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Abstract. Let I = (0,∞) with the usual topology. For x, y ∈ I, we define xy =
max(x, y). Then I becomes a locally compact commutative topological semigroup. The
Banach space L1(I) of all Lebesgue integrable functions on I becomes a commutative
semisimple Banach algebra with order convolution as multiplication. A bounded linear
operator T on L1(I) is called a multiplier of L1(I) if T (f ⋆ g) = f ⋆Tg for all f, g ∈ L1(I).
The space of multipliers of L1(I) was determined by Johnson and Lahr. Let X be a Banach
space and L1(I, X) be the Banach space of all X-valued Bochner integrable functions on I.
We show that L1(I, X) becomes an L1(I)-Banach module. Suppose X and Y are Banach
spaces. A bounded linear operator T from L1(I, X) to L1(I, Y ) is called a multiplier if
T (f ⋆ g) = f ⋆ Tg for all f ∈ L1(I) and g ∈ L1(I, X). In this paper, we characterize the
multipliers from L1(I, X) to L1(I, Y ).

1. Introduction. Let I = (0,∞) with the usual topology. For x, y ∈ I,
we define xy = max(x, y). Then I becomes a locally compact commutative
topological semigroup. Let L1(I) denote the Banach space of all Lebesgue
integrable functions on I. It becomes a commutative semisimple Banach
algebra if multiplication is defined to be the order convolution introduced
by Lardy [3]. More specifically, if f, g ∈ L1(I), then

f ⋆ g(s) = f(s)

s\
0

g(t) dt + g(s)

s\
0

f(t) dt.

A bounded linear operator T on L1(I) is called a multiplier of L1(I) if
T (f ⋆ g) = f ⋆ Tg for all f, g ∈ L1(I). Johnson and Lahr [2] characterized
the multipliers of L1(I). In fact, they considered any interval in place of I,
with possibly infinite end points, and which may include one or the other of
the end points. Slightly earlier, Larsen [4] had characterized the multipliers
of L1([0, 1]) with order convolution.

Let X be a Banach space. Let L1(I, X) be the Banach space of X-
valued measurable functions f such that

T
∞

0
‖f(t)‖ dt < ∞. If f ∈ L1(I) and
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g ∈ L1(I, X) , we define

f ⋆ g(s) = f(s)

s\
0

g(t) dt + g(s)

s\
0

f(t) dt.

It turns out that f ⋆ g ∈ L1(I, X) and L1(I, X) becomes an L1(I)-Banach
module.

Let X and Y be Banach spaces. A bounded linear operator T from
L1(I, X) to L1(I, Y ) is called a multiplier from L1(I, X) to L1(I, Y ) if
T (f ⋆ g) = f ⋆ Tg for all f ∈ L1(I) and g ∈ L1(I, X). In this paper, we
characterize the multipliers from L1(I, X) to L1(I, Y ).

2. Preliminaries. Let I = (0,∞) as before. Let M(I) denote the Ba-
nach algebra of all bounded regular Borel measures on I. It can be identified
with the Banach space dual of C0(I), the Banach space of all continuous
functions on I vanishing at infinity. The convolution of µ and ν belonging
to M(I) is defined by\

I

f(z) dµ ⋆ ν(z) =
\
I

\
I

f(xy) dµ(x) dν(y).

The Banach space L1(I) consisting of all measures in M(I) which are ab-
solutely continuous with respect to Lebesgue measure on I becomes a com-
mutative semisimple Banach algebra with the product inherited from M(I).
If f, g ∈ L1(I), this product turns out to be

f ⋆ g(s) = f(s)

s\
0

g(t) dt + g(s)

s\
0

f(t) dt a.e.

Lardy [3] studied the algebra L1(I). Its maximal ideal space Î can be iden-

tified with the interval (0,∞] and the Gelfand transform f̂ of f ∈ L1(I) is
defined by

f̂(s) =

s\
0

f(t) dt (0 < s ≤ ∞),

that is, f̂ is the indefinite integral of f on (0,∞]. The algebra L1(I) is with-
out identity, but it does have approximate identities. One such approximate
identity is the sequence {un} defined by

un(x) =

{
n if 0 < x ≤ 1/n,

0 if 1/n < x < ∞,
n = 1, 2, . . . .

