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RADICALS OF SYMMETRIC CELLULAR ALGEBRAS
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YANBO LI (Qinhuangdao)

Abstract. For a symmetric cellular algebra, we study properties of the dual basis of
a cellular basis first. Then a nilpotent ideal is constructed. The ideal connects the radicals
of cell modules with the radical of the algebra. It also yields some information on the
dimensions of simple modules. As a by-product, we obtain some equivalent conditions for
a finite-dimensional symmetric cellular algebra to be semisimple.

1. Introduction. Cellular algebras were introduced by Graham and
Lehrer [6] in 1996, motivated by previous work of Kazhdan and Lusztig [7].
They were defined by a so-called cellular basis with some nice properties.
The theory of cellular algebras provides a systematic framework for studying
the representation theory of many important algebras. One can parameter-
ize simple modules for a finite-dimensional cellular algebra by methods of
linear algebra. Many classes of algebras from mathematics and physics are
found to be cellular, including Hecke algebras of finite type, Ariki–Koike al-
gebras, q-Schur algebras, Brauer algebras, Temperley–Lieb algebras, cyclo-
tomic Temperley–Lieb algebras, Jones algebras, partition algebras, Birman–
Wenzl algebras and so on. We refer the reader to [4, 6, 15, 16, 17] for details.

An equivalent basis-free definition of cellular algebras was given by
Koenig and Xi [8]. It is useful in dealing with structural problems. Using
this definition, Koenig and Xi [9] made explicit an inductive construction of
cellular algebras which is called inflation. It can produce all cellular algebras.
In [10], Brauer algebras were shown to be iterated inflations of group alge-
bras of symmetric groups. Then more information about Brauer algebras
was found.

Recently, Koenig and Xi [11] introduced affine cellular algebras which
contain cellular algebras as special cases. Affine Hecke algebras of type A
and infinite-dimensional diagram algebras like the affine Temperley–Lieb
algebras are affine cellular.

It is an open problem to find explicit formulas for the dimensions of
simple modules of a cellular algebra. By the theory of cellular algebras,
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this is equivalent to determining the dimensions of the radicals of bilinear
forms associated with cell modules. In [12], for a quasi-hereditary cellular
algebra, Lehrer and Zhang found that the radicals of bilinear forms are
related to the radical of the algebra. This leads us to studying the radical of
a cellular algebra. However, we have no idea for dealing with general cellular
algebras now. We will do some work on the radicals of symmetric cellular
algebras in this paper. Note that Hecke algebras of finite types, Ariki–Koike
algebras over any ring containing inverses of the parameters, Khovanov’s
diagram algebras are all symmetric cellular algebras. The trivial extension
of a cellular algebra is also a symmetric cellular algebra. For details, see [1],
[13], [18].

We begin with definitions of and some well-known results on symmet-
ric algebras and cellular algebras in Section 2. Then in Section 3, for a
symmetric cellular algebra, we study properties of the dual basis of a cellu-
lar basis. In Section 4, a nilpotent ideal of a symmetric cellular algebra is
constructed. This ideal connects the radicals of cell modules with the rad-
ical of the algebra and also yields some information on the dimensions of
simple modules. As a by-product, we obtain some equivalent conditions for
a finite-dimensional symmetric cellular algebra to be semisimple.

2. Preliminaries. In this section, we start from the definitions of sym-
metric algebras and cellular algebras (a slightly weaker version due to Good-
man) and then recall some well-known results about them.

Let R be a commutative ring with identity and A an associative R-
algebra. As an R-module, A is finitely generated and free. Let f : A×A→ R
be an R-bilinear map. We say that f is non-degenerate if the determinant
of the matrix (f(ai, aj))ai,aj∈B is a unit in R for some R-basis B of A. We
say f is associative if f(ab, c) = f(a, bc) for all a, b, c ∈ A, and symmetric if
f(a, b) = f(b, a) for all a, b ∈ A.

Definition 2.1. An R-algebra A is called symmetric if there is a non-
degenerate associative symmetric bilinear form f on A. Define an R-linear
map τ : A→ R by τ(a) = f(a, 1). We call τ a symmetrizing trace.

Let A be a symmetric algebra with a basis B = {ai | i = 1, . . . , n} and τ a
symmetrizing trace. Denote by D = {Di | i = i, . . . , n} the basis determined
by the requirement that τ(Djai) = δij for all i, j = 1, . . . , n. We will call D
the dual basis of B. For arbitrary 1 ≤ i, j ≤ n, write aiaj =

∑
k rijkak, where

rijk ∈ R. Fixing a symmetrizing trace τ for A, we have the following lemma.

Lemma 2.2. Let A be a symmetric R-algebra with a basis B and dual
basis D. Then

aiDj =
∑
k

rkijDk, Diaj =
∑
k

rjkiDk.
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Proof. We only prove the first equation. The other one is proved simi-
larly.

Suppose that aiDj =
∑

k rkDk, where rk ∈ R for k = 1, . . . , n. Left
multiplying by ak0 and then applying τ , we get τ(ak0aiDj) = rk0 . Clearly,
τ(ak0aiDj) = rk0,i,j . This implies that rk0 = rk0,i,j .

Given a symmetric algebra, it is natural to consider the relation between
two dual bases determined by two different symmetrizing traces. For this we
have the following lemma.

