lim←−
I∈F

R/I ∼= R

and the composite isomorphism (R◦)∗ ∼= R is an isomorphism of pseudo-
compact K-algebras. Similarly we show that there is a functorial coalgebra
isomorphism C ∼= (C∗)◦ for any K-coalgebra C.
We define the functor D2 of (3.2) by assigning to any pseudocompact K-

algebra R ∼= lim←−I∈F R/I the K-vector space D2(R) = R
◦ equipped with the

coalgebra structure defined above. The functor D2 is defined on morphisms
in PCK in an obvious way.
The arguments given above yield the following important duality theo-

rem (see [27] and [59, Section 2]).

Theorem 3.6. (a) For any K-coalgebra C the vector space C∗ =
HomK(C,K) is a pseudocompact K-algebra with respect to the induced lin-
early topological K-algebra structure defined above.
(b) The map C 7→ C∗ defines a duality between the category of finite-

dimensional K-coalgebras and the category of finite-dimensional K-algebras.
(c) For any pseudocompact K-algebra R the vector space D2(R) = R

◦ =
homK(R,K) is a K-coalgebra with respect to the induced coalgebra struc-
ture defined above. Moreover , there is a natural isomorphism (R◦)∗ ∼= R
of pseudocompact K-algebras. If R = C∗ = D1(C) is the pseudocompact
K-algebra of a K-coalgebra C, then there is a natural K-coalgebra isomor-
phism (C∗)◦ ∼= C.

(d) The contravariant functors CoalgK
D1
⇄

D2

PCK of (3.2) are dualities of

categories such that D1 ◦D2 ∼= id and D2 ◦D1 ∼= id.

4. The category of comodules and its dual. Let C be a non-zero
K-coalgebra, with comultiplication ∆ and counity ε, where K is a field.
We recall that a left C-comodule is a K-vector space M together with a
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K-linear map δM : M → C ⊗M such that (∆ ⊗ idM )δM = (idC ⊗ δM )δM
and (ε⊗ idM )δM is the canonical isomorphismM ∼= K⊗M . A K-linear map
f : M → M ′ between left C-comodules is a C-comodule homomorphism if
δM ′f = (idC ⊗ f)δM . Left C-subcomodules of the C-comodule C are called
left coideals of C.
We denote by C-Comod the category of all left C-comodules, and by

C-comod its full subcategory formed by the C-comodules of finite K-dimen-
sion. The corresponding categories of right C-comodules are denoted by
Comod-C and comod-C, respectively.
If M is a left C-comodule and C∗ is the pseudocompact K-algebra of C

then the composite K-linear map

(4.1) M ⊗ C∗
δM⊗id
−−−→C ⊗M ⊗ C∗

id⊗τ
−−−→C ⊗ C∗ ⊗M

ev⊗ε
−−−→K ⊗M ∼=M

defines a right C∗-module structure on M (called the rational C∗-module
structure [56]), where τ : M ⊗ C∗ → C∗ ⊗M is the twist isomorphism and
ev : C ⊗ C∗ → K is the evaluation map c ⊗ ϕ 7→ ϕ(c). It is shown in [56]
that this correspondence defines a categorical isomorphism

(4.2) C-Comod ∼= Rat(C∗)

of the category of left C-comodules and the category Rat(C∗) of right C∗-
modules in the sense of [56].
We shall need the following useful observation (see [27], [59, Section 2]).

Theorem 4.3. Let C be a K-coalgebra and C∗ = HomK(C,K) the as-
sociated pseudocompact K-algebra (3.4).

(a) The map assigning to any left C-comodule M the underlying vec-
tor space M endowed with the rational right C∗-module structure defines
category isomorphisms

(4.4) C-Comod ∼= Dis(C∗) and C-comod ∼= dis(C∗)

where Dis(C∗) is the category of discrete right C∗-modules and dis(C∗) is
its full subcategory formed by the finite-dimensional modules.

(b) Let H be a finite-dimensional subcoalgebra of C. Then there is a
natural exact embedding H-Comod ⊆ C-Comod, and a comodule M in

C-Comod lies in H-Comod if and only if M viewed as a discrete right
C∗-module is annihilated by the ideal H⊥ of C∗.
(c) For any finite-dimensional left C-comoduleM there is a finite-dimen-

sional subcoalgebra H of C such that M lies in H-comod ⊆ C-comod.
(d) There exist contravariant equivalences of categories

(4.5) C-Comod
D̃1
⇄

D̃2

C∗-PC

such that D̃1 ◦ D̃2 ∼= id and D̃2 ◦ D̃1 ∼= id.
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Proof. (a) Let M be a left C-comodule. Given any m ∈ M we have
δM (m) = c1⊗m1+ . . .+cr⊗mr, where c1, . . . , cr ∈ C and m1, . . . ,mr ∈M .
By Theorem 3.1, there is a finite-dimensional subcoalgebra H of C contain-
ing c1, . . . , cr. It follows from (4.2) that the two-sided ideal H

⊥ (see (3.3)) of
C∗ annihilates the element m of the right C∗-module M , that is, the anni-
hilator (0 : m) contains H⊥. Hence, according to Lemma 2.1, the right ideal
(0 : m) is open. In view of Lemma 2.3, the right C∗-module M is discrete.
Conversely, assume M is a discrete right C∗-module and let N be a

finitely generated submodule of M . It follows from Lemma 2.3 that N is
annihilated by an open ideal of C∗, that is, there exists a finite-dimensional
subcoalgebra H of C such that N ·H⊥ = 0. Hence N is a finite-dimensional
right module over the finite-dimensional K-algebra C∗/H⊥ isomorphic to
the algebra H∗. Then N∗ is a left H∗-module and the multiplication map
H∗ ⊗ N∗ → N∗ induces N ∼= N∗∗ → (H∗ ⊗ N∗)∗ ∼= H∗∗ ⊗ N∗∗ ∼= H ⊗ N
defining an H-comodule structure on N such that the induced rational right
module structure of N over the algebra C∗/H⊥ ∼= H∗ coincides with the
original one. Since N is arbitrary, we have defined a unique left C-comodule
structure on M such that the induced rational right C∗-module structure
on M is the original one. This finishes the proof of (a).
The statements (b) and (c) follow from the above considerations.

(d) Consider the duality functors Dis(C∗)
D1
⇄

D2

C∗-PC of (2.5) and take

for D̃1 and D̃2 in (4.5) the composition of the functors D1 and D2 with
the category isomorphism C-Comod ∼= Dis(C∗) defined above. Then (b) is
an immediate consequence of Proposition 2.6 applied to the pseudocompact
K-algebra R = C∗.

Corollary 4.6. For any K-coalgebra C there exists a pair of K-linear
duality functors

(4.7) C-comod
D
⇄

D
comod-C.

Proof. Let C∗ = HomK(C,K) be the pseudocompact K-algebra associ-
ated with C. Let dis(C∗) be the full subcategory of Dis(C∗) formed by finite-
dimensional modules. It follows from Proposition 2.6 and Lemma 2.3(a) that

the functors (2.5) with R = C∗ induce K-linear duality functors dis(C∗)
D1
⇄

D2

dis(C∗op). Then in view of the category isomorphisms C-comod ∼= dis(C∗)
and comod-C ∼= dis(C∗op) (see (4.4)) there are K-linear equivalences of
categories

C-comod ∼= dis(C∗)
D1
⇄

D2

(dis(C∗op))op ∼= (comod-C)op

and we are done.
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Let us list the main properties of comodule categories we need through-
out this paper (see [28] and [56]).

Theorem 4.8. Let C be a K-coalgebra, where K is a field.

(a) Every left C-comodule M is a directed union of finite-dimensional
subcomodules.

(b) The Grothendieck category C-Comod is locally finite and C-comod
is the full subcategory of C-Comod consisting of objects of finite length (see
[17], [34]). The category C-comod is a skeletally small abelian Krull–Schmidt
K-category.
(c) The coalgebra C, viewed as a left C-comodule, is an injective cogen-

erator in the category C-Comod. If M is a left C-comodule, then the left
comultiplication map δM :M → C ⊗M is a C-comodule embedding and the
left C-comodule C ⊗M is injective.
(d) The category C-Comod has enough injective objects and every injec-

tive object in C-Comod is a direct sum of injective envelopes E(S) of simple
C-comodules S. Every simple left C-comodule is isomorphic to a subcomod-
ule of the left comodule CC.
(e) The direct sum

⊕
β Eβ of any family of comodules Eβ is injective in

C-Comod if and only if each summand Eβ is injective.

In general the category C-Comod does not have enough projectives, and
sometimes it has no non-zero projective object (see [32]).
An important role in the study of comodule categories is played by the

following version of the Yoneda lemma (see [56]).

Lemma 4.9. Let C be a K-coalgebra and M a left C-comodule. The
Yoneda K-linear map

ε̃M : HomC(M,C)
∼
→ HomK(M,K) =M∗,

ϕ 7→ εϕ, is an isomorphism. ε̃M is functorial with respect to C-comodule
homomorphisms f :M ′ →M , and its inverse is given by ψ 7→ (idC⊗ψ)δM .

5. Basic coalgebras. Given a left C-comoduleM we denote by soc CM
the socle ofM , that is, the sum of all simple C-subcomodules ofM . We recall
that the coradical C0 of a coalgebra C is the sum of all simple subcoalgebras
of C (see [28], [56]).
We start with the following useful observation.

Lemma 5.1. Let C be a K-coalgebra and C∗ the associated pseudocom-
pact K-algebra (3.4).

(a) soc CC = socCC = C0, the sum of all simple subcoalgebras of C.
(b) The Jacobson radical J(C∗) of the K-algebra C∗ is the intersection

of all open two-sided ideals of C∗ and J(C∗) = (socCC)
⊥.

(c) The ideal J(C∗) is closed in C∗ and
⋂∞
m=0 J(C

∗)m = 0.
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Proof. It is clear that under the identification C-Comod = Dis(C∗) of
Theorem 4.3 the socle soc CC coincides with the socle socCC∗ of the right
C∗-module C. Then (a) is a consequence of [28, Corollary 5.1.8].
Let C0 =

∑
λHλ, whereHλ is a simple subcoalgebra of C. Then J(C

∗) =
C⊥ =

⋂
λH
⊥
λ and the open two-sided ideals H

⊥
λ are closed (see [58] and [59,

Section 1] for references). Then the statements (b) and (c) are easily deduced
from [19, Section 7], [24] and [28, Proposition 5.2.9], because the algebra C∗

is pseudocompact with respect to the profinite topology defined by the ideals
H⊥.

Definition 5.2 [43, p. 404]. A K-coalgebra C is called basic if the left
C-subcomodule soc CC of C has a direct sum decomposition soc CC =⊕
j∈IC

S(j), where IC is a set, S(j) are simple comodules and S(i) 6∼= S(j)
for all i 6= j.

The following lemma shows that the definition is left-right symmetric and
the notion of basic coalgebra introduced in [9] is equivalent to the above one.

Lemma 5.3. Let C be a K-coalgebra, where K is a field. The following
conditions are equivalent.

(a) The coalgebra C is basic.
(b) The left C-comodule C has a direct sum decomposition C =

⊕
i∈I Ei,

where each left C-comodule Ei is indecomposable, socEi is simple and Ei 6∼=
Ej for i 6= j.
(c) The left C-comodule C is a minimal injective cogenerator in the

category C-Comod.
(d) If D is a simple subcoalgebra of C then D∗ is a division K-algebra.

Proof. The equivalence of (a), (b) and (c) is immediate, by Theorem
4.8(d) and the obvious observation that simple comodules S1 and S2 are
isomorphic if and only if their injective envelopes E(S1) and E(S2) are.
(a)⇒(d). Let H ⊆ C be a simple subcoalgebra of C. Then dimK H is

finite and according to [28, Lemma 5.1.4(3)], theK-algebra H∗ is simple and
therefore of the full matrix algebra form H∗ ∼= Mr(D), where r ≥ 1 and D is
a division K-algebra. Moreover, by [28, Lemma 5.1.4(1)], the map N 7→ N⊥

defines a bijection between the left subcomodules of H and the left ideals of
the algebraH∗. It follows thatH∗ is a divisionK-algebra, because otherwise
r ≥ 2 and the matrix algebraMr(D) contains two different isomorphic simple
left ideals and therefore the coalgebra H contains two different isomorphic
simple left subcomodules. This contradicts the assumption that C is basic.
(d)⇒(a). Assume to the contrary that S1 and S2 are different non-

isomorphic simple left C-comodules. It follows that S1 and S2 are of finite
dimension and according to Theorem 3.2, the K-vector space S1 + S2 is
contained in a finite-dimensional subcoalgebra C1 of C. Since, according to
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[28, Lemma 5.1.4(3)], the map N 7→ N⊥ defines a bijection between the left
subcomodules of C1 and the left ideals of the algebra C

∗
1 , the semisimple

K-algebra C∗1/J(C
∗
1) contains two different non-isomorphic simple left ideals

and therefore has an epimorphic image of the form R ∼= Mr(D), where r ≥ 2
and D is a division K-algebra. By Theorem 3.6, the K-algebra surjection
C∗1 → R induces a coalgebra injection R∗ ⊆ C1. This is a contradiction,
because the coalgebra R∗ is simple [28, Lemma 5.1.4(3)].

Since simple coalgebras are finite-dimensional, Lemma 5.3 yields

Corollary 5.4. If the field K is algebraically closed , then a K-coalgeb-
ra C is basic if and only if C is pointed , that is, every simple subcoalgebra
of C is one-dimensional.

In view of the well known results of Gabriel [17] and [19, 7.2], Lemma
5.3 yields

Corollary 5.5. Let K be a field , let C be a K-coalgebra and C∗ the
pseudocompact K-algebra (3.4) associated with C. The following conditions
are equivalent.

(a) C is basic.

(b) C∗ is basic.