If T is a multiplier of L1(I) there exists a bounded continuous func-

tion φ on (0,∞] such that (Tf)∧ = φf̂ and ‖φ‖∞ ≤ ‖T‖, where ‖φ‖∞ =
supt∈I |φ(t)|. Conversely, if φ is a bounded continuous function on (0,∞]

such that for each f ∈ L1(I) there exists a g ∈ L1(I) such that ĝ = φf̂ then
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we define Tf = g and T becomes a multiplier of L1(I) such that (Tf)∧ = φf̂
for all f ∈ L1(I).

Larsen gave a characterization of the multipliers of L1[0, 1] under order
convolution. Let AC[0, 1] denote the subalgebra of C[0, 1] consisting of all
absolutely continuous functions on [0, 1]. Here, C[0, 1] is the space of contin-
uous functions on [0, 1]. Suppose φ ∈ AC[0, 1]; then for all f ∈ L1[0, 1] we

have φf̂ ∈ AC[0, 1] and (φf̂ )(0) = 0. Hence there exists a g ∈ L1[0, 1] such

that ĝ = φf̂ , in fact g = (φf̂ )′ almost everywhere. If we define Tf = g, then

we get a multiplier of L1[0, 1] such that (Tf)∧ = φf̂ . Conversely, Larsen [4]
proved that if T is a multiplier of L1[0, 1] then there exists φ ∈ AC[0, 1] such

that (Tf)∧ = φf̂ for all f ∈ L1[0, 1].

In [2] Johnson and Lahr described the multipliers of L1(J), where J
is any interval, with possibly infinite end points, and which may contain
one or the other of the end points. The following theorem is an immediate
consequence of the multiplier results in [2] and [4].

Theorem 2.1. Let T be a multiplier of L1(I). Then there exists an ab-

solutely continuous function φ on (0,∞] which is of bounded variation such

that (Tf)∧(s) = φ(s)f̂(s) for all s ∈ (0,∞] and f ∈ L1(I). Conversely , if φ
is an absolutely continuous function on (0,∞] which is of bounded variation

then there exists a multiplier T of L1(I) such that (Tf)∧(s) = φ(s)f̂(s) for

all s ∈ (0,∞] and f ∈ L1(I).

Remark. If φ is as in Theorem 2.1 then φ is differentiable almost every-
where and φ′ ∈ L1(I). Further, limt→0+ φ(t) exists. Let φ(0) = limt→0+ φ(t).

Then Tf = φ(0)f + (φf̂ )′.

3. Main results. In this section we prove our main result which char-
acterizes the multipliers from L1(I, X) to L1(I, Y ). We begin with a propo-
sition about L1(I, X).

Proposition 3.1. Let {un} be the approximate identity of L1(I) defined

earlier. Suppose f ∈ L1(I, X). Then

‖un ⋆ f − f‖1 → 0 as n → ∞.

Proof. Let ε > 0. Choose t > 0 such that

t\
0

‖f(s)‖ ds < ε/3.

If s > 1/n, then

un ⋆ f(s) = un(s)

s\
0

f(r) dr + f(s)

s\
0

un(r) dr = f(s),
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since un(s) = 0 and
Ts
0
un(r) dr = 1. Therefore,

∞\
0

‖un ⋆ f(s) − f(s)‖ ds =

1/n\
0

‖un ⋆ f(s) − f(s)‖ ds

=

1/n\
0

∥∥∥un(s)

s\
0

f(r) dr + f(s)

s\
0

un(r) dr − f(s)
∥∥∥ ds.

Choose n0 such that t > 1/n0. Then, for all n ≥ n0,

‖un ⋆ f − f‖1 ≤

1/n\
0

[
un(s)

s\
0

‖f(r)‖ dr + 2‖f(s)‖
]
ds.

Since t > 1/n and s ≤ 1/n, we have

‖un ⋆ f − f‖1 ≤
ε

3

1/n\
0

un(s) ds +
2ε

3
= ε.

Definition. Let f ∈ L1(I, X). For each s ∈ (0,∞], define

f̂(s) =

s\
0

f(t) dt