Lemma 2.3. Suppose that A is a symmetric R-algebra with a basis B =
{ai | i = 1, . . . , n}. Let τ, τ ′ be two symmetrizing traces. Denote by {Di | i =
1, . . . , n} the dual basis of B determined by τ and {D′i | i = 1, . . . , n} the
dual basis determined by τ ′. Then for 1 ≤ i ≤ n, we have

D′i =
n∑
j=1

τ(ajD
′
i)Dj .

Proof. This is proved by a similar method to Lemma 2.2.

Graham and Lehrer [6] introduced the so-called cellular algebras; then
Goodman [3] gave a slightly weaker version. Throughout this paper, we will
adopt Goodman’s definition for the sake of being more general.

Definition 2.4 ([3, Defnition 2.9]). Let R be a commutative ring with
identity. An associative unital R-algebra is called a cellular algebra with cell
datum (Λ,M,C, i) if the following conditions are satisfied:

(C1) The finite set Λ is a poset. Associated with each λ ∈ Λ, there is
a finite set M(λ). The algebra A has an R-basis {CλS,T | S, T ∈
M(λ), λ ∈ Λ}.

(C2) The map i is an R-linear anti-automorphism of A with i2 = id and

i(CλS,T ) ≡ CλT,S (modA(<λ))

for all λ ∈ Λ and S, T ∈ M(λ), where A(<λ) is the R-submodule
of A generated by {CµS′′,T ′′ | S′′, T ′′ ∈M(µ), µ < λ}.

(C3) If λ ∈ Λ and S, T ∈M(λ), then for any a ∈ A, we have

aCλS,T ≡
∑

S′∈M(λ)

ra(S
′, S)CλS′,T (mod A(<λ)),

where ra(S
′, S) ∈ R is independent of T .

Applying i to the equation in (C3), we obtain

(C3′) CλT,Si(a) ≡
∑

S′∈M(λ) ra(S
′, S)CλT,S′ (mod A(<λ)).

Remark 2.5. Graham and Lehrer’s [6] original definition requires that
i(CλS,T ) = CλT,S for all λ ∈ Λ and S, T ∈ M(λ). But Goodman pointed out
that the results of [6] remained valid with his weaker axiom. In case 2 ∈ R
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is invertible, these two definitions are equivalent. For details, we refer the
reader to [4].

It is easy to check the following lemma by Definition 2.4.

Lemma 2.6 ([6, Lemma 1.7]). Let λ ∈ Λ and a ∈ A. Then for arbitrary
elements S, T, U, V ∈M(λ), we have

CλS,TaC
λ
U,V ≡ Φa(T,U)CλS,V (mod A(<λ)),

where Φa(T,U) ∈ R depends only on a, T and U .

We often omit the index a when a = 1, that is, write Φ(T,U) for Φ1(T,U).
Let us now recall the definition of cell modules.

Definition 2.7 ([6, Definition 2.1]). Let A be a cellular algebra with
cell datum (Λ,M,C, i). For each λ ∈ Λ, define the left A-module W (λ) as
follows: W (λ) is a free R-module with basis {CS | S ∈M(λ)} and A-action
defined by

aCS =
∑

S′∈M(λ)

ra(S
′, S)CS′ (a ∈ A, S ∈M(λ)),

where ra(S
′, S) is the element of R defined in Definition 2.4 (C3).

Lemma 2.8 ([6, Lemma 2.2]). There is a natural isomorphism of A-
bimodules

Cλ : W (λ)⊗R i(W (λ))→ R-span{CλS,T | S, T ∈M(λ)},

defined by (CS , CT ) 7→ CλS,T .

For a cell module W (λ), define a bilinear form

Φλ : W (λ)×W (λ)→ R

by Φλ(CS , CT ) = Φ(S, T ). It plays an important role in studying the struc-
ture of W (λ). It is easy to check that Φ(T,U) = Φ(U, T ) for arbitrary
T,U ∈M(λ).

Define

radλ := {x ∈W (λ) | Φλ(x, y) = 0 for all y ∈W (λ)}.
If Φλ 6= 0, then radλ is the radical of the A-module W (λ). Moreover, if λ is
a maximal element in Λ, then radλ = 0.

The following results were proved by Graham and Lehrer [6].

Theorem 2.9 ([6, Theorem 3.4]). Let K be a field and A a finite di-
mensional cellular algebra. For any λ ∈ Λ, denote the A-module W (λ)/radλ
by Lλ. Let Λ0 = {λ ∈ Λ | Φλ 6= 0}. Then {Lλ | λ ∈ Λ0} is a complete set of
(representatives of equivalence classes of ) absolutely simple A-modules.

Theorem 2.10 ([6, Theorem 3.8]). Let K be a field and A a cellular
K-algebra. Then the following are equivalent:
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(1) The algebra A is semisimple.
(2) The nonzero cell representations W (λ) are irreducible and pairwise

inequivalent.
(3) The form Φλ is nondegenerate (i.e. radλ = 0) for each λ ∈ Λ.