(c) C∗ has product decompositions C∗ ∼=
∏
i∈IC

eiC
∗ ∼=
∏
i∈IC

C∗ei in
the category PC-C∗ and C∗-PC, respectively , where ei is a primitive idem-
potent of C∗ and eiC

∗ (resp. C∗ei) is an indecomposable pseudocompact
right (resp. left) ideal of C∗ for i ∈ IC .

The following useful fact was proved in [43, p. 404] by applying an idea
of Gabriel [17] and [19, 7.2].

Proposition 5.6. For every K-coalgebra C there exists a basic K-coal-
gebra Cb of the form (5.8) such that C-Comod ∼= Cb-Comod, and the con-
ditions determine Cb uniquely , up to K-coalgebra isomorphism.

Proof. Let C∗ be the pseudocompact K-algebra (3.4) associated with
C. By Gabriel [17] and [19, 7.2], there is a basic pseudocompact K-algebra
ΛC = (C

∗)b associated with C
∗, and it can be constructed as follows. Let

E =
⊕
i∈IC

E(Si) be a minimal injective cogenerator in C-Comod, where IC
is a set and E(Si) is an injective envelope of a simple left C-comodule Si. Let
{Eβ} be a directed family of finite-dimensional subcomodules of E such that
E =
⋃
β Eβ (see Theorem 3.1). By Gabriel [17], the induced directed family

of two-sided ideals HomC(E/Eβ , E) defines a profinite linear topology on
the K-algebra

(5.7) ΛC = EndC(E) ∼= lim←−
β

ΛC/HomC(E/Eβ , E)
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such that the pseudocompact K-algebra ΛC is basic and the contravariant
functor

hE = HomC(−, E) : C-Comod→ ΛC -PC

is a duality. Let

(5.8) Cb = Λ◦C = homK(ΛC ,K)

be the topological dual K-coalgebra of ΛC (see (3.5)). By Theorem 3.6,
Cb = Λ◦C is a K-coalgebra such that the pseudocompact K-algebra (3.4)
associated with Cb is isomorphic to ΛC . By applying the duality (3.5) and the
composite contravariant equivalence Cb-Comod ∼= Dis(Cb∗) ∼= Dis(ΛC) ∼=
(ΛC-PC)

op we get an equivalence of categories Φ : C-Comod ∼= Cb-Comod.
We note that Φ(E) ∼=

⊕
i∈IC

E′i, where E
′
i = Φ(E(Si)), i ∈ IC , is a family

of indecomposable left Cb-subcomodules of Cb such that E′i 6
∼= E′j for i 6= j.

It follows from Lemma 5.3 that Cb is a basic coalgebra.
To finish the proof, we assume that H is a basic K-coalgebra such that

there exists an equivalence of categories Ψ : Cb-Comod → H-Comod. By
Lemma 5.3, Cb and H are minimal injective cogenerators in Cb-Comod
and H-Comod, respectively. Then the equivalence Ψ induces a H-comodule
isomorphism Ψ(Cb) ∼= H and an isomorphism

ΛCb = HomCb(C
b, Cb) ∼= HomH(Ψ(C

b), Ψ(Cb)) ∼= HomH(H,H) = ΛH

of pseudocompact K-algebras with respect to the Gabriel topology defined
above (see (5.7)), because Ψ carries finite-dimensional comodules to finite-
dimensional ones. Since obviously the map r 7→ (x 7→ xr) defines an isomor-
phism R ∼= HomR(R,R) = homR(R,R) of pseudocompact K-algebras for
any pseudocompact K-algebra R, the above composite K-algebra isomor-
phism, together with the algebra isomorphisms

HomH(H,H) ∼= homH∗(H
∗, H∗) ∼= H∗,

HomCb(C
b, Cb) ∼= homCb∗(C

b∗, Cb
∗
) = homΛC (ΛC , ΛC)

∼= ΛC

defined by the duality (4.5), applied to C = Cb and C = H, gives an
isomorphism H∗ ∼= ΛC of pseudocompact K-algebras. In view of Theorem
3.6 we get a coalgebra isomorphism H ∼= (H∗)◦ ∼= (ΛC)

◦ = Cb. This finishes
the proof.

A slightly different construction of a basic K-coalgebra associated with
a given one is presented in [9].
Following Gabriel [19], we call an abelian K-category A a length K-

category if every object of A has a finite composition series and End(X) is
a finite-dimensional K-algebra for any object X of A. Now we are able to
prove the following realisation result (see also [57] and [60]).

Proposition 5.9. For every abelian length K-category A there exists a

basic K-coalgebra C and an equivalence of K-categories A ∼= C-comod.
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Proof. Let A be an abelian length K-category. It is well known (see
[17], [34]) that there exists a fully faithful exact embedding of A in the
locally finite Grothendieck category A = LexA of all left exact contravariant
additive functors from A into the category of K-vector spaces such that
A coincides with the full subcategory of A formed by all objects of finite
length. It was proved by Gabriel in [17] that there is a duality functor
A ∼= (R-PC)op, where R is a basic pseudocompact K-algebra. Let C = R◦

be the basic K-coalgebra (3.5) associated with R. It follows from Theorem
3.6 that there is an isomorphism C∗ ∼= R of pseudocompact K-algebras
and according to Theorem 4.3 there is a duality C-Comod ∼= (R-PC)op.
Hence we get an equivalence A ∼= C-Comod, and the required equivalence
of categories A ∼= C-comod.

The following useful observation generalises a result in [43].

Corollary 5.10. Let A be an abelian length K-category. Then there
exist a directed family {Aβ}β of full exact K-subcategories of A and an

inverse system {Rβ , fβ,γ}β�γ of finite-dimensional K-algebras Rβ connected
by K-algebra surjections fβ,γ : Rγ → Rβ such that R = lim←−β{Rβ, fβ,γ} is a
pseudocompact K-algebra,

A =
⋃

β

Aβ

is a directed union, Aβ ∼= mod(Rβ) and the embedding Aβ ⊆ Aγ is induced

by the K-algebra surjection fβ,γ : Rγ → Rβ for all β � γ, that is, the
diagram

Aβ →֒ Aγy∼=
y∼=

mod(Rβ) →֒ mod(Rγ)

is commutative, where the lower inclusion functor is induced by the K-
algebra surjection fβ,γ : Rγ → Rβ.

Proof. By Proposition 5.9, there exist a basic K-coalgebra C and an

equivalence of K-categories F : A
≃
→ C-comod. We know from Theorem 3.1

that C is a directed union of finite-dimensional subcoalgebras Hβ and there-
fore C-comod =

⋃
βHβ-comod is a directed union. Let Aβ be the preimage

of Hβ-comod ⊆ C-comod under the equivalence F, let Rβ = H∗β and take
for fβ,γ : Rγ → Rβ the K-algebra surjection induced by the coalgebra em-
bedding Hβ ⊆ Hγ for all β � γ. It follows from Theorem 4.3 that there is a
category isomorphism Hβ-comod ∼= mod(Rβ) and consequently an equiva-
lence Aβ

∼= mod(Rβ). The remaining part of the corollary follows easily by
applying Theorems 3.6 and 4.3.

The following two “localisation” corollaries have important applications.
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Corollary 5.11. Let A be an abelian K-category and let S = {Si}i∈I
be a set of pairwise non-isomorphic objects of A such that End(Sj) is a
division ring for all i ∈ I and HomA(Si, Sj) = 0 for all i 6= j. Assume
that End(X) is a finite-dimensional K-algebra for any object X of A with
S-filtration, that is, with a finite filtration 0 = X0 ⊂ X1 ⊂ . . . ⊂ Xs = X
such that Xt/Xt−1 ∈ S for 1 ≤ t ≤ s. Denote by A‖S the full subcategory
of A formed by all objects with S-filtration.

(a) A‖S is an exact abelian length K-subcategory of A closed under
extensions and S is a complete set of simple objects of A‖S .

(b) There exists a basic K-coalgebra CS and a K-linear equivalence of
categories A‖S ∼= CS-comod. The number of pairwise non-isomorphic simple
subcomodules of CS is |S| = |I|.

Proof. The statement (a) is a consequence of [36, Theorem 1.2]. To get
(b) apply (a) and Proposition 5.9 to the length category A = A‖S .

Corollary 5.12. Let C be a basic K-coalgebra with a decomposition
soc CC =

⊕
j∈IC

S(j), and let S ⊆ {S(i)}i∈IC be a set of pairwise non-
isomorphic left simple C-comodules. Denote by C-comod‖S the full subcat-
egory of C-comod formed by all comodules whose composition factors are
in S. Then there exists a basic K-coalgebra CS and a K-linear equivalence
of categories C-comod‖S ∼= CS-comod. The socle of C is a direct sum of
|S| pairwise non-isomorphic simple comodules.

We recall that for any K-algebra Λ (in general, infinite-dimensional) the
category Modlf(Λ) of locally finite-dimensional right R-modules is defined
to be the full subcategory of Mod(Λ) formed by modules that are directed
unions of finite-dimensional right Λ-submodules [23].

Proposition 5.9 and its proof yield the following result of J. A. Green
[23].

Corollary 5.13. Let K be a field and let Λ be an arbitrary K-algebra.
There exists a basic K-coalgebra CΛ and an equivalence of K-categories
Modlf(Λ) ∼= CΛ-Comod.

6. Comodule types of coalgebras. Let K be any field and C a basic
K-coalgebra. Throughout this section we fix a left comodule decomposition

(6.1) soc CC =
⊕

j∈IC

S(j)tj

where IC is a set, tj ≥ 1 and S(j) are pairwise non-isomorphic simple
comodules for j ∈ IC . For every comodule M in C-comod we define the
composition length vector

(6.2) lengthM = (m(j))j∈IC ∈ Z
(IC)
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where m(j) ∈ N is defined to be the number of simple composition factors
of M isomorphic to S(j). Here Z

(IC) is the direct sum of IC copies of the
free abelian group Z.

We also associate with M its dimension vector

(6.3) dimM = (m̂(j))j∈IC ∈ Z
(IC)

where m̂(j) = m(j) ·dimK EndS(j). Note that if the field K is algebraically
closed then dimK EndS(j) = 1 for all j ∈ IC and therefore dimM =
lengthM .

The Grothendieck groupK0(C) = K0(C-comod) of the coalgebra C (or of
the category C-comod) is defined to be the group K0(C) = F/F0, where F
is the free abelian group having as a basis the set of the isomorphism classes
M̃ of modulesM in C-comod and F0 is the subgroup of F generated by the
elements M̃ − L̃ − Ñ corresponding to all exact sequences 0 → L → M →
N → 0 in C-comod. We denote by [M ] the image of the isomorphism class

M̃ of the module M under the canonical group epimorphism F → F/F0.

Since, by Corollary 4.6, there exists a K-linear duality (C-comod)op

∼= comod-C, there is an induced group isomorphism K0(C-comod) ∼=
K0(comod-C).

Note that M 7→ lengthM is an additive function on C-comod, that is,
lengthM = lengthL + lengthN for any exact sequence 0 → L → M →
N → 0 in C-comod. It follows that [M ] 7→ lengthM extends to a group
homomorphism

(6.4) length : K0(C)
≃
→ Z

(IC).

This is an isomorphism, because obviously K0(C) is generated by the ele-
ments [S(j)] with j ∈ IC , and lengthS(j) is the jth standard Z-basis vector
of the free group Z

(IC) for all j ∈ IC . This together with Lemmas 4.9 and
5.3 proves the following lemma.

Lemma 6.5. For any K-coalgebra C with a decomposition soc CC =⊕
j∈IC

S(j)tj , where tj ≥ 1 and S(j) are pairwise non-isomorphic simple
comodules for j ∈ IC , the left C-comodule C has a decomposition

C =
⊕

j∈IC

E(S(j))tj , tj =
dimK S(j)

dimK EndCS(j)
,

the Grothendieck group K0(C) of C is freely generated by the classes [S(j)]
of the simple subcomodules S(j), j ∈ IC , of C, and the homomorphism (6.4)
defines a group isomorphism K0(C) ∼= Z

(IC). Here E(S(j)) is the injective
envelope of the simple C-comodule S(j).

Given v ∈ K0(C) we denote by indv(C-comod) the full subcategory of
C-comod formed by the indecomposable comodules X with lengthX = v.
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Let R be a K-algebra. By a C-R-bimodule CLR we mean a K-vector
space L equipped with a left C-comodule structure and a right R-module
structure satisfying the condition δL(xr) = δL(x)r for all x ∈ L and r ∈ R.

Following Drozd [13] we introduce tameness and wildness for coalgebras
as follows (see also [44, p. 368] and [45]).

Definition 6.6. Assume that K is an algebraically closed field.

(a) A K-coalgebra C is of wild comodule type (or briefly wild) if the cat-
egory C-comod of finite-dimensional left C-comodules is of wild representa-
tion type, that is, there exists an exact representation embedding K-linear
functor (see [45]) T : modΓ3(K)→ C-comod, where

Γ3(K) =

(
K K3

0 K

)
.

If, in addition, the functor T is fully faithful, we call C of fully wild comodule
type, or strictly wild comodule type (see [13], [45]).

(b) AK-coalgebra C is of tame comodule type (or briefly tame) if the cat-
egory C-comod is of tame representation type, that is, for every v ∈ K0(C)
there exist C-K[t]-bimodules L(1), . . . , L(rv), which are finitely generated
free K[t]-modules, such that all but finitely many indecomposable left C-
comodules M with lengthM = v are of the form M ∼= L(s) ⊗ K1λ, where
s ≤ rv, K

1
λ = K[t]/(t− λ) and λ ∈ K.

If there is a common bound for the number rv for all vectors v, the tame
coalgebra C is called domestic (see [54, (2.1)], [44, Section 14.4]).

In other words, C is of tame comodule type if the indecomposable left
C-comodules of any fixed length vector v form a finite set of at most one-
parameter families (see [13], [44, Section 14.4], [45]).

Following [51]–[53] (see also [44, p. 368]) we introduce the polynomial
growth for tame coalgebras as follows.