For λ ∈ Λ, fix an order on M(λ) and let M(λ) = {S1, . . . , Snλ}, where
nλ is the number of elements in M(λ). The matrix

G(λ) = (Φ(Si, Sj))1≤i,j≤nλ

is called the Gram matrix. It is easy to know that all the determinants of
G(λ) defined using different orders on M(λ) are the same. By the definition
of G(λ) and radλ, for a finite-dimensional cellular algebra A, it is clear that
if Φλ 6= 0, then dimK Lλ = rankG(λ).

3. Symmetric cellular algebras. In this section, we study properties
of the dual basis of a cellular basis for a symmetric cellular algebra. We will
prove that the dual basis is “almost” cellular.

Let A be a symmetric cellular algebra with cell datum (Λ,M,C, i).
Throughout, denote the dual basis by D = {Dλ

S,T | S, T ∈ M(λ), λ ∈ Λ},
which satisfies

τ(CλS,TD
µ
U,V ) = δλµδSV δTU .

For any λ, µ ∈ Λ, S, T ∈M(λ), U, V ∈M(µ), write

CλS,TC
µ
U,V =

∑
ε∈Λ,X,Y ∈M(ε)

r(S,T,λ),(U,V,µ),(X,Y,ε)C
ε
X,Y .

The lemma below plays an important role throughout this paper.

Lemma 3.1. Let A be a symmetric cellular algebra with cell datum
(Λ,M,C, i) and τ a given symmetrizing trace. For arbitrary λ, µ ∈ Λ and
S, T, P,Q ∈M(λ), U, V ∈M(µ), the following hold:

(1) Dµ
U,V C

λ
S,T =

∑
ε∈Λ,X,Y ∈M(ε)

r(S,T,λ),(Y,X,ε),(V,U,µ)D
ε
X,Y .

(2) CλS,TD
µ
U,V =

∑
ε∈Λ,X,Y ∈M(ε)

r(Y,X,ε),(S,T,λ),(V,U,µ)D
ε
X,Y .

(3) CλS,TD
λ
T,Q = CλS,PD

λ
P,Q.

(4) Dλ
T,SC

λ
S,Q = Dλ

T,PC
λ
P,Q.

(5) CλS,TD
λ
P,Q = 0 if T 6= P.

(6) Dλ
P,QC

λ
S,T = 0 if Q 6= S.

(7) CλS,TD
µ
U,V = 0 if µ � λ.

(8) Dµ
U,V C

λ
S,T = 0 if µ � λ.

Proof. (1), (2) are corollaries of Lemma 2.2. The equations (5)–(8) are
corollaries of (1) and (2). We now prove (3).
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By (2), we have

CλS,TD
λ
T,Q =

∑
ε∈Λ,X,Y ∈M(ε)

r(Y,X,ε),(S,T,λ),(Q,T,λ)D
ε
X,Y ,

CλS,PD
λ
P,S =

∑
ε∈Λ,X,Y ∈M(ε)

r(Y,X,ε),(S,P,λ),(Q,P,λ)D
ε
X,Y .

On the other hand, by (C3) of Definition 2.4 we also have

r(Y,X,ε),(S,T,λ),(Q,T,λ) = r(Y,X,ε),(S,P,λ),(Q,P,λ)

for all ε ∈ Λ and X,Y ∈M(ε). This completes the proof of (3).

(4) is proved similarly.

Lemma 3.2. Let A be a symmetric cellular algebra with cell datum
(Λ,M,C, i), and D = {Dλ

S,T | S, T ∈ M(λ), λ ∈ Λ} the dual basis. Then
(C3) of Definition 2.4 holds with respect to the opposite order on Λ. More-
over,

i(Dλ
S,T ) ≡ rT,S,λDλ

T,S (mod AD(>λ)),

where rT,S,λ ∈ R and where AD(>λ) is the R-submodule of A generated by
{Dµ

U,V | U, V ∈M(µ), µ > λ}.

Proof. Let us prove (C3) holds. For arbitrary CλS,T , by Lemma 3.1(2),
we have

CλS,TD
µ
U,V =

∑
ε∈Λ,X,Y ∈M(ε)

r(Y,X,ε),(S,T,λ),(V,U,µ)D
ε
X,Y .

By (C3) of Definition 2.4, if ε < µ, then r(Y,X,ε),(S,T,λ),(V,U,µ) = 0. Therefore,

CλS,TD
µ
U,V ≡

∑
X,Y ∈M(µ)

r(Y,X,µ),(S,T,λ),(V,U,µ)D
µ
X,Y (mod AD(>µ)),

where AD(>µ) is the R-submodule of A generated by

{Dη
S′′,T ′′ | S′′, T ′′ ∈M(λ), η > µ}.

By (C3′) of Definition 2.4, if Y 6= V , then r(Y,X,µ),(S,T,λ),(V,U,µ) = 0. So

CλS,TD
µ
U,V ≡

∑
X∈M(µ)

r(V,X,µ),(S,T,λ),(V,U,µ)D
µ
X,V (mod AD(>µ)).

Clearly, for arbitrary X ∈M(µ), we have

r(V,X,µ),(S,T,λ),(V,U,µ) = rCλT,S
(U,X),

which is independent of V . Since CλS,T is arbitrary,

aDµ
U,V ≡

∑
U ′∈M(µ)

ri(a)(U,U
′)Dµ

U ′,V (mod AD(>µ))
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for any a ∈ A. By Definition 2.4, ri(a)(U,U
′) is independent of V . Thus we

have completed the proof of (C3).

Let

i(Dλ
S,T ) =

∑
ε∈Λ,X,Y ∈M(ε)

rX,Y,εD
ε
X,Y

with rX,Y,ε ∈ R. If there exists η � λ such that rP,Q,η 6= 0 for some P,Q ∈
M(η), then τ(i(Dλ

S,T )CηQ,P ) = rP,Q,η 6= 0. This implies that i(Dλ
S,T )CηQ,P

6= 0. Thus CηP,QD
λ
S,T 6= 0. But we know η � λ, so by Lemma 3.1(7),

CηP,QD
λ
S,T = 0, a contradiction. This implies that

i(Dλ
S,T ) ≡

∑
X,Y ∈M(λ)

rX,Y,λD
λ
X,Y (mod AD(>λ)).

Now assume rU,V,λ 6= 0. Then i(Dλ
S,T )CλV,U 6= 0, hence CλU,VD

λ
S,T 6= 0. By

Lemma 3.1(5), V = S. We can get U = T similarly. This completes the
proof of the lemma.

Remark. Obviously, if rT,S,λ = 1 for all λ ∈ Λ and S, T ∈ M(λ), then
the dual basis Dλ

T,S is again cellular with respect to the opposite order on λ.

It is easy to check that for arbitrary elements S, T, U, V ∈M(λ),

Dλ
S,TD

λ
U,V ≡ Ψ(T,U)Dλ

S,V (mod A(>λ)),

where Ψ(T,U) ∈ R depends only on T and U . Then we also have Gram
matrices G′(λ) defined by the dual basis. Now it is natural to ask about
the relation between G(λ) and G′(λ). To study this, we need the following
lemma.

Lemma 3.3. Let A be a symmetric cellular algebra with cell datum
(Λ,M,C, i). For every λ ∈ Λ and S, T, U, V, P ∈M(λ), we have

CλS,TD
λ
T,UC

λ
U,VD

λ
V,P =

∑
Y ∈M(λ)

Φ(Y, V )Ψ(Y, V )CλS,TD
λ
T,P .

Proof. By Lemma 3.1(1), we have

CλS,TD
λ
T,UC

λ
U,VD

λ
V,P = CλS,T (Dλ

T,UC
λ
U,V )Dλ

V,P

=
∑

ε∈Λ,X,Y ∈M(ε)

r(U,V,λ),(Y,X,ε),(U,T,λ)C
λ
S,TD

ε
X,YD

λ
V,P .

If ε > λ, then by Lemma 3.1(7), CλS,TD
ε
X,Y = 0; if ε < λ, then by Defini-
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tion 2.4 (C3), r(U,V,λ),(Y,X,ε),(U,T,λ) = 0. This implies that∑
ε∈Λ,X,Y ∈M(ε)

r(U,V,λ),(Y,X,ε),(U,T,λ)C
λ
S,TD

ε
X,YD

λ
V,P

=
∑

X,Y ∈M(λ)

r(U,V,λ),(Y,X,λ),(U,T,λ)C
λ
S,TD

λ
X,YD

λ
V,P .

By Definition 2.4 (C3), if X 6= T , then r(U,V,λ),(Y,X,λ),(U,T,λ) = 0. Hence,∑
X,Y ∈M(λ)

r(U,V,λ),(Y,X,λ),(U,T,λ)C
λ
S,TD

λ
X,YD

λ
V,P

=
∑

Y ∈M(λ)

r(U,V,λ),(Y,T,λ),(U,T,λ)C
λ
S,TD

λ
T,YD

λ
V,P .

Note that

Dλ
T,YD

λ
V,P ≡ Ψ(Y, V )Dλ

T,P (mod AD(>λ)).

Moreover, by Lemma 3.1(7), if ε > λ, then CλS,TD
ε
X,Y = 0. Thus∑

Y ∈M(λ)

r(U,V,λ),(Y,T,λ),(U,T,λ)C
λ
S,TD

λ
T,YD

λ
V,P

=
∑

Y ∈M(λ)

Φ(Y, V )Ψ(Y, V )CλS,TD
λ
T,P .

This completes the proof.

By Lemma 3.1, CλU,VD
λ
V,P is independent of the choice of V , hence so

is
∑

Y ∈M(λ) Φ(Y, V )Ψ(Y, V ). Then for any λ ∈ Λ, we can define a constant
kλ,τ as follows.

Definition 3.4. Keep the notation above. For λ ∈ Λ, take an arbitrary
V ∈M(λ). Define

kλ,τ =
∑

X∈M(λ)

Φ(X,V )Ψ(X,V ).

It is helpful to note that {kλ,τ | λ ∈ Λ} is not independent of the choice
of symmetrizing trace. Fixing a symmetrizing trace τ , we often write kλ,τ
as kλ. The following lemma gives the relation among G(λ), G′(λ) and kλ.

Lemma 3.5. Let A be a symmetric cellular algebra with cell datum
(Λ,M,C, i). For any λ ∈ Λ, fix an order on the set M(λ). Then G(λ)G′(λ) =
kλE, where E is the identity matrix.