Definition 6.7. Assume that K is an algebraically closed field and let
C be a K-coalgebra of tame comodule type.

(a) We define two growth functions

µ
1
C ,µ

0
C : K0(C)→ N

as follows. Given a vector v ∈ K0(C) we define µ
1
C(v) to be the minimal

number rv of C-K[t]-bimodules L
(1), . . . , L(rv) satisfying the conditions in

6.6(b). We let µ0C(v) be the minimal number of isoclasses of indecomposable
discrete C-comodulesM with lengthM = v, that is, C-comodulesM which
are not of the formM∼=L(s)⊗K1λ, where s≤µ

1
C(v), K

1
λ=K[t]/(t−λ), λ∈K

and L(1), . . . , L(µ
1
C(v)) is a minimal family of C-K[t]-bimodules satisfying the

conditions in 6.6(b).
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(b) The tame K-coalgebra C is said to be of polynomial growth if there
exists a formal power series

G(t) =

∞∑

m=1

∑

j1,...,jm∈IC

gj1,...,jmtj1 . . . tjm

with t = (tj)j∈IC and non-negative coefficients gj1,...,jm ∈ Z such that

µ
1
C(v) ≤ G(v) for all v = (v(j))j∈IC ∈ K0(C) ∼= Z

(IC) such that ‖v‖ :=∑
j∈IC

v(j) ≥ 2.

If G(t) =
∑
j∈IC

gjtj , where gj ∈ N, then C is said to be of linear growth.

We note that G(v) is a polynomial of the coordinates v(j) of the vector
v ∈ K0(C) ∼= Z

(IC), because v(j) = 0 for all but a finite number of j ∈ IC .
Note also that tame domestic coalgebras are of linear growth.

The following lemma shows that tame comodule type, polynomial growth
and linear growth are invariant under Morita equivalence of coalgebras.

Lemma 6.8. Assume that K is an algebraically closed field , C, H are
K-coalgebras and there is a K-linear equivalence of categories C-comod ∼=
H-comod. If C is of tame comodule type, then so is H and there is an

isomorphism Φ : K0(C)
≃
→ K0(H) of Grothendieck groups such that µ

1
C =

µ
1
H ◦ Φ and µ

0
C = µ

0
H ◦ Φ.

Proof. Assume that F : C-comod
∼
→ H-comod is a K-linear equiva-

lence of categories. It extends in the standard way to a K-linear equiva-
lence F : C-Comod

∼
→ H-Comod, and according to [57] the functor F is

of the cotensor product form F (−) = HUC�C(−), where HUC is an H-C-
bicomodule. It is clear that the map [M ] 7→ [F (M)] defines an isomorphism

Φ : K0(C)
≃
→ K0(H) of Grothendieck groups.

Assume that C is of tame comodule type. Let v ∈ K0(C) and let
L(1), . . . , L(rv) be as in 6.6(b). It is easy to show that the C-K[t]-bimodules

HUC�CL
(1), . . . ,HUC�CL

(rv) define a family of H-K[t]-bimodules satisfy-
ing the conditions in 6.6(b) for the vector Φ(v) ∈ K0(H). It follows that H
is of tame comodule type. Hence we also get the equalities µ1C = µ

1
H ◦Φ and

µ
0
C = µ

0
H ◦ Φ.

Let us show that the definition of wildness for coalgebras is left-right
symmetric.

Lemma 6.9. Let K be an algebraically closed field and let C be a K-
coalgebra. Then C is of wild (resp. fully wild) comodule type if and only
if the category comod-C of finite-dimensional right C-comodules is of wild
(resp. fully wild) representation type, that is, there exists an exact (resp. fully
faithful) representation embedding K-linear functor modΓ3(K)→comod-C.
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Proof. Assume that C is wild, that is, there exists an exact representa-
tion embedding K-linear functor F : modΓ3(K) → C-comod. It follows
from Corollary 4.6 that there exists a K-linear duality (C-comod)op ∼=
comod-C. Since the algebra Γ3(K) is self-dual, there is a K-linear dual-
ity modΓ3(K) ∼= (modΓ3(K))

op, which together with the representation
embedding F and the duality (C-comod)op ∼= comod-C induces a represen-
tation embedding K-linear functor F ′ : modΓ3(K)→ comod-C.

Theorem 6.10. Let K be an algebraically closed field and let C be a K-
coalgebra such that dimK Ext

1
C(S, S

′) is finite for every pair S, S′ of simple
left C-comodules. The following conditions are equivalent.

(a) C is of wild comodule type (resp. fully wild comodule type).

(b) There exists a finite-dimensional subcoalgebra H of C of wild comod-
ule type (resp. fully wild comodule type).

(c) C is a directed union of finite-dimensional subcoalgebras of wild co-
module type (resp. fully wild comodule type).

Proof. (a)⇒(b). Assume (a) holds. Let F : modΓ3(K) → C-comod be
an exact representation embedding K-linear functor. Let S1 (resp. S2) be
the unique simple injective (resp. projective) right Γ3(K)-module, up to
isomorphism. Since dimK Ext

1
C(S, S

′) is finite for every pair S, S′ of simple
left C-comodules, dimK Ext

1
C(U1, U2) is finite for every pair U1, U2 of finite-

dimensional left C-comodules. This follows by an easy induction on the
length of U1 and U2.

By applying this to the finite-dimensional left C-comodules U1 = F (S1)
and U2 = F (S2) we conclude that dimK Ext

1
C(F (S1), F (S2)) is finite.

Let e1, . . . , er be a K-basis of the K-vector space Ext
1
C(F (S1), F (S2))

and assume that the exact sequence

ej : 0→ F (S2)
uj
→ Ej

πj
→ F (S1)→ 0

in C-comod represents ej for j = 1, . . . , r. It is easy to see that there exists a
finite-dimensional subcoalgebraH of C such that δEj (Ej) ⊆ H⊗Ej ⊆ C⊗Ej
for j = 1, . . . , r, and δUi(Ui) ⊆ H ⊗ Ui ⊆ C ⊗ Ui for i = 1, 2 (see [56]). It
follows that the left C-comodules E1, . . . , Er, F (S1) and F (S2) belong to
the full exact subcategory H-comod of C-comod. We claim that F carries
modΓ3(K) to H-comod.

Let C∗ = HomK(C,K) be the pseudocompactK-algebra (3.4) associated
with C. In view of Theorem 4.3, the category isomorphism (4.4) allows us to
identify the comodules in H-comod ⊆ C-comod with the right C∗-modules
annihilated by the ideal H⊥ of (3.3). Therefore it remains to show that for
every right Γ3(K)-module X in modΓ3(K) the right C

∗-module F (X) is
annihilated by H⊥.
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For this we note that for every such X there exist integers n1, n2 ≥ 0
and an exact sequence

0→ Sn22 → X → Sn11 → 0

in modΓ3(K). Since the functor F is exact, we get the induced exact se-
quence

e : 0→ F (S2)
n2 → F (X)→ F (S1)

n1 → 0

in C-comod, and e represents an element e ∈ Ext1C(F (S1)
n1, Un22 ).

Let pj : F (S1)
n1 → F (S1) be the jth coordinate projection and let

vi : F (S2) → F (S2)
n2 be the ith coordinate injection for j = 1, . . . , n1 and

i = 1, . . . , n2. Let ϕij : Ext
1
C(F (S1), F (S2)) → Ext

1
C(F (S1)

n1 , F (S2)
n2) be

the induced K-linear embedding Ext1C(pj , vi).

It follows that the elements ϕij(e1), . . . , ϕij(er) with j = 1, . . . , n1 and
i = 1, . . . , n2 form a K-basis of the K-vector space Ext

1
C(F (S1)

n1 , F (S2)
n2).

We shall show that the exact sequence

ϕij(et) : 0→ F (S2)
n2 → Eijt → F (S1)

n1 → 0

in C-comod representing ϕij(et) is annihilated by H
⊥ for any i, j, t.

To see this we note that the element

Ext1C(pj , id)(et) ∈ Ext
1
C(F (S1)

n1 , F (S2)
n2)

is represented by an exact sequence

ϕj(et) : 0→ F (S2)
n2 → Ejt → F (S1)

n1 → 0,

where Ejt is the pull-back of πt : Et → F (S1) and pj : F (S1)
n1 → F (S1).

Since the right C∗-modules Et and F (S1) are annihilated by H
⊥, so is their

pull-back Ejt. Since ϕij(et) = Ext
1
C(id, vi)(Ext

1
C(pj , id)(et)), the C

∗-module
Eijt is the push-out of vi : F (S2)→ F (S2)

n2 and F (S2)
n2 → Ejt. It follows

that Eijt is annihilated by H
⊥, because Ejt and F (S2) are. This proves our

claim.

Since e is a K-linear combination of the elements ϕij(et) and obviously

for any λ ∈ K the exact sequence λϕij(et) representing λϕij(et) is annihi-
lated by H⊥, it remains to show that given e′, e′′ ∈ Ext1C(F (S1)

n1 , F (S2)
n2)

such that the corresponding exact sequences e′ : 0 → F (S2)
n2 u

′

→ E′
π′
→

F (S1)
n1 → 0 and e′′ : 0 → F (S2)

n2 u
′′

→ E′′
π′′
→ F (S1)

n1 → 0 are annihilated

by H⊥, the exact sequence e+ : 0 → F (S2)
n2 → E+ → F (S1)

n1 → 0
representing e′ + e′′ in Ext1C(F (S1)

n1 , F (S2)
n2) is also annihilated by H⊥.

This follows from the well known fact that the right C∗-module E+ is iso-
morphic to W/W0, where W = {(x

′, x′′) ∈ E′ ⊕ E′′; π′(x′) = π′′(x′′)} and
W0 = {(u

′(x),−u′′(x)) ∈ E′ ⊕ E′′; x ∈ F (S2)
n2}.

Hence we conclude that for every right Γ3(K)-module X in modΓ3(K)
the right C∗-module F (X) is annihilated by H⊥, that is, the functor F
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carries modΓ3(K) to H-comod. It follows that the full exact subcategory
H-comod of C-comod is of wild representation type and (b) follows.

Since the converse implication (b)⇒(a) is obvious, we easily conclude
that (a) is equivalent to (c), because C is a directed union of finite-dimension-
al subcoalgebras (Theorem 3.1). This completes the proof.

Now we are able to prove the following weak analogue of the tame-wild
dichotomy theorem of Drozd [13] for a class of K-coalgebras (see Note added
in proof ).

Theorem 6.11. Let K be an algebraically closed field and assume that
C is a K-coalgebra of tame comodule type.

(a) Every finite-dimensional subcoalgebra of C is of tame comodule type.

(b) C is a directed union of finite-dimensional subcoalgebras of tame
comodule type.

(c) If dimK Ext
1
C(S, S

′) is finite for every pair S, S′ of simple left C-
comodules, then C is not of wild comodule type.

Proof. (a) Fix a decomposition (6.1). Let H be a finite-dimensional
subcoalgebra of C. Then there exists a finite subset J of IC such that
socHH =

⊕
j∈J S(j) and K0(H)

∼= Z
(J).

It follows from Theorem 4.3(b) thatH-Comod is a full exact subcategory
of C-Comod, and for every vector v ∈ K0(H) ∼= Z

(J) ⊆ Z
(IC) all left H-

comodules M such that v = lengthM are the C-comodules M such that
v = lengthM .

Let C∗ = HomK(C,K) be the pseudocompactK-algebra (3.4) associated
with C. By Theorem 4.3 the category C-Comod may be identified with
the category Dis(C∗) of discrete right C∗-modules, and a comodule M in
C-Comod lies in H-Comod if and only if M viewed as a discrete right
C∗-module is annihilated by the ideal H⊥ of C∗.

Fix a vector v ∈ K0(H) ∼= Z
(J) ⊆ Z

(IC). Since C is of tame comodule
type, there exist C-K[t]-bimodules L(1), . . . , L(rv), which are finitely gen-
erated free K[t]-modules, such that all but finitely many indecomposable
left H-comodules M with lengthM = v are of the form M ∼= L(s) ⊗ K1λ,
where s ≤ rv, K

1
λ = K[t]/(t − λ) and λ ∈ K. Hence it remains to find

H-K[t]-bimodules L(1), . . . , L(rv) with the above properties.

View L(1), . . . , L(rv) as K[t]-C∗-bimodules and view the factor K[t]-H∗-

bimodules L
(1)
, . . . , L

(rv)
as H-K[t]-bimodules, where L

(s)
= L(j)/L(j)H⊥

for s = 1, . . . , rv. Hence L
(j)
is a finitely generated K[t]-module, and if

M ∼= L(s) ⊗K1λ is in H-comod then L
(s) ⊗K1λ

∼= L
(s)
⊗K1λ. It follows that

H is of tame comodule type, because in view of [44, Theorem 14.18] applied
to the finite-dimensional K-algebra H∗ ∼= C∗/H⊥, the K[t]-H∗-bimodules
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L
(1)
, . . . , L

(rv)
can be replaced by bimodules which are finitely generated free

over K[t].

The statement (b) is a consequence of (a) and Theorem 3.1.

(c) Assume to the contrary that C is of wild comodule type. By Theorem
6.10, there exists a finite-dimensional subcoalgebra H of C of wild comodule
type. By (a), H is of tame comodule type. Since the category isomorphism
H-comod ∼= mod(H∗) preserves tame representation type and wild represen-
tation type, we get a contradiction with the tame-wild dichotomy theorem
of Drozd [13] applied to the algebra H∗. This finishes the proof.

The proof of Theorem 6.11(a) yields

Corollary 6.12. If C is a tame coalgebra of polynomial growth then
every finite-dimensional subcoalgebraD of C is tame of polynomial growth.

The following proposition shows that a finite-dimensional K-coalgebra
C is of tame comodule type (resp. tame of polynomial growth) if and only
if the associated finite-dimensional K-algebra C∗ is tame (resp. tame of
polynomial growth).