Proof. For an arbitrary λ ∈ Λ, according to the definition of G(λ), G′(λ)
and kλ, we only need to show that

∑
Y ∈M(λ) Φ(Y,U)Ψ(Y, V ) = 0 for arbi-

trary U, V ∈M(λ) with U 6= V .
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In fact, on one hand, for arbitrary S ∈M(λ), by Lemma 3.1(5), U 6= V
implies that CλS,UD

λ
V,S = 0. Then CλS,UD

λ
U,SC

λ
S,UD

λ
V,S = 0. On the other

hand, by a similar method to the proof of Lemma 3.3,

CλS,UD
λ
U,SC

λ
S,UD

λ
V,S =

∑
ε∈Λ,X,Y ∈M(ε)

r(S,U,λ),(Y,X,ε),(S,U,λ)C
λ
S,UD

ε
X,YD

λ
V,S

=
∑

Y ∈M(λ)

r(S,U,λ),(Y,U,λ),(S,U,λ)C
λ
S,UD

λ
U,YD

λ
V,S

=
∑

Y ∈M(λ)

Φ(Y,U)Ψ(Y, V )CλS,UD
λ
U,S .

Then
∑

Y ∈M(λ) Φ(Y,U)Ψ(Y, V )CλS,UD
λ
U,S = 0. This implies that

τ
( ∑
Y ∈M(λ)

Φ(Y,U)Ψ(Y, V )CλS,UD
λ
U,S

)
= 0.

Since τ(CλS,UD
λ
U,S) = 1, we have

∑
Y ∈M(λ) Φ(Y,U)Ψ(Y, V ) = 0.

Corollary 3.6. Let A be a symmetric cellular algebra over an integral
domain R. Then kλ = 0 for any λ ∈ Λ with radλ 6= 0.

Proof. Since |G(λ)| = 0 is equivalent to radλ 6= 0, Lemma 3.5 shows
that radλ 6= 0 implies kλ = 0.

4. Radicals of symmetric cellular algebras. To study radicals of
symmetric cellular algebras, we need the following lemma.

Lemma 4.1. Let A be a symmetric cellular algebra. Then for any λ ∈ Λ,
the elements of the form

∑
S,U∈M(λ) rSUC

λ
S,VD

λ
V,U with rSU ∈ R form an

ideal of A.

Proof. Denote the set of elements of the above form by Iλ. Then we claim
that CηP,QC

λ
S,VD

λ
V,U ∈ Iλ for any η ∈ Λ, P,Q ∈M(η), and S,U ∈M(λ). In

fact, by (C3) of Definition 2.4 and Lemma 3.1(7),

CηP,QC
λ
S,VD

λ
V,U =

∑
ε∈Λ,X,Y ∈M(ε)

r(P,Q,η),(S,V,λ),(X,Y,ε)C
ε
X,YD

λ
V,U

=
∑

X∈M(λ)

r(P,Q,η),(S,V,λ),(X,V λ)C
λ
X,VD

λ
V,U .

That CλS,VD
λ
V,UC

η
P,Q ∈ Iλ is proved similarly.

We will denote
∑

λ∈Λ, kλ=0 I
λ by IΛ. Similarly, for each λ ∈ Λ, the el-

ements of the form
∑

S,U∈M(λ) rU,SD
λ
U,V C

λ
V,S with rU,S ∈ R also form an

ideal IλD of A. Denote
∑

λ∈Λ, kλ=0 I
λ
D by IΛD and set I = IΛ + IΛD.
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Define

Λ1 = {λ ∈ Λ | radλ = 0}, Λ2 = Λ0 − Λ1,

Λ3 = Λ− Λ0, Λ4 = {λ ∈ Λ1 | kλ = 0}.
Now we are in a position to give the main result of this paper.

Theorem 4.2. Suppose that R is an integral domain and that A is
a symmetric cellular algebra with a cellular basis C = {CλS,T | S, T ∈
M(λ), λ ∈ Λ}. Let τ be a symmetrizing trace on A and let {Dλ

T,S | S, T ∈
M(λ), λ ∈ Λ} be the dual basis of C with respect to τ . Then

(1) I ⊆ radA and I3 = 0.
(2) I is independent of the choice of τ .

Moreover, if R is a field, then

(3) dimR I ≥
∑
λ∈Λ2

(nλ + dimR radλ) dimR Lλ +
∑
λ∈Λ4

n2λ,

where nλ is the number of elements in M(λ).

(4)
∑
λ∈Λ2

(dimK Lλ)2 −
∑
λ∈Λ3

n2λ ≤
∑
λ∈Λ2

(dimK radλ)2 −
∑
λ∈Λ4

n2λ.

Proof. (1) I ⊆ radA and I3 = 0.

Firstly, we prove (IΛ)2 = 0. Obviously, by the definition of IΛ, every
element of (IΛ)2 can be written as a linear combination of elements of the
form CλS1,T

Dλ
T,S2

CµU1,V
Dµ
V,U2

(we omit the coefficient here) with kλ = 0 and
kµ = 0.

If µ < λ, then CλS1,T
Dλ
T,S2

CµU1,V
Dµ
V,U2

= 0 by Lemma 3.1(8).

If µ > λ, then by Lemma 3.1(1)&(7),

CλS1,TD
λ
T,S2

CµU1,V
Dµ
V,U2

=
∑

Y ∈M(λ)

r(U1,V,µ),(Y,T,λ),(S2,T,λ)C
λ
S1,TD

λ
T,YD

µ
V,U2

.

However, by Lemma 3.2, every Dη
P,Q with nonzero coefficient in the expan-

sion of Dλ
T,YD

µ
V,U2

satisfies η ≥ µ. Since µ > λ, we have η > λ. Now, by

Lemma 3.1(7), we get CλS1,T
Dη
P,Q = 0, that is, CλS1,T

Dλ
T,S2

CµU1,V
Dµ
V,U2

= 0 if
µ > λ.

If λ = µ, by Lemma 3.1(3)&(4), we only need to consider elements of
the form

CλS1,T1D
λ
T1,S2

CλS2,T2D
λ
T2,S3

.

By Lemmas 3.3 and 3.6,

CλS1,T1D
λ
T1,S2

CλS2,T2D
λ
T2,S3

= kλC
λ
S1,T1D

λ
T1,S3

= 0.

Then we see that all the elements of the form CλS1,T
Dλ
T,S2

CµU1,V
Dµ
V,U2

are

zero, that is, (IΛ)2 = 0.
Similarly, we get (IΛD)2 = 0.



SYMMETRIC CELLULAR ALGEBRAS 77

To prove I3 = 0, we now only need to consider elements in IΛIΛDI
Λ and

IΛDI
ΛIΛD. For λ, µ, η ∈ Λ with kλ = kµ = kη = 0 and S, T,M ∈ M(λ),

U, V,N ∈M(µ), P,Q,W ∈M(η), suppose that

CλS,TD
λ
T,MD

µ
U,V C

µ
V,NC

η
P,QD

η
Q,W 6= 0.

If λ > µ, then any Dε
X,Y with nonzero coefficient in the expansion of

Dλ
T,MD

µ
U,V satisfies ε ≥ λ, so ε > µ; this implies that Dε

X,Y C
µ
V,N = 0

by Lemma 3.1, a contradiction. If λ < µ, then any Dε
X,Y with nonzero coeffi-

cient in the expansion ofDλ
T,MD

µ
U,V satisfies ε ≥ µ, so ε > λ; this implies that

CλS,TD
ε
X,Y = 0 by Lemma 3.1, a contradiction. Thus λ=µ. Similarly, we get

η= µ. By direct computation, we can also getCλS,TD
λ
T,MD

µ
U,VC

µ
V,NC

η
P,QD

η
Q,W

= 0. This implies that IΛIΛDI
Λ = 0. Similarly IΛDI

ΛIΛD = 0 is proved. Then
I3 = 0 follows.

Now it is clear that I ⊆ radA for I is a nilpotent ideal of A.

(2) I is independent of the choice of τ .

Let τ and τ ′ be two symmetrizing traces and D, d the dual bases deter-
mined by τ and τ ′ respectively. By Lemma 2.3, for arbitrary dλU,V ∈ d,

dλU,V =
∑

ε∈Λ,X,Y ∈M(ε)

τ(CεX,Y d
λ
U,V )Dε

Y,X .

Then for arbitrary S ∈M(λ),

CλS,Ud
λ
U,V =

∑
ε∈Λ,X,Y ∈M(ε)

τ(CεX,Y d
λ
U,V )CλS,UD

ε
Y,X .

By Lemma 3.1(7)&(8), if ε < λ, then CεX,Y d
λ
U,V = 0; if ε > λ, then

CλS,UD
ε
Y,X = 0. This implies that

CλS,Ud
λ
U,V =

∑
X,Y ∈M(λ)

τ(CλX,Y d
λ
U,V )CλS,UD

λ
Y,X .

By Lemma 3.1(5), if Y 6= U , then CλS,UD
λ
Y,X = 0. Hence

CλS,Ud
λ
U,V =

∑
X∈M(λ)

τ(CλX,Ud
λ
U,V )CλS,UD

λ
U,X .

Note that τ(CλX,Ud
λ
U,V ) = τ(dλU,V C

λ
X,U ). Then it follows from Lemma 3.1

that dλU,V C
λ
X,U = 0 if X 6= V . Thus

CλS,Ud
λ
U,V = τ(CλV,Ud

λ
U,V )CλS,UD

λ
U,V .
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Similarly, we obtain

CλS,UD
λ
U,V = τ ′(CλV,UD

λ
U,V )CλS,Ud

λ
U,V ,

dλV,UC
λ
U,S = τ(CλV,Ud

λ
U,V )Dλ

V,UC
λ
U,S ,

Dλ
V,UC

λ
U,S = τ ′(CλV,UD

λ
U,V )dλV,UC

λ
U,S .

The above four formulas imply that I is independent of the choice of sym-
metrizing trace.

(3) dimR I ≥
∑
λ∈Λ2

(nλ + dimR radλ) dimR Lλ +
∑
λ∈Λ4

n2λ.

For any λ ∈ Λ2 and S, T ∈M(λ), it follows from Lemma 3.1 that

CλS,TD
λ
T,T ≡

∑
X∈M(λ)

Φ(X,S)Dλ
X,T (mod AD(>λ)),

Dλ
T,TC

λ
T,S ≡

∑
Y ∈M(λ)

Φ(Y, S)Dλ
T,Y (mod AD(>λ)).