Proposition 6.13. Let K be an algebraically closed field and let C be
a K-coalgebra with a decomposition soc CC =

⊕
j∈IC

S(j)tj (see (6.1)) such
that the set IC is finite.

(a) C is of tame comodule type if and only if for every d ∈ N there

exist C-K[t]-bimodules N (1), . . . , N (rd), which are finitely generated free
K[t]-modules, such that all but finitely many indecomposable left C-co-
modules M with dimKM = d are of the form M ∼= N (s) ⊗ K1λ, where
s ≤ rd, K

1
λ = K[t]/(t− λ) and λ ∈ K.

(b) C is tame of polynomial growth if and only if there exists an integer
g ≥ 1 such that µ1C(v) ≤ ‖v‖

g for all v = (v(j))j∈IC ∈ K0(C)
∼= Z

(IC) with

‖v‖ =
∑
j∈IC

v(j) ≥ 2.

Proof. (a) Apply the definition of tameness and the fact that given d ∈ N

the number of vectors v = (v(j))j∈IC ∈ K0(C)
∼= Z

(IC) such that ‖v‖ = d is
finite.

(b) Let C be tame of polynomial growth and let G(t) be a power series
as in Definition 6.7 such that µ1C(v) ≤ G(v) for all v ∈ K0(C)

∼= Z
(IC) with

‖v‖ ≥ 2. We have IC = {j1, . . . , jn} for some n ≥ 1 and G(z) is a polynomial
of the form

G(z) =
∑

m≥0

∑

s1+...+sn=m

gs1,...,snz
s1
j1
zs2j2 . . . z

sn
jn

with non-negative coefficients gs1,...,sm ∈ Z. It is easy to see that there exists
g0 ≥ 1 such that gs1,...,snv(j1)

s1 . . . v(jn)
sn ≤ [v(j1)+ . . .+v(jn)]

g0 for all v =
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[v(j1), . . . , v(jn)] ∈ Z
(IC) such that ‖v‖ ≥ 2. It follows that G(v) ≤ n0‖v‖

g0

for some n0 ≥ 2, and therefore G(v) ≤ ‖v‖
g for some g ≥ g0.

We say that a vector v ∈ K0(C) ∼= Z
(IC) has a finite-dimensional support

subcoalgebra Hv of C if every indecomposable C-comodule M in C-comod
with length M = v lies in Hv-comod ⊆ C-comod, that is, indv(Hv-comod)
= indv(C-comod).
Now we are able to prove a weak version of tame-wild dichotomy.

Proposition 6.14. Let C be a basic K-coalgebra with a decomposition
(6.1). Assume that K is algebraically closed and every v ∈ K0(C) ∼= Z

(IC)

has a finite-dimensional support subcoalgebra Hv.

(a) The following three conditions are equivalent.

(a1) C is of tame comodule type.
(a2) Every finite-dimensional subcoalgebra of C is of tame comodule
type.

(a3) C is a directed union of finite-dimensional subcoalgebras of tame
comodule type.

(b) If C is not of tame comodule type then it is of wild comodule type.
(c) If dimK Ext

1
C(S, S

′) is finite for every pair S, S′ of simple left C-
comodules, then C is of tame comodule type if and only if it is not of wild
comodule type.

Proof. The implication (a1)⇒(a2) is a consequence of Theorem 6.11(a).
In view of Theorem 3.1, the implication (a2)⇒(a3) is obvious.
(a3)⇒(a1). Assume that C is a directed union of finite-dimensional sub-

coalgebras of tame comodule type. Then, by assumption, for every v ∈
K0(C) ∼= Z

(IC) there exists a finite-dimensional subcoalgebra Hv of C such
that every indecomposableC-comoduleM with lengthM = v lies inHv-comod ⊆
C-comod. Then Hv is of tame comodule type and therefore there exist
Hv-K[t]-bimodules L

(1), . . . , L(rv), which are finitely generated free K[t]-
modules, such that all but finitely many indecomposable left Hv-comodules
M with lengthM = v are of the form M ∼= L(s) ⊗ K1λ, where s ≤ rv,
K1λ = K[t]/(t − λ) and λ ∈ K. This proves that C is of tame comodule

type, because the Hv-K[t]-bimodules L
(1), . . . , L(rv) are C-K[t]-bimodules

in a natural way. Since the converse implication is a consequence of Theo-
rem 6.11(b), the proof of (a) is complete.
(b) If dimK C is finite then, in view of Proposition 6.13, the tame-wild

dichotomy holds for C, because C-comod ∼= mod(C∗) and the tame-wild
dichotomy of Drozd [13] applies to the finite-dimensional K-algebra C∗.
Assume now that C is arbitrary, and fix a directed family Cβ of finite-

dimensional K-subcoalgebras of C such that C =
⋃
β Cβ. Moreover, assume

that C is not of tame comodule type. By the equivalence of (a1) and (a2),
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there exists β such that Cβ is not of tame comodule type. By the observation
above, Cβ is of wild comodule type, and therefore C is of wild comodule type.
The statement (c) is a consequence of (b) and Theorem 6.11(c). This

finishes the proof.

Remark 6.15. Definitions 6.6 and 6.7 define tame representation type,
polynomial growth and wild representation type for any abelian length K-
category [19], because by Proposition 5.9, for any lengthK-category A there
exists a K-coalgebra C and an equivalence of K-categories A ∼= C-comod.
In view of Lemma 6.8, the definitions do not depend on the choice of the
coalgebra C.

Remark 6.16. By applying the arguments used in the proof of Lemmata
1.2 and 1.3 of [10] one can show that the hypothesis of Proposition 6.14 holds
for any K-coalgebra C such that dimK Ext

1
C(S, S

′) is finite for every pair S,
S′ of simple left C-comodules. In view of Theorem 6.11 and Proposition 6.14,
the tame-wild comodule type dichotomy holds for this class of coalgebras.

Example 6.17. Consider the cocommutative polynomial K-coalgebra
K[t]⋄ = K[t] with comultiplication ∆ and counity ε defined by the formulas
∆(tm) =

∑
r+s=m t

r ⊗ ts, ε(1) = 1 and ε(ts) = 0 for s ≥ 1. For any m ≥ 0
the subspace K[t]⋄m = K ⊕Kt⊕ . . .⊕Kt

m of K[t]⋄ is a K-subcoalgebra of
dimension m+1 and K[t]⋄ =

⋃∞
m=0K[t]

⋄
m. Note that socK[t]

⋄ = K[t]⋄0 = K
and the Grothendieck group K0(K[t]

⋄) is infinite cyclic.
It is easy to see that the dual K-algebra (K[t]⋄m)

∗ is isomorphic to
K[[t]]/(tm) ∼= K[t]/(tm) and the pseudocompact K-algebra (3.4) associated
with K[t]⋄ is

(K[t]⋄)∗ ∼= lim←−
m

(K[t]⋄m)
∗ ∼= lim←−

m

K[t]/(tm) ∼= K[[t]]

with the Jacobson radical powers topology. It follows that under the identi-
fication K[t]⋄-Comod = Dis((K[t]⋄)∗) of (4.4) the left K[t]⋄-comodules are
just the t-torsion K[t]-modules. It follows from [44, Proposition 14.12] that
the category K[t]⋄-comod has almost split sequences, every indecomposable
comodule in K[t]⋄-comod of dimension m + 1 is isomorphic to the subco-
module K[t]⋄m of K[t]

⋄, and the Auslander–Reiten quiver of K[t]⋄-comod is
a rank one homogeneous tube of the form shown in [44, p. 289].
It is obvious that the coalgebra K[t]⋄ is of tame comodule type and for

any d ≥ 1 there is precisely one isoclass of indecomposable K[t]⋄-comodules
of dimension d. In other words, the growth function µ1

K[t]⋄ : Z→ N is zero,

whereas µ0
K[t]⋄(d) = 1 for all d ≥ 1.

Example 6.18. Consider the cocommutative K-coalgebra

K[t1, t2]
⋄ = K[t1, t2]/(t1t2) = K ⊕

∞⊕

n=1

Ktn1 ⊕

∞⊕

m=1

Ktm2 ,
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where the comultiplication∆ : K[t1, t2]
⋄ → K[t1, t2]

⋄⊗K[t1, t2]
⋄ and counity

ε : K[t1, t2]
⋄ → K are defined by ∆(tmj ) =

∑
r+s=m t

r
j ⊗ t

s
j for j = 1, 2,

ε(1) = 1 and ε(tsj) = 0 for s ≥ 1 and j = 1, 2. For any m ≥ 0 the subspace

K[t1, t2]
⋄
m = K ⊕Kt1 ⊕Kt

2
1 ⊕ . . .⊕Kt

m
1 ⊕Kt2 ⊕Kt

2
2 ⊕ . . .⊕Kt

m
2

of K[t1, t2]
⋄ is a K-subcoalgebra of dimension 2m + 1 and K[t1, t2]

⋄ =⋃∞
m=0K[t1, t2]

⋄
m. Note that socK[t1, t2]

⋄ = K[t1, t2]
⋄
0 = K.

It is easy to see that the dual K-algebra (K[t1, t2]
⋄
m)
∗ is isomorphic

to Λm = K[t1, t2]/(t1t2, t
m
1 , t
m
2 ) and the pseudocompact K-algebra (3.4)

associated with K[t1, t2]
⋄ is

(K[t1, t2]
⋄)∗ ∼= K[[t1, t2]]/(t1t2) ∼= lim←−

m

(K[t1, t2]
⋄
m)
∗ ∼= lim←−

m

Λm

with the Jacobson radical powers topology. It follows that the Grothendieck
group K0(K[t1, t2]

⋄) is infinite cyclic, and under the identification

K[t1, t2]
⋄-Comod = Dis(K[[t1, t2]]/(t1t2))

of (4.4) the finite-dimensionalK[t1, t2]
⋄-comodules are just the finite-dimen-

sional modules over K[t1, t2]/(t1t2) which are annihilated by some powers
of t1 and t2. By applying a well known description of indecomposable Λm-
modules (see [22] and [7]) we conclude that for any d ≥ 0 the indecomposable
modules of dimension d in Dis(K[[t1, t2]]/(t1t2)) are Λd-modules. Hence we
get a category isomorphism

K[t1, t2]
⋄-comod ∼= nilmodlf(K[t1, t2]/(t1t2))

where nilmodlf(K[t1, t2]/(t1t2)) consists of the modules of finite length that
are nilpotent, that is, annihilated by some powers of t1 and t2.
We easily conclude that the indecomposableK[t1, t2]

⋄-comodules of dim-
ension d are in K[t1, t2]

⋄
d-comod

∼= dis(Λd) = mod(Λd). It follows from
Proposition 6.14 that the coalgebra K[t1, t2]

⋄ is of tame comodule type,
because according to [22] the algebra Λd is of tame representation type for
any d ≥ 0. If d ≥ 3 the K-algebra Λd is of non-polynomial growth (see [51]
and [53]). Thus the coalgebraK[t1, t2]

⋄ is of tame comodule type and of non-
polynomial growth. It follows from [7] that the categoryK[t1, t2]

⋄-comod has
no almost split sequences.

By applying [36, Lemma 1.5] (or [46, Theorem 3.12(b)]) we get

Corollary 6.19. Let K be an algebraically closed field and C a K-
coalgebra. The coalgebra C is of fully wild comodule type if and only if there
exists a pair of finite-dimensional left C-modules U1, U2 satisfying the fol-
lowing three conditions:

(i) EndC(U1) ∼= EndC(U2) ∼= K,
(ii) HomC(U1, U2) = 0 and HomC(U2, U1) = 0,
(iii) dimK Ext

1
C(U1, U2) ≥ 3.
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7. Left pure semisimple K-coalgebras. A K-coalgebra C is said
to be of finite comodule type if the number of the isomorphism classes of
finite-dimensional indecomposable left C-comodules is finite. It follows from
Corollary 4.6 that the definition is left-right symmetric.
Following [39, Section 7], [47] and [40] (see also [47] and [61]) we introduce

the following definition.

Definition 7.1. AK-coalgebra C is left pure semisimple if the Grothen-
dieck category C-Comod of left C-comodules is pure semisimple, that is,
every left C-comodule is a direct summand of a direct sum of finite-comod-
ules.

It follows from Theorem 9.3 of Section 9 that the definition is not left-
right symmetric.
The following characterisation is a consequence of [37], [38] and [40]

applied to the category A = C-Comod.

Theorem 7.2. For every K-coalgebra C the following conditions are
equivalent.

(a) C is left pure semisimple.
(b) Every left C-comodule is a direct sum of finite-dimensional subco-

modules.

(c) Every left C-comodule is algebraically compact (or pure-injective) in
the sense of [38, Section 4].

(d) Every infinite sequence N1
f1
→ N2 → . . . → Nm

fm
→ Nm+1 → . . .

of monomorphisms f1, f2, . . . between finite-dimensional indecomposable left
C-comodules N1, N2, . . . terminates, that is, there exists m0 ≥ 1 such that
fj is bijective for all j ≥ m0.

Proposition 7.3. Assume that C is a left pure semisimple K-coalgebra.

(a) Every indecomposable projective object P of C-comod has a unique
maximal subcomodule P0 such that the inclusion P0 →֒ P is a minimal right
almost split morphism.

(b) For every indecomposable non-projective comodule Z in C-comod
there exists an almost split sequence 0→ X → Y → Z → 0 in C-comod.

Proof. We follow the proof of [42, Proposition 2.4(a)]. Denote by
L(C-Comod) the Grothendieck category of all contravariant K-linear func-
tors from C-comod to the category of finite-dimensional K-vector spaces.
By applying [38, Theorem 6.3] and [41, Corollary 2.6] to the pure semi-
simple Grothendieck category A = C-Comod we conclude that the category
L(C-Comod) is perfect and locally noetherian. In particular, for every inde-
composable comodule Z in C-comod the Yoneda functor hZ = HomC(−, Z)
is noetherian and the subfunctor radC(−, Z) of hZ is finitely presented in the
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category L(C-Comod), where radC(U,Z) consists of all non-isomorphisms
for every indecomposable comodule U in C-comod (see [2], [44, Section
11.1]).
(a) Assume that P is an indecomposable projective object in C-comod.

By remarks above applied to Z = P , there exists a projective cover hv :
hV → radC(−, P ) in the category L(C-Comod), where v : V → P is a
homomorphism in C-comod. Since radC(−, P ) is a proper subfunctor of
hP = HomC(−, P ) and P is projective, v is not an epimorphism. It follows
that the proper embedding Im v →֒ P admits a factorisation through v, and
therefore v is injective, because otherwise v : V → Im v is a splittable epi-
morphism, Ker v 6= 0 and consequently the morphism hv : hV → radC(−, P )
is not a projective cover, a contradiction. Consequently, hv is an isomor-
phism and P0 = Im v is a unique maximal subcomodule of P such that the
inclusion P0 →֒ P is a minimal right almost split morphism.
(b) Let Z be an non-projective indecomposable object in C-comod. It

follows that there is a minimal projective presentation

0→ hX
hu→ hY

hv→ radC(−, Z)→ 0

of the functor radC(−, Z) in the category L(C-Comod), where u : X → Y
and v : Y → Z are homomorphisms in C-comod. Hence we easily conclude
that 0 → X

u
→ Y

v
→ Z → 0 is an almost split sequence in C-comod. This

finishes the proof.

The following theorem is an immediate consequence of [38, Theorem 7.1].

Theorem 7.4. An indecomposable cocommutative coalgebra C is left
pure semisimple if and only if dimK C is finite and C is uniserial , that
is, the subcoalgebras of C form a finite chain.

The following theorem shows that the study of coalgebras C of finite
comodule type is equivalent to the study of algebras of finite representation
type, because every such basic coalgebra C is finite-dimensional and there
is a category isomorphism C-Comod ∼= Mod(C∗).

Theorem 7.5. Let K be a field and let C be a basic K-coalgebra with a
decomposition (6.1). The following conditions are equivalent.

(a) C is of finite comodule type.
(b) C is left pure semisimple and soc CC is finite-dimensional.
(c) C is left pure semisimple and dimK C is finite.
(d) The Grothendieck group K0(C) is of finite rank and every indecom-

posable left C-comodule is finite-dimensional.
(e) The K-algebra C∗ = HomK(C,K) is of finite representation type.

If any of the conditions (a)–(e) is satisfied , then C is finite-dimensional
and there is a category isomorphism C-Comod ∼= Mod(C∗).
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Proof. We recall that A = C-Comod is a locally finite Grothendieck
K-category and fp(A) = C-comod is the subcategory of A formed by the
objects of finite length. Let L(A) = Add(fp(A)op,Ab) be the category of
additive contravariant functors from fp(A) to the category Ab of abelian
groups. We know from [37] and [38, Section 6] that the functor

(7.6) h• : A → L(A),

X 7→ hX = HomA(−, X), is a fully faithful embedding and defines an equiv-
alence of A and the full subcategory Fl(Aop,Ab) of L(A) formed by the flat
functors. The category A is pure semisimple if and only if the category L(A)
is perfect.

(a)⇒(b). Assume that C is of finite comodule type and let X = X1⊕ . . .
⊕Xr, where X1, . . . , Xr is a complete set of representatives of the isomor-
phism classes of indecomposable comodules in C-comod. It follows that there
is an equivalence of categories L(A) ∼= Mod(ΛC), where ΛC = EndC(X).
Since ΛC is a finite-dimensional K-algebra, according to the well known re-
sult of H. Bass the category L(A) ∼= Mod(ΛC) is perfect. It follows that C is
left pure semisimple. Since the coalgebra C is basic and of finite comodule
type, we have soc CC =

⊕
j∈IC

S(j), where IC is finite. This finishes the
proof of (a)⇒(b).

(b)⇒(c). Since soc CC =
⊕
j∈IC

S(j), where IC is finite, the injective left
C-comodule C has a decomposition CC =

⊕
j∈IC

E(S(j)), where E(S(j))

is the injective envelope of S(j). Since C is left pure semisimple, the injec-
tive comodule E(S(j)) is finite-dimensional for each j ∈ IC . Consequently,
dimK C is finite and (b)⇒(c) is proved.

The implication (c)⇒(b) is obvious.

(c)⇔(d). Since the coalgebra C is basic and soc CC =
⊕
j∈IC

S(j), we

have K0(C) ∼= Z
(IC) and CC =

⊕
j∈IC

E(S(j)), by Lemma 6.5. It follows

that, if every indecomposable left C-comodule is finite-dimensional or C is
left pure semisimple, then the group K0(C) is of finite rank if and only
if dimK C is finite. Then the equivalence of (c) and (d) is an immediate
consequence of [41, Theorem 1.3].

(c)⇒(e). If dimK C is finite, then according to Theorem 4.3 and Lemma
2.3 there is a category isomorphism C-Comod ∼= Dis(C∗) = Mod(C∗). Then
the finite-dimensional K-algebra is right pure semisimple and the implica-
tion (c)⇒(e) is a consequence of a well known result of Auslander [1].

Since the implication (e)⇒(a) is a consequence of the category K-linear
isomorphism C-Comod ∼= Dis(C∗) = Mod(C∗), the proof is complete.

Corollary 7.7. Let C be a left pure semisimple K-coalgebra with socle
decomposition soc CC =

⊕
j∈IC

S(j)tj .
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(a) For any finite set S of simple left C-comodules there are only a
finite number of isomorphism classes of indecomposable left C-comodules in
C-comod whose composition factors belong to S.

(b) C is a directed union of finite-dimensional subcoalgebras of finite
comodule type.

(c) C is domestic of tame comodule type and the growth function µ1C :
K0(C)→ N is zero (see (6.7)).

(d) For any finite subset T of IC the growth function µ
0
C : K0(C) → N

vanishes at all but a finite number of vectors v ∈ Z
(T ) ⊆ Z

(IC) ∼= K0(C).

Proof. According to Corollary 5.12, the left C-comodules in C-comod
whose composition factors belong to S form an exact abelian subcategory
C-comod‖S of C-comod, and there exists a basic K-coalgebra CS such that
C-comod‖S ∼= CS-comod and socCS is finite-dimensional. Since C is left
pure semisimple, so is CS and according to Theorem 7.5 the coalgebra CS
is finite-dimensional of finite comodule type. Hence the corollary follows.

Remark 7.8. There are examples of indecomposable K-coalgebras of
infinite comodule type which are left and right pure semisimple (see Example
8.5).

8. Quivers, relation ideals and path coalgebras. In order to for-
mulate our main result we need some notation. A K-coalgebra C is called
hereditary if the category C-Comod of left C-comodules is hereditary, that
is, Ext2C(M,N) = 0 for all M and N in C-Comod, or equivalently, epi-
morphic images of injective C-comodules are injective C-comodules. It was
shown in [30] that the definition is left-right symmetric, and a coalgebra C
is hereditary if Ext2C(M,N) = 0 for allM and N in C-comod (see also [11]).

Following Gabriel [18], by a quiver Q = (Q0, Q1) we mean an oriented
graph (in general infinite) with the set Q0 of vertices and the set Q1 of
arrows. We associate with Q the quiver Q∗ = (Q∗0, Q

∗
1) opposite to Q, where

Q∗0 = Q0 and Q
∗
1 consists of arrows of the form β∗ : j → i corresponding to

the arrows β : i→ j in Q1.

A K-linear representation of the quiver Q = (Q0, Q1) is a system

X = (Xi, ϕβ)i∈Q0,β∈Q1

where Xi is a K-vector space and ϕβ : Xi → Xj is a K-linear map for any
β : i→ j. If Xj is a finite-dimensional K-vector space for any j and Xj = 0
for almost all j, then the representation X is of finite length (see also [2],
[44, Chapter 14]).

A morphism f : X → X ′ of representations of Q is a system f = (fi)i∈Q0
of K-linear maps fi : Xi → X ′i, i ∈ Q0, such that ϕβfi = fjϕβ for all
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β : i→ j in Q1, that is, the following diagram is commutative:

Xi
ϕβ
−→ Xjyfi

yfj
X ′i

ϕ′β
−→ X ′j

We denote by HomQ(X,Y ) the K-linear space of all morphisms from X
to Y . We denote by RepK(Q) the Grothendieck K-category of K-linear
representations of Q and by ReplfK(Q) the full Grothendieck K-subcategory
of RepK(Q) formed by locally finite-dimensional representations, that is,
directed unions of representations of finite length. Finally, we denote by
repK(Q) ⊇ rep

lf
K(Q) the full subcategories of RepK(Q) formed by finitely

generated objects (see [34]) and by locally finite-dimensional representations,
or equivalently, by representations of finite length.

It follows that the category ReplfK(Q) is locally finite and rep
lf
K(Q) con-

sists of all objects of ReplfK(Q) of finite length.

Let Q = (Q0, Q1) be a quiver. We recall that an oriented path in Q of
length m ≥ 1 starting from vertex i = i0 and ending at vertex j = im is a
formal composition

(∗) ω = β1β2 . . . βm ≡ (i0
β1
→ i1

β2
→ . . .

βm
→ im)

of arrows β1, . . . , βm. To any vertex i ∈ Q0 we attach a stationary path ηi
starting and ending at i. The stationary path at j in the opposite quiver Q∗

is also denoted by ηj . If ω = β1β2 . . . βm is the path (∗) in Q we set

ω∗ = β∗mβ
∗
m−1 . . . β

∗
1

and view it as a path in Q∗. Denote by Qm the set of all oriented paths in
Q of length m ≥ 0.

Given a quiver Q = (Q0, Q1) we denote by KQ the path algebra of Q
with coefficients inK (see [2], [44, Chapter 14]), that is, the gradedK-vector
space

(∗∗) KQ = KQ0 ⊕KQ1 ⊕ . . .⊕KQm ⊕ . . . ,

where KQm =
⊕
ω∈Qm

ωK, equipped with addition and multiplication de-

fined as follows. Given a =
∑
ω ωaω and b =

∑
ω′ ω
′bω′ in KQ we put

a+ b =
∑

ω′′

ω′′(aω′′ + bω′′), a · b =
∑

ω,ω′

ωω′aωbω′ ,

where ω = β1 . . . βm, ω
′ = β′1 . . . β

′
t, and we set ωω

′ = β1 . . . βmβ
′
1 . . . β

′
t if the

terminal vertex of βm coincides with the source vertex of β
′
1, and ωω

′ = 0
otherwise. We set λα = αλ for λ ∈ K.

Given two vertices a, b ∈ Q0 of Q we denote by KQ(a, b) the subspace
of KQ generated by all oriented paths from a to b, and by KQm(a, b) the
subspace of KQ(a, b) generated by paths of length m.
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It is clear that KQ endowed with the direct sum decomposition (∗∗)
is a graded K-algebra, the stationary paths ηi, i ∈ Q0, form a complete
set of primitive orthogonal idempotents of KQ, and there is a right ideal
decomposition

KQ =
⊕

i∈Q0

ηiKQ.

If Q0 is finite then
∑
i∈Q0

ηi is the identity of KQ. If Q0 is infinite the
algebra KQ has no identity element. It is clear that the dimension of KQ
is finite if and only if Q is finite and has no oriented cycles. Note that for
each m ≥ 1 the K-vector space

(∗∗∗) KQ≥m =
⊕

j≥m

KQj

is the two-sided ideal of KQ generated by all paths of length ≥ m.
It is well known (see [44, Section 14.1]) that there are equivalences of

categories RepK(Q)
∼= Mod(KQ) and repK(Q)

∼= mod(KQ).
The path K-algebra KQ endowed with the direct sum decomposition

(∗∗) can be viewed as a gradedK-coalgebra with comultiplication∆ : KQ→
KQ ⊗ KQ and counity ε : KQ → K defined as follows (see [9] and [60]).
Given the stationary path ηi at i we set ∆(ηi) = ηi⊗ηi and ε(ηi) = 1. Given
any path ω = β1 . . . βm of length m ≥ 1 starting from i = i0 and ending at
j = im we set

∆(ω) = ηi ⊗ ω + ω ⊗ ηj +

m−1∑

s=1

(β1 . . . βs)⊗ (βs+1 . . . βm) =
∑

uv=ω

u⊗ v

and ε(ω) = 0, where⊗ = ⊗K . We callKQ together with the above coalgebra
structure the path K-coalgebra of the quiver Q with coefficients in K.
It is clear that for each m ≥ 0 the K-vector space

(∗∗∗∗) KQ≤m = KQ0 ⊕KQ1 ⊕ . . .⊕KQm

is a subcoalgebra of KQ.
Note that if Q is a finite quiver without oriented cycles, then the finite-

dimensionalK-algebra (KQ∗)∗ = HomK(KQ
∗,K),K-dual to theK-coalge-

bra KQ∗, is the path algebra KQ and KQ∗-comod ∼= mod(KQ) ∼= repK(Q)
(see [28], [56] and [44, Section 14.1]).
We define a K-linear representation X of Q to be nilpotent (or a small

representation of Q, in the sense of Gabriel [19, Section 7.4]) if there exists
an m ≥ 1 such that the composite K-linear map

Xi0
ϕβ1−→ Xi1

ϕβ2−→ . . .
ϕβm−→ Xim

is zero for any path β1 . . . βm in Q of length m. We denote by nilrep
lf
K(Q)

the full subcategory of repK(Q) formed by all nilpotent representations of

finite length, and by ReplnlfK (Q) the full subcategory of RepK(Q) formed by



COALGEBRAS AND TAME COMODULE TYPE 133

all locally nilpotent representations that are locally finite, that is, directed
unions of representations from nilreplfK(Q). It is easy to see that a K-linear
representation X of Q is locally nilpotent if and only if for any i0 ∈ Q0 and
any x0 ∈ Xi0 there exists an m ≥ 1 such that ϕβm . . . ϕβ1(x0) = 0 for any
path β1 . . . βm in Q of length m (see also [8], [10], [60]).