Let V be the R-space generated by the union of the sets{ ∑
X∈M(λ)

Φ(X,S)Dλ
X,T

∣∣∣ S, T ∈M(λ)
}
,

{ ∑
Y ∈M(λ)

Φ(Y, S)Dλ
T,Y

∣∣∣ S, T ∈M(λ)
}
.

Then it is easy to deduce from the definition of Iλ and IλD that

dimR(Iλ + IλD) ≥ dimV.

On the other hand, since Φλ 6= 0 and rankGλ = dimR Lλ, we have

dimV = 2nλ dimR Lλ − (dimR Lλ)2,

that is, dimV = dimR Lλ × (nλ + dimR radλ). Thus

dimR(Iλ + IλD) ≥ dimR Lλ × (nλ + dimR radλ).

Clearly, the above inequality holds true for any λ ∈ Λ4, so

dimR(Iλ + IλD) ≥ n2λ
for any λ ∈ Λ4. It is clear by Lemma 3.2 that

dimR I ≥
∑
λ∈Λ2

dimR(Iλ + IλD) +
∑
λ∈Λ4

n2λ,

and thus item (3) follows.

(4)
∑
λ∈Λ2

(dimK Lλ)2 −
∑
λ∈Λ3

n2λ ≤
∑
λ∈Λ2

(dimK radλ)2.
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By (1) and (3),

dimR radA ≥
∑
λ∈Λ2

(nλ + dimR radλ) dimR Lλ +
∑
λ∈Λ4

n2λ.

By the formula

dimR radA = dimRA−
∑
λ∈Λ0

(dimR Lλ)2,

we have

dimRA−
∑
λ∈Λ0

(dimR Lλ)2 ≥
∑
λ∈Λ2

(nλ + dimR radλ) dimR Lλ +
∑
λ∈Λ4

n2λ.

That is,∑
λ∈Λ3

n2λ +
∑
λ∈Λ0

n2λ −
∑
λ∈Λ0

(dimR Lλ)2

≥
∑
λ∈Λ2

(nλ + dimR radλ) dimR Lλ +
∑
λ∈Λ4

n2λ,

or ∑
λ∈Λ3

n2λ +
∑
λ∈Λ2

n2λ −
∑
λ∈Λ2

(dimR Lλ)2

≥
∑
λ∈Λ2

(nλ + dimR radλ) dimR Lλ +
∑
λ∈Λ4

n2λ,

or ∑
λ∈Λ2

(dimK Lλ)2 −
∑
λ∈Λ3

n2λ

≤
∑
λ∈Λ2

n2λ −
∑
λ∈Λ2

(nλ + dimR radλ) dimR Lλ −
∑
λ∈Λ4

n2λ.

According to dimR Lλ = nλ − dimR radλ, the right side of the above in-
equality is

∑
λ∈Λ2

(dimK radλ)2 −
∑

λ∈Λ4
n2λ. This completes the proof.

Corollary 4.3. Let R be an integral domain and A a symmetric cel-
lular algebra. Let λ be the minimal element in Λ. If radλ 6= 0, then R-
span{CλS,T | S, T ∈M(λ)} ⊂ radA.

Proof. If a =
∑

X,Y ∈M(λ) rX,Y C
λ
X,Y is not in radA, then there exists

some Dµ
U,V such that aDµ

U,V /∈ radA. If µ 6= λ, then aDµ
U,V = 0 by Lemma

3.1, so aDµ
u,V is in radA. If µ = λ, then aDµ

U,V ∈ radA by Theorem 4.2.
This is a contradiction.
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Corollary 4.4. Let A be a finite-dimensional symmetric cellular alge-
bra and r ∈ radA. Assume that λ ∈ Λ satisfies:

(1) There exist S, T ∈M(λ) such that CλS,T appears in the expansion of
r with nonzero coefficient.

(2) For any µ > λ and U, V ∈ M(µ), the coefficient of CµU,V in the
expansion of r is zero.

Then kλ = 0.

Proof. Since r =
∑

ε∈Λ,X,Y ∈M(ε) rX,Y,εC
ε
X,Y ∈ radA, we have rDλ

T,S ∈
radA. The conditions (1) and (2) imply that

rDλ
T,S =

∑
X∈M(λ)

rX,T,λC
λ
X,TD

λ
T,S .

It is easy to check that (rDλ
T,S)n = (kλrS,T,λ)n−1rDλ

T,S . Applying τ on both

sides of this equation, we get τ((rDλ
T,S)n) = (kλrS,T,λ)n−1rS,T,λ. If kλ 6= 0,

then τ((rDλ
T,S)n) 6= 0. Hence rDλ

T,S is not nilpotent and so rDλ
T,S /∈ radA,

a contradiction. This implies that kλ = 0.

Example 4.5. Consider the group algebra F3S3, where F3 is the field of
integers modulo 3. The algebra has a basis

{1, s1, s2, s1s2, s2s1, s1s2s1}.

A cellular basis is

C
(3)
1,1 = 1 + s1 + s2 + s1s2 + s2s1 + s1s2s1,

C
(2,1)
1,1 = 1 + s1, C

(2,1)
1,2 = s2 + s1s2,

C
(2,1)
2,1 = s2 + s2s1, C

(2,1)
2,2 = 1 + s1s2s1,

C
(13)
1,1 = 1.