We recall from [20, 4.2] that given an idealΩ of the path algebraKQ con-
tained in KQ≥2 we define repK(Q,Ω) to be the full subcategory of repK(Q)
formed by all representations satisfying all relations in Ω (see also [44, Sec-
tion 14.1]).

We start by collecting elementary properties of path K-coalgebras of
arbitrary quivers (see also [9, Section 4], [60, Section 4]).

Proposition 8.1. Let Q be an arbitrary quiver , Q∗ the quiver opposite
to Q, and K a field. Given a vertex j in Q0 = Q∗0 we denote by ηj the
stationary path at j.

(a) The path K-coalgebra C = KQ∗ is basic, the one-dimensional vector
space S(j) = Kηj is a simple left subcomodule of C and KQ

∗
0 = soc CC =⊕

j∈Q0
S(j). If i 6= j, then the left C-comodules S(i) and S(j) are not

isomorphic. The subcoalgebras

KQ∗0 ⊆ KQ
∗
≤1 ⊆ . . . ⊆ KQ

∗
≤m ⊆ . . .

give the coradical filtration of KQ∗.

(b) For each j ∈ Q0, the indecomposable left ideal (KQ
∗)ηj of the path

K-algebra KQ∗ generated by all oriented paths in Q∗ ending at j is an
indecomposable injective left coideal of the coalgebra KQ∗, soc(KQ∗)ηj =
S(j), the injective envelope E(S(j)) of S(j) is isomorphic to (KQ∗)ηj , and

KQ∗ =
⊕

j∈Q∗0

(KQ∗)ηj

is a left coideal decomposition.

(c) For any finite subquiver Qβ of Q and any m ≥ 0 there is a K-algebra

surjection εβm : KQ → KQβ/KQβ≥m, the subspace K(Q
β)∗≤m of KQ

∗ is a

finite-dimensional subcoalgebra, the path coalgebra KQ∗ is a directed union
of the subcoalgebras K(Qβ)∗≤m and the category nilrep

lf
K(Q) has a directed

union form

nilreplfK(Q) =
⋃

β

∞⋃

m=1

repK(Q
β,KQβ≥m).

The two-sided ideals Uβm = Ker ε
β
m define a linear topology on KQ (called

the finite subquiver topology), the completion

(8.2) K̂Q = lim←−
β,m

KQ/Uβm
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of KQ is a pseudocompact K-algebra containing KQ (a complete tensor

algebra [19, 7.5]) and the topological dual coalgebra (K̂Q)◦ = homK(K̂Q,K)
is isomorphic to KQ∗.
(d) There exist K-linear category isomorphisms

(8.3) KQ∗-comod ∼= nilreplfK(Q)
∼= comod-KQ.

Proof. (a) Let H be a simple subcoalgebra of KQ∗. It follows from the
multiplication formula in KQ∗ that H contains the stationary path ηj for
some j ∈ Q0. Since the vector space Kηj is obviously a subcoalgebra (and a
subcomodule) of H and H is simple, we have H = ηjK. In view of Lemmas
5.1 and 5.3, the coalgebra KQ∗ is basic and the remaining statements in (a)
follow easily.
(b) It is clear that (KQ∗)ηj ⊆ KQ∗ is a left coideal generated by all

oriented paths in Q∗ with terminus at j ∈ Q∗0. Since KQ
∗
0 = soc CC =⊕

j∈Q0
S(j), obviously soc(KQ∗)ηj = S(j) and therefore the left coideal

(KQ∗)ηj is indecomposable. Since (KQ
∗)ηj is a direct summand of the

injective left comodule KQ∗, it is an injective comodule and (b) follows.
(c) The first part follows immediately by applying definitions. To prove

the second part we recall that KQ∗ is a directed union of the finite-dimen-
sional subcoalgebras Hβm = K(Qβ)∗≤m ⊆ K(Qβ)∗ and therefore the dual
pseudocompact algebra (KQ∗)∗ = HomK(KQ

∗,K) has the form (KQ∗)∗ ∼=

lim←−β,mH
β
m. It is clear that for any integer m ≥ 1 and any finite subquiver

Qβ of Q there is an isomorphism of finite-dimensional K-algebras (Hβm)∗ ∼=

KQβ/KQβ≥m and the restriction ε
β
m : KQ → (H

β
m)∗ ∼= KQβ/KQβ≥m of

the canonical algebra surjection (KQ∗)∗ → (Hβm)∗ to KQ is a surjection.

It follows that the ideals Uβm = Ker ε
β
m define a linear topology on KQ and

there is an isomorphism of pseudocompact algebras

(KQ∗)∗ ∼= lim←−
β,m

KQ/Uβm = K̂Q.

By Theorem 3.6, the coalgebra (K̂Q)◦ is isomorphic to KQ∗. This finishes
the proof of (c).
(d) Since KQ∗ is a directed union of finite-dimensional subcoalgebras

of the form K(Qβ)∗≤m, where Q
β runs through all finite subquivers of Q

and m ≥ 1, according to Theorem 4.3(b) and Lemma 2.3(a) any comod-
ule M in KQ∗-comod lies in K(Qβ)∗≤m-comod ⊆ KQ∗-comod for some

finite subquiver Qβ of Q and m ≥ 1. Since there is a K-algebra isomor-
phism (K(Qβ)∗≤m)

∗ ∼= KQβ/KQβ≥m+1, the required category isomorphism

KQ∗-comod ∼= nilreplfK(Q) is defined by the composition

K(Qβ)∗≤m-comod
∼= dis(KQβ/KQ

β
≥m+1) = mod(KQ

β/KQβ≥m+1)

∼= repK(Q
β,KQβ≥m+1) ⊆ nilrep

lf
K(Q)
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(apply (c), (4.4) and [44, Section 14.1]). The K-linear category isomorphism
KQ∗-comod ∼= comod-KQ follows from the fact that the coalgebra (KQ)op

is isomorphic to KQ∗.

One can give an alternative proof of (d) following an idea of Gabriel [19,
Section 7.5] (see also [60, 4.11]).
As an immediate consequence of Proposition 8.1 we get

Corollary 8.4. If Q is a locally finite quiver without oriented cy-
cles, then there exist category isomorphisms KQ∗-comod ∼= replfK(Q)

∼=
comod-KQ.

Following Gabriel [20, 4.2], by a quiver with relations we mean a pair
(Q,Ω), where Q is a quiver (in general infinite) and Ω is a two-sided
ideal of the path K-algebra KQ contained in KQ≥2 and such that Ω =⊕
a,b∈Q0

Ω(a, b), where Ω(a, b) = Ω ∩KQ(a, b) (compare with [44, Section
14.1]). We call such an ideal Ω an ideal of relations. If (Q,Ω) is a quiver
with relations we define repK(Q,Ω) to be the full subcategory of repK(Q)
formed by the representations of Q satisfying all relations in Ω.
With any quiver with relations (Q,Ω) we associate the path subcoalgebra

C(Q,Ω) = {x ∈ KQ; 〈x,Ω〉 = 0}

of KQ, where 〈−,−〉 : KQ×KQ → K is the standard K-bilinear form on
KQ. One can show that the path subcoalgebra C(Q∗, Ω∗) of KQ∗ is just
the left path coalgebra of (Q,Ω) defined in [48]. It then follows from [48]
that (8.3) induces K-linear category isomorphisms

comod-C(Q,Ω) ∼= nilreplfK(Q,Ω), Comod-C(Q,Ω) ∼= ReplnlfK (Q,Ω).

We expect that any subcoalgebra H of KQ containing KQ≤1 is of the
form C(Q,Ω). This together with [19, Section 7], [9, Theorem 4.3] and [60,
Theorem 4.13] would imply that any basic K-coalgebra C over an alge-
braically closed field K is isomorphic to a coalgebra C(Q,Ω).
Following [10], one can prove that any hereditary basic coalgebra over

an algebraically closed field is isomorphic to the path coalgebra of a quiver.
These problems will be discussed in a subsequent paper [49].

Example 8.5. Let Q be the infinite quiver

. . .
β−2
−→ −1

β−1
−→ 0

β0
−→ 1

β1
−→ 2

β2
−→ 3

β3
−→ . . .

and let Ω be the ideal of the path K-algebra KQ generated by the zero-
relations βjβj+1 for all j ∈ Z. Let C = C(Q,Ω) be the subcoalgebra KQ0⊕
KQ1 of KQ. One can easily show that the category C-comod ∼= comod-C
is equivalent to the category repK(Q,Ω) of K-linear representations of Q
satisfying βjβj+1 = 0 for all j ∈ Z (see Proposition 8.1 and Corollary 8.4).
It follows that the coalgebra C = C(Q,Ω) is of infinite comodule type and
is both left and right pure semisimple.
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In [19, Section 7] Gabriel has associated a quiver (and even a species)
with any length K-category. By applying his construction to the category
C-comod we introduce the following definition.

Definition 8.6. Assume that K is an algebraically closed field and C
is a basic K-coalgebra with a decomposition soc CC =

⊕
j∈IC

S(j). We
associate with C the (left) Gabriel quiver CQ as follows. The vertices of CQ
are just the elements j of IC (identified with the simple left C-comodules
S(j)). The arrows from i to j are elements of a fixed basis of the K-vector
space jEi = Ext

1
C(S(i), S(j)).

The Gabriel quiver CQ is also known as the Ext quiver of C-comod (see
[29] and [9, p. 45]). It is shown in [29, Theorem 1.7] that the quiver CQ is
isomorphic to a link quiver ΓC , up to multiple arrows. Then the following
useful fact is a consequence of [29, Corollary 2.2].

Corollary 8.7. Let C be a coalgebra and CQ its Gabriel quiver. Then

CQ is connected if and only if the coalgebra C is indecomposable.

Here a K-coalgebra C is said to be indecomposable if C is not a direct
sum of two subcoalgebras, or equivalently, if the category C-Comod is not
a direct sum of two non-stationary subcategories.

Following [19, 7.3] we give an alternative definition of the Gabriel quiver

CQ by means of the pseudocompact K-algebra C
∗ of (3.4) as follows.

Assume that the field K is algebraically closed and C is a basic K-
coalgebra. Then the pseudocompact K-algebra C∗ is basic and there is a
direct product decomposition (see Corollary 5.5)

(8.8) F = C∗/J(C∗) =
∏

j∈IC

Kj ,

where Kj is a field isomorphic to K. The field Kj can be identified with the
one-dimensional simple comodule S(j) and with the endomorphism algebra

of S(j). Consider the closure J(C∗)2 of J(C∗)2 in C∗ and view the F -F -
bimodule

M = J(C∗)/J(C∗)2

as a right pseudocompact C∗-module, or as a pseudocompact K-module.
This implies a decomposition of M into a topological product

(8.9) M =
∏

i,j∈IC

iMj ,

where iMj = KiMKj is viewed as a Ki-Kj-bimodule. This bimodule is
related to the Kj-Ki-bimodule jEi = Ext

1
C(S(i), S(j)) by the formulas

(8.10) iMj ∼= HomKj (jEi,Kj) and jEi ∼= homKj (iMj ,Kj).



COALGEBRAS AND TAME COMODULE TYPE 137

Let Q be a quiver such that the number mij of arrows from i to j in Q is
finite for all i, j ∈ Q0. The bilinear form of Q is the integral Z-bilinear form

(8.11) bQ : Z
(Q0) × Z

(Q0) → Z

assigning to any pair of vectors v = (vj)j∈Q0 , w = (wj)j∈Q0 (with finitely
many non-zero integral coordinates) the integer

bQ(v, w) =
∑

j∈Q0

vjwj −
∑

i,j∈Q0

mijviwj .

The quadratic form of Q,

(8.12) qQ : Z
(Q0) → Z,

is defined by the formula qQ(v) = bQ(v, v). Here Z
(Q0) is the direct sum of

Q0 copies of the free abelian group Z.

Proposition 8.13. Assume that Q is an arbitrary quiver , K a field and
C = KQ is the path K-coalgebra of Q with soc CC =

⊕
j∈Q0

S(j), where
S(j) = Kηj . Given two vertices i and j in Q0 denote by mij the number of
arrows from i to j in Q.

(a) For any simple left C-comodule S(j) = Kηj there exists an exact
sequence

0→ S(j)→ E(S(j))→
⊕

a∈Q0

E(S(a))(maj) → 0

in C-Comod, where E(S(j)) = (KQ)ηj is the injective envelope of S(j) (see
8.1) and U (m) denotes the direct sum of m copies of U for any cardinal
number m.
(b) The path K-coalgebra C = KQ is hereditary ,

(8.14) dimK Ext
1
C(S(i), S(j)) = mij

and HomC(E(S(i)), E(S(j))) ∼= ηjK̂Q∗ηi (see (8.2)) for all i, j ∈ Q0, in
C-comod ∼= comod-KQ∗. The Gabriel quiver CQ is isomorphic to Q.
(c) Given i, j ∈ Q0, mij is finite if and only if dimK Ext

1
C(S(i), S(j)) is

finite.

(d) Assume mij is finite for all i, j ∈ Q0. Let bQ be the bilinear form
(8.11). Then CQ = Q, dimK Ext

1
C(M,N) is finite and

(8.15) bQ(lengthM, lengthN)

= dimK HomC(M,N)− dimK Ext
1
C(M,N)

for any comodules M , N in C-comod ∼= -comod-KQ∗.

Proof. (a) It follows from Proposition 8.1 that C is basic, soc CC =⊕
j∈Q0

S(j) and E(S(j)) = (KQ)ηj , where S(j) = ηjK is a simple left
subcomodule of C. If i 6= j, the left C-comodules S(i) and S(j) are not
isomorphic. In particular, this shows that Q0 is the set of vertices of the
Gabriel quiver CQ.
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Consider the exact sequence

(∗) 0→ S(j)
v(j)
−→ E(S(j))→ Coker v(j)→ 0

in C-Comod, where S(j) = ηjK, E(S(j)) = (KQ)ηj and v(j) is the natural
embedding. Let Q(→j) be the set of all non-stationary oriented paths in Q
ending at j ∈ Q0, S(j) the set of all source points of arrows ending at j,
and given a ∈ S(j) we denote by Q(a, j) the set of arrows from a to j in Q.

To prove (8.14) we note that given β ∈ Q(a, j) the map u 7→ uβ defines
a C-comodule isomorphism E(S(a)) = (KQ∗)ηa

∼
→ (KQ∗)ηaβ = E(S(a))β.

A straightforward analysis yields

Coker v(j) =
⊕

ω∈Q(→j)

Kω =
⊕

a∈S(j)

⊕

β∈Q(a,j)

⊕

u

Kuβ(∗∗)

=
⊕

a∈S(j)

⊕

β∈Q(a,j)

E(S(a))β ∼=
⊕

a∈Q0

E(S(a))(maj),

where u runs through all oriented paths ending at a. This proves (a).

(b) The isomorphism HomC(E(S(i)), E(S(j))) ∼= ηjK̂Q∗ηi is a conse-

quence of (8.2) and the duality (4.5), because C∗ ∼= K̂Q∗, D̃1(E(S(t))) ∼=

K̂Q∗ηt and therefore we get the isomorphisms

HomC(E(S(i)), E(S(j))) ∼= homK̂Q∗(K̂Q
∗ηj , K̂Q∗ηi) ∼= ηjK̂Q∗ηi.

To prove that C is hereditary it is sufficient to show that Ext2C = 0, or
equivalently, Ext2C(S(i), S(j)) = 0 for all i, j ∈ Q0 (see [11], [30]). But this
is an immediate consequence of (a).

Now we note that (∗) yields the exact sequence

HomC(S(i), E(S(j)))
ℓij
→ HomC(S(i),Coker v(j))

∂ij
→ Ext1C(S(i), S(j))→ 0

for any i, j ∈ Q0.

Assume that j = i. It is easy to see that ℓii = 0 and therefore ∂ii is an
isomorphism. In view of (∗∗) we get isomorphisms

Ext1C(S(i), S(i))
∼= HomC(S(i),Coker v(i))

∼=
⊕

a∈Q0

HomC(S(i), E(S(a))
(mai))

∼= HomC(S(i), E(S(i))
(mii))⊕

⊕

a 6=i

HomC(S(i), E(S(a))
(mai))

∼= HomC(S(i), E(S(i))
(mii)) ∼= K(mii),

because HomC(S(i), E(S(t))) = 0 for all t 6= i and HomC(S(i), E(S(i))) ∼=
HomC(S(i), S(i)) ∼= K. Consequently, Ext

1
C(S(i), S(i))

∼= K(mii).
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Assume that j 6= i. Then HomC(S(i), E(S(j))) = 0 and ∂ij is a K-linear
isomorphism. In view of (∗∗) we get K-linear isomorphisms

Ext1C(S(i), S(j))
∼= HomC(S(i),Coker v(j))

∼=
⊕

a∈Q0

HomC(S(i), E(S(a))
(maj)) ∼= K(mij).

By (8.14), there are precisely mij arrows from i to j in Q and in CQ for
all i, j ∈ Q0 = CQ0. Consequently, the quivers CQ and Q are isomorphic.
This finishes the proof of (b).
The statement (c) follows easily from (8.14).
(d) If mij is finite for all i, j ∈ Q0, then it follows from (8.14), by an

obvious induction on the length of comodules M and N in C-comod, that
dimK Ext

1
C(M,N) is finite.

Now we note that from (8.14) and the definition of bQ it follows easily
that (8.15) holds for M = S(i) and N = S(j) with arbitrary i, j ∈ Q0. The
general case reduces to the above one by an obvious induction on the length
ofM and N in C-comod, because both sides of (8.15) are additive functions
on C-comod with respect to each of the variables M and N .

The formula (8.15) extends that of Ringel [36] established for hereditary
algebras.

Lemma 8.16. Let K be a field , L be the quiver consisting of one vertex
and two loops, and let W be the path K-coalgebra KL.

(a) W is hereditary of fully wild comodule type and there are K-linear
equivalences of categories W-comod ∼= nilreplfK(L)

∼= nilmodlf(K〈t1, t2〉).
(b) If H is an arbitrary K-subcoalgebra of the path K-coalgebra KQ of

a finite quiver Q, then there exists a fully faithful exact K-linear functor
H-comod→W-comod.

Proof. (a) Since L∗ = L, the first equivalence is a consequence of Propo-
sition 8.1, and the second one follows from [44, 14.6]. By Proposition 8.13,
W is hereditary. By [4] (see also [44, Proposition 14.10] and its proof) there
is a fully faithful exact K-linear functor

modΓ3(K)→ nilmod
lf(K〈t1, t2〉) ∼= nilrep

lf
K(L).

Since according to Proposition 8.1 there is an equivalence nilreplfK(L)
∼=

W-comod we are done.
(b) There is a K-linear fully faithful embedding functor H-comod →

KQ-comod and, by Proposition 8.1(d), there are K-linear category isomor-
phisms KQ-comod ∼= nilreplfK(Q

∗) ∼= nilmodlf(KQ∗). On the other hand,
KQ∗ is finitely generated (as aK-algebra), becauseQ is a finite quiver. It fol-
lows from [4] (see also [44, Proposition 14.10] and its proof) that there exists
a K-linear fully faithful embedding functor nilmodlf(KQ∗) →֒ nilmodlf(W).
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Since, by [20] and Proposition 8.1(d), there are K-linear category isomor-
phisms nilmodlf(W) ∼= nilreplfK(L)

∼= W-comod, the statement (b) follows
and the proof is complete.

Now we are able to prove a coalgebra analogue of a well known character-
isation of wild algebras (see [13] and [44, Corollary 14.11]), which indicates
a wild behaviour of wild coalgebras.

Corollary 8.17. Let C be a K-coalgebra and W = KL, where K is a
field and L is the quiver consisting of one vertex and two loops α and β.
The following conditions are equivalent.

(a) C is of wild comodule type (resp. of fully wild comodule type).

(b) There is a K-linear representation embedding functor W-comod →
C-comod (resp. fully faithful exact functor W-comod→ C-comod).

(c) If H is an arbitrary K-subcoalgebra of the path K-coalgebra KQ
of a finite quiver Q, then there exists a K-linear representation embedding
functor H-comod→ C-comod (resp. fully faithful exact functor H-comod→
C-comod).

Proof. (a)⇒(b). In view of Proposition 8.1, there exists an equivalence
of K-categories W-comod ∼= nilreplfK(L). On the other hand there is a fully
faithful exact K-linear functor nilreplfK(L) → repK(◦

→→→ ◦)
∼= modΓ3(K)

defined by (X,ϕα, ϕβ) 7→ (X1, X2, idX , ϕα, ϕβ) with X1 = X2 = X (see [44,
Example 13, pp. 286–287]). This shows that (a) implies (b).

(b)⇒(c). Apply Lemma 8.16(b).

(c)⇒(a). Apply (c) to the K-coalgebra H = KQ, where Q is the three
arrows quiver ◦ →→→ ◦. Note that Q

∗ = Q and there is a K-algebra isomor-
phism (KQ)∗ ∼= Γ3(K). It then follows from Corollary 8.4 thatKQ-comod ∼=
mod (KQ)∗ ∼= modΓ3(K) and therefore (c) implies (a). This finishes the
proof.

Corollary 8.18. Let K be a field , s ≥ 0 and let Ts be the quiver

(8.19) Ts :

0
•

1
•

2
• . . .

s
•

•
s+1

γ0 //
γ1 //

γ2 //
γs−1 //

γs

���������γs+1

eeKKKKKKKKKKKK
The path coalgebras KTs and KT

∗
s are hereditary of fully wild comodule

type.

Proof. In view of Lemma 6.9 and theK-linear equivalenceKTs-comod ∼=
comod-KT ∗s of (8.3), it is sufficient to prove that KT

∗
s is of fully wild

comodule type. By Proposition 8.1(d), there exist K-linear equivalences



COALGEBRAS AND TAME COMODULE TYPE 141

KL-comod ∼= nilreplfK(L) and KT
∗-comod ∼= nilreplfK(Ts). Then it is suf-

ficient to construct a K-linear fully faithful exact functor (see [44, p. 286])

T : nilreplfK(L)→ nilrep
lf
K(Ts).

Given a representation (M,ϕα, ϕβ) in nilrep
lf
K(L), with ϕα, ϕβ : M → M ,

we set

T (M,ϕα, ϕβ) = (M0,M1, . . . ,Ms+1; ϕγ0 , ϕγ1 , . . . , ϕγs+1),

where M0 = M , M1 = . . . = Ms+1 = M ⊕ M , ϕγ0(m) = (m, 0) for all
m ∈M , ϕγ1 = . . . = ϕγs = idM⊕M and

ϕγs+1 =

(
0 ϕα
idM ϕβ

)
.

Given a morphism f : (M,ϕα, ϕβ)→ (M
′, ϕ′α, ϕ

′
β) in rep

lf
K(W) we define

a morphism T (f) : T (M,ϕα, ϕβ) → T (M ′, ϕ′α, ϕ
′
β) in rep

lf
K(Ts) by setting

T (f) = (f0, f1, . . . , fs+1), where f0 = f and f1 = . . . = fs+1 = (f, f). It is
easy to see that the representation T (M,ϕα, ϕβ) is nilpotent if (M,ϕα, ϕβ)
is, and T (f) is a morphism in replfK(Ts) for any morphism f in replfK(L). The
proof that T is a K-linear fully faithful exact functor is straightforward.

Let us finish this section by answering the question when the category
C-comod, where C = KQ∗ has enough almost split sequences, that is, for
every indecomposable non-injective comodule X in C-comod there exists
an almost split sequence 0 → X → Y → Z → 0 in C-comod, and for
every indecomposable non-projective comodule Z in C-comod there exists
an almost split sequence 0→ X → Y → Z → 0 in C-comod.

Theorem 8.20. Let Q be a connected quiver and K a field. The category
comod-KQ of right finite-dimensional KQ-comodules has enough almost
split sequences if and only if the quiver Q is of one of the following types:

(a) Q is of extended Dynkin type Ãn with cyclic orientation.

(b) Q is finite and has no oriented cycles,
(c) Q is infinite and contains no infinite oriented path,

(d) Q or Q∗ is infinite of the form A
(0)
∞ : •→•→•→ . . .→•→•→ . . . ,

(e) Q is infinite of the form . . .→•→•→•→ . . .→•→•→ . . .

Proof. Proposition 8.1(d) yields comod-KQ ∼= nilreplfK(Q). It is easy to
see that nilreplfK(Q) coincides with the category fd0(Q,K) defined in [55]
and formed by all finite-dimensional K-linear representations of Q having
composition factors only among discrete simples. Then our theorem is a
consequence of [55, Theorem 1] (see also [32, Theorem 3.1]).

The existence of almost split sequences in C-comod is also studied in [8].
In relation with Proposition 8.13 the following question arrises.

Question 8.21. Is the category RepK(Q) hereditary for any quiver Q?
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This is the case if Q is a finite quiver without oriented cycles, or Q is
an infinite star quiver (see Section 9). On the other hand, by a well known
result of P. M. Cohn, this is the case if Q consists of one vertex with s
loops, because the path coalgebra is then isomorphic to the free K-algebra
K〈t1, . . . , ts〉 of polynomials in non-commuting indeterminates t1, . . . , ts. See
also Note added in proof .

9. Path coalgebras of tame comodule type and left pure semi-

simple hereditary coalgebras. Recall that a homogeneous Dynkin dia-
gram is any of the diagrams presented below.

An : • • · · · • • (n vertices, n ≥ 1);

Dn : • •

•

• · · · • • (n vertices, n ≥ 4);

E6 : • • •

•

• •

E7 : • • •

•

• • •

E8 : • • •

•

• • • •

By a Dynkin quiver (resp. an extended Dynkin quiver) we mean a fi-
nite quiver whose underlying non-oriented graph is a homogeneous Dynkin
diagram (resp. an extended Dynkin diagram Ãn, D̃n, Ẽ6, Ẽ7 or Ẽ8).

Definition 9.1 ([32]). (a) A quiver Q is said to be a locally Dynkin
quiver if Q is locally finite and every finite subquiver Q′ of Q is a homoge-
neous Dynkin quiver.

(b) Q is said to be a pure semisimple locally Dynkin quiver if it is either
a Dynkin quiver or any of the infinite quivers presented in Table 9.2 below.

Table 9.2. Infinite pure semisimple locally Dynkin quivers

A
(s)
∞ : 0 1 2 . . . s− 1← s→ s+ 1→ . . .

∞A
(s)
∞ : . . .← −2← −1← 0 1 2 . . . s− 1← s→ s+ 1→ . . .

D
(s)
∞ : 0 1

−1

2 . . . s− 1← s→ s+ 1→ . . .

Here 0 ≤ s <∞ and t r means t← r or t→ r.

It is easy to see that a connected quiver Q is a locally Dynkin quiver if
and only if it is one of the homogeneous Dynkin quivers or one of the quivers
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A
(s)
∞ , ∞A

(s)
∞ , D

(s)
∞ of Table 9.2, up to orientation. This happens if and only if

the quadratic form qQ is positive definite.

Note that any locally Dynkin quiver is a star, that is, a union of a
locally finite subquiver Q′ having no infinite paths and a subquiver which is
a disjoint union of finitely many infinite chains of the form (see [35])

0 1 2 . . . m m+ 1 . . .

where m m+ 1 means either m→m+ 1 or m←m+ 1.

It was proved in [14, Theorem 1] that given a connected quiver Q the
category RepK(Q) is pure semisimple if and only if Q is a pure semisimple
locally Dynkin quiver.