The corresponding dual basis is

D
(3)
1,1 = − s2 + s1s2 + s2s1,

D
(2,1)
1,1 = s1 + s2 − s1s2 − s2s1, D

(2,1)
2,1 = s2 − s1s2,

D
(2,1)
1,2 = s2 − s2s1, D

(2,1)
2,2 = s2 − s1s2 − s2s1 + s1s2s1,

D
(13)
1,1 = 1− s1 − s2 + s1s2 + s2s1 − s1s2s1.

It is easy to see that Λ3 = (3) and Λ1 = (13). Thus dim radA = 4. Now we
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compute I. We have

C
(3)
1,1D

(3)
1,1 = 1 + s1 + s2 + s1s2 + s2s1 + s1s2s1,

C
(2,1)
1,2 D

(2,1)
2,1 = 1 + s1 − s2 − s1s2s1,

C
(2,1)
1,2 D

(2,1)
2,2 = s2 + s1s2 − s2s1 − s1s2s1,

C
(2,1)
2,1 D

(2,1)
1,2 = 1− s1 − s1s2 + s1s2s1,

C
(2,1)
2,1 D

(2,1)
1,1 = s2 + s2s1 − s1 − s1s2.

Thus dim I = 4. This implies that I = radA.

Of course, for a symmetric cellular algebra A, the ideal I may not be
equal to radA. Here is an example.

Example 4.6. Let K be a field and Q be the quiver

•
α1 // •

α2 //
1 α′

1
2

oo •
3α′

2

oo

with relations ρ given as follows:

• all paths of length ≥ 3;
• α′1α1 − α2α

′
2;

• α1α2, α
′
2α
′
1.

Let A = K(Q, ρ). Define τ by

τ(e1) = τ(e2) = τ(e3) = 0;

τ(αiα
′
i) = τ(α′iαi) = 1, i = 1, 2;

τ(αi) = τ(α′i) = 0.

Then A is a symmetric cellular algebra with a cellular basis

e1;
α1α

′
1 α1

α′1 e2
;
α2α

′
2 α2

α′2 e3
.

The dual basis is

α1α
′
1;

e1 α′1
α1 α′1α1

;
e2 α′2
α2 α′2α2

.

It is easy to see that dim(radA) = 6 and dim I = 2.

As a by-product of the results on radicals, we will give some equivalent
conditions for a finite-dimensional symmetric cellular algebra to be semi-
simple.

Corollary 4.7. Let A be a finite-dimensional symmetric cellular alge-
bra. Then the following are equivalent:

(1) A is semisimple.
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(2) kλ 6= 0 for all λ ∈ Λ.
(3) {CλS,TDλ

T,T | λ ∈ Λ, S, T ∈M(λ)} is a basis of A.

(4) For any λ ∈ Λ, there exist S, T ∈M(λ) such that (CλS,TD
λ
T,S)2 6= 0.

(5) For any λ ∈ Λ and arbitrary S, T ∈M(λ), (CλS,TD
λ
T,S)2 6= 0.

Proof. (2)⇒(1). If kλ 6= 0 for all λ ∈ Λ, then radλ = 0 for all λ ∈ Λ by
Corollary 3.6. This implies that A is semisimple by Theorem 2.10.

(1)⇒(2). Assume that there exists some λ ∈ Λ such that kλ = 0. Then it
is easy to check that Iλ is a nilpotent ideal of A. Obviously, Iλ 6= 0 because
at least CλU,VD

λ
V,U 6= 0. This implies that Iλ ⊆ radA. But A is semisimple,

a contradiction. This implies that kλ 6= 0 for all λ ∈ Λ.

(2)⇒(3). Suppose ∑
λ∈Λ, S,T∈M(λ)

kS,T,λC
λ
S,TD

λ
T,T = 0.

Take a maximal element λ0 ∈ Λ. For arbitrary X,Y ∈M(λ0),

Cλ0X,XD
λ0
X,Y

( ∑
λ∈Λ,S,T∈M(λ)

kS,T,λC
λ
S,TD

λ
T,T

)
= kλ0

∑
T∈M(λ0)

kY,T,λ0C
λ0
X,TD

λ0
T,T = 0.

This implies that

τ
(
kλ0

∑
T∈M(λ0)

kY,T,λ0C
λ0
X,TD

λ0
T,T

)
= 0,

i.e., kλ0kY,X,λ0 = 0. Since kλ0 6= 0, we get kY,X,λ0 = 0.

Repeating this process, we conclude that all the kS,T,λ are zeros.

(3)⇒(2). Since {CλS,TDλ
T,T | λ ∈ Λ, S, T ∈M(λ)} is a basis of A,

1 =
∑

λ∈Λ, S,T∈M(λ)

kS,T,λC
λ
S,TD

λ
T,T .

For arbitrary µ ∈ Λ and U, V ∈M(µ), we have

CµU,VD
µ
V,V =

∑
λ∈Λ, S,T∈M(λ)

kS,T,λC
λ
S,TD

λ
T,TC

µ
U,VD

µ
V,V

= kµ
∑

X∈M(µ)

kX,U,µC
µ
X,VD

µ
V,V .

This implies that kµ 6= 0 since CµU,VD
µ
V,V 6= 0. As µ is arbitrary, this shows

that kλ 6= 0 for all λ ∈ Λ.

(2)⇔(4) and (2)⇔(5) are clear by Lemma 3.3.
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