Now we are able to present a coalgebra analogue of Gabriel’s well known
characterisation [18] of hereditary K-algebras of finite representation type
(see also [32]).

Theorem 9.3. Let K be an algebraically closed field , C an indecompos-
able basic K-coalgebra, and Q = CQ the Gabriel quiver of C. The following
conditions are equivalent.

(a) The coalgebra C is hereditary and left pure semisimple.

(b) The quiver Q∗ opposite to Q = CQ is either one of the Dynkin quivers
An, n ≥ 1, Dn, n ≥ 4, E6, E7, E8, or one of the infinite locally Dynkin quivers

A
(s)
∞ , ∞A

(s)
∞ , D

(s)
∞ , with s ≥ 0, and the K-coalgebra C is isomorphic to the

path K-coalgebra KQ.

(c) Q is locally finite, does not have infinitely many source vertices and
does not contain infinite chains of the form • → • → • → . . . → • → • →
. . . , the quadratic form qQ : Z

(Q0) → Z is positive definite and there is a

K-coalgebra isomorphism C ∼= KQ.

If C is hereditary and left pure semisimple, then the map

length : C-comod→ Z
(Q0)

defines a bijection between the isomorphism classes of indecomposable left C-
comodules and the positive roots of qQ, that is, the vectors v ∈ N

(Q0) such that

qQ(v) = 1. Moreover , the growth function µ
1
C : K0(C)→ N is zero (see 6.7),

the function µ0C : K0(C) → N vanishes at all vectors v ∈ Z
(Q0) ∼= K0(C)

which are not positive roots of qQ and µ
0
C(v) = 1 if v is a positive root of

qQ.

Proof. (a)⇒(b). By applying [32, Theorem 2.2] to the hereditary cat-
egory A = C-Comod we get an equivalence of K-categories C-Comod ∼=
ReplfK(Q

′), where Q′ is a pure semisimple locally Dynkin quiver. On the
other hand, by Proposition 8.1, the coalgebra KQ′∗ is basic and there is an
equivalence of K-categories KQ′∗-Comod ∼= ReplfK(Q

′) ∼= C-Comod. Since
C is basic by assumption, according to Proposition 5.6 there is a coalgebra
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isomorphism C ∼= KQ′∗. Since pure semisimple locally Dynkin quivers are
obviously star quivers, by Proposition 8.13 the Gabriel quiver of KQ′∗ is
isomorphic to Q′∗ and to Q = CQ. This shows that C ∼= KQ and finishes
the proof of (a)⇒(b).

The implication (b)⇒(a) follows from [14, Theorem 1], because ob-
viously Q = CQ is a star quiver, there is an equivalence of categories
KQ∗-Comod ∼= ReplfK(Q) (see (8.3)) and according to Proposition 8.13 the
category ReplfK(Q) is hereditary.

The equivalence (b)⇔(c) and the final statement in the theorem are
easily verified, because they reduce to finite subquiversQ′ of CQ and then, in
view of KQ′∗-comod ∼= replfK(Q

′) ∼= repK(Q
′) (Proposition 8.1), to Gabriel’s

theorem [18] (see also [2, VIII. 5–6] and [21, Chapter VII]).

The following theorem is a coalgebra analogue of the well known charac-
terisation of finite quivers of tame representation type due to Nazarova [31].

Theorem 9.4. Let Q be a connected quiver and let KQ∗ be the path
K-coalgebra of Q∗. The following conditions are equivalent.

(a) KQ∗ is domestic of tame comodule type.

(a′) KQ∗ is of tame comodule type.

(b) Q is either a locally Dynkin quiver , or an extended Dynkin quiver.

(c) Q is locally finite and qQ is positive definite or positive semidefinite.

(d) KQ∗ is not of wild comodule type.

(e) KQ∗ is not of fully wild comodule type.

Proof. The implication (a)⇒(a′) is obvious. The equivalence of (b) and
(c) is well known and easy to prove by straightforward combinatorial argu-
ments (consult [2, VIII. 5–6] and [21, Chapter VII]).

(a′)⇒(b). Assume that KQ∗ is of tame comodule type. If Q has no
oriented cycles, then for any finite connected subquiver Q′ of Q the path K-
coalgebra KQ′∗ is a finite-dimensional subcoalgebra of KQ∗ and according
to Theorem 6.11 the coalgebra KQ′∗ is of tame comodule type. Proposition
8.1 yields KQ′∗-comod ∼= replfK(Q

′) ∼= repK(Q
′) and therefore Q′ is of tame

representation type. It follows from the well known theorems of Gabriel [18]
and Nazarova [31] that Q′ is either a Dynkin quiver or one of the extended
Dynkin quivers Ãn, D̃n, Ẽ6, Ẽ7 or Ẽ8.

Assume now that Q has an oriented cycle S, and choose a minimal one.
It follows that S is of type Ãs with a cyclic orientation, where s ≥ 0, and
KS∗ ⊆ KQ∗ is a subcoalgebra of KQ∗. Assume to the contrary that Q
is not of extended Dynkin type. Then S is a proper subquiver of Q and
therefore Q contains a subquiver Ŝ containing S such that Ŝ or Ŝ∗ is of the
form Ts shown in (8.19).
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Suppose that Ŝ = Ts. Note that

H := KŜ∗≤6 = KS
∗
0 ⊕KS

∗
1 ⊕ . . .⊕KS

∗
6

(see (∗∗∗∗)) is a finite-dimensional K-subcoalgebra of KŜ∗ and therefore
it is of tame comodule type, by Theorem 6.11. On the other hand, since
dimK H is finite and there is a K-algebra isomorphism H∗ ∼= KŜ/KŜ≥7
(see (∗∗∗)), in view of Theorem 4.3 (a) and [44, Corollary 14.7] we have

H-comod ∼= mod(H∗) ∼= mod(KŜ/KŜ≥7) ∼= repK(Ŝ,KŜ≥7).

In other words, H-comod is equivalent to the category of finite-dimensional

K-linear representations of Ŝ satisfying all zero-relations of length ≥ 7
(see [44, Section 14.1]). By looking at the Galois covering of the bound
quiver (S,KS≥7) and applying [12, Theorem 3.6] we easily conclude that
the finite-dimensional K-algebra H∗ is representation-wild. Therefore H∗ is
not representation-tame and consequentlyH is not of tame comodule type, a
contradiction. This shows that Q = S is of type Ãs with a cyclic orientation,
and finishes the proof of (a)⇒(b).

(b)⇒(a). By Proposition 8.1(d), there exists a K-linear equivalence of
categories KQ∗-comod ∼= nilreplfK(Q). If Q is any of Ãn, D̃n, Ẽ6, Ẽ7 or Ẽ8,
then according to Nazarova’s theorem [31] the category nilreplfK(Q) is domes-
tic of tame representation type and therefore the coalgebra KQ∗ is domestic
of tame comodule type.

Assume that Q is a locally Dynkin quiver. If Q is finite, it is a Dynkin
quiver and in view of the equivalence KQ∗-comod ∼= replfK(Q)

∼= repK(Q)
the coalgebra KQ∗ is of finite comodule type, by the theorem of Gabriel

[18]. If Q is infinite, it is easy to see that Q is one of the quivers A
(s)
∞ , ∞A

(s)
∞ ,

D
(s)
∞ of Table 9.2, up to orientation. In particular, Q has no oriented cycles
and KQ∗-comod ∼= replfK(Q), by Corollary 8.4.

From the description of the indecomposable representations of the Dyn-
kin quivers given in [18] it follows that for each vector v ∈ K0(KQ

∗) ∼=
Z
(Q0) the number of indecomposable representations M in replfK(Q) with
lengthM = v is finite, up to isomorphism (see also [2, VIII. 5–6] and [21,
Chapter VII]). It follows that KQ∗ is domestic of tame comodule type,
because µ1KQ∗(v) = 0 for all v ∈ K0(KQ

∗).

(b)⇒(d). By Proposition 8.1(d), KQ∗-comod ∼= nilreplfK(Q). If Q is any
of Ãn, D̃n, Ẽ6, Ẽ7 or Ẽ8, then according to Nazarova’s theorem [31] the
category nilreplfK(Q) is not of wild representation type and therefore KQ

∗

is not of wild comodule type.
Assume that Q is infinite. Then Q is a locally Dynkin quiver, has no

oriented cycles andKQ∗-comod ∼= replfK(Q), by Corollary 8.4. Assume to the
contrary that KQ∗ is of wild comodule type. It follows that there exists a K-
linear representation embedding exact functor F : modΓ3(K) → rep

lf
K(Q).
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Let S1 (resp. S2) be the unique simple injective (resp. projective) right
Γ3(K)-module, up to isomorphism. Then for every Γ3(K)-module X there
exist integers n1, n2 ≥ 0 and an exact sequence 0→ Sn22 → X → Sn11 → 0 in
modΓ3(K). Since the functor F is exact, the induced sequence 0→ Un22 →
F (X)→ Un11 → 0 is exact in rep

lf
K(Q). It follows that there exists a finite full

subquiverQ′ of Q such that F (X) is in repℓfK (Q
′) ⊆ replfK(Q), that is, F has a

factorisation F ′ : modΓ3(K)→ rep
lf
K(Q

′) through replfK(Q
′). It follows that

replfK(Q
′) is of infinite representation type, and we get a contradiction with

the theorem of Gabriel [18], because Q′ is a Dynkin quiver by assumption.
Consequently, KQ∗ is not of wild comodule type and (d) follows.

The implication (d)⇒(e) is obvious.

(e)⇒(b). Assume that KQ∗ is not of fully wild comodule type. It follows
from Corollary 8.18 that Q does not contain a finite subquiver of type Ts
(see (8.19)). Moreover, Q has no finite subquiver Q′ which is a one-arrow
extension of any of Ãn, D̃n, Ẽ6, Ẽ7 or Ẽ8 without oriented cycles, because
KQ∗-comod ∼= nilreplfK(Q) (Corollary 8.4), and according to [4, Proposi-
tion 2] and [31] for every such Q′ the category repK(Q

′) = nilreplfK(Q
′) ⊆

nilreplfK(Q) is of fully wild representation type (see also [26, Lemma 3.8]).

10. Concluding remarks. It follows from Proposition 5.9 and Corol-
lary 5.10 that the study of comodule categories over K-coalgebras and
their representation types includes the study of arbitrary abelian length
K-categories, and in particular the study of module categories over finite-
dimensional K-algebras, the categories of finite-dimensional modules over
infinite-dimensional K-algebras and categories of locally finite rational rep-
resentations of nice algebraic groups.

Let us end the paper by stating some open questions and suggestions
for further investigation and development of representation theory of coal-
gebras. In principle, they grow up from the representation theory of finite-
dimensional K-algebras.

A list of open problems. Assume that K is an algebraically closed
field.

(10.1) Prove that the tame-wild dichotomy remains valid for all K-
coalgebras (cf. Theorem 6.11 and Proposition 6.14).

(10.2) Give simple criteria for tame comodule type and for the poly-
nomial growth of K-coalgebras C with locally finite Gabriel quiver CQ in
terms of CQ, of the Auslander–Reiten quiver Γ (C-comod) of the category
C-comod, of the Euler form (or Tits form) associated with C, or in terms
of the transfinite sequence of powers of the infinite radical rad∞(C-comod)
of C-comod (see [32, Section 3] and [50]).
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(10.3) Describe the structure of connected components of Γ (C-comod)
if C is of tame comodule type.

(10.4) Give necessary and sufficient conditions for a K-coalgebra C to
be left pure semisimple in terms of Γ (C-comod) (cf. [32, Theorem 3.1]).

Example 6.17 shows that the connectedness of Γ (C-comod) does not
imply the left pure semisimplicity of C, because according to Theorem 7.4
the indecomposable cocommutative coalgebra K[t]⋄ is not pure semisimple
and the Auslander–Reiten quiver of K[t]⋄-comod is connected. Recall that
Γ (K[t]⋄-comod) is a rank one homogeneous tube of the form shown in [44,
p. 289].

(10.5) Develop a (co)tilting theory for comodule categories.

(10.6) Show that every basic K-coalgebra C is isomorphic to the path
K-coalgebra C(Q,Ω) of a quiver with relations (Q,Ω).

(10.7) Develop a covering technique for K-coalgebras (see [12]).

(10.8) Develop a comodule variety technique for K-coalgebras (see [44,
Section 14.5]).

(10.9) Following Theorem 9.13 give a characterisation of left pure semi-
simple hereditary K ′-coalgebras C over any non-algebraically closed field
K ′ by means of a valued Gabriel quiver (CQ,d) of C and locally Dynkin
diagrams defined in a suitable way (see [2] and [44]).

Note added in proof. 1o It is useful to note that, by [48, Corollary 5.5] and Theo-
rem 9.4, an indecomposable hereditary basic K-coalgebra C over an algebraically closed
field K is of tame comodule type if and only if the Gabriel quiver of C is a locally Dynkin
quiver or an extended Dynkin quiver.

2o Assume that C is a basic K-coalgebra over an algebraically closed field K. One
can prove the following two statements:

(a) If dimK Ext
1
C
(S(i), S(j)) ≥ 3 for some i, j ∈ IC , then C contains a wild subcoal-

gebra of dimension 4 or 5.

(b) If C is of tame comodule type, then dimK Ext
1
C
(S(i), S(j)) ≤ 2 for all i, j ∈ IC .

It follows that Theorems 6.10, 6.11(c) and Proposition 6.14(c) remain valid without
the assumption that dimK Ext

1
C
(S(i), S(j)) is finite for all i, j ∈ IC . In particular, if K

is algebraically closed then there is no wild comodule type K-coalgebra which is of tame
comodule type.

3o Michael Butler has pointed out to me that the answer to Question 8.21 is affirmative
if Q is a quiver with finite vertex set. This is a consequence of the Appendix in the paper
of M. C. R. Butler and A. D. King,Minimal resolutions of algebras, J. Algebra 212 (1999),
323–362.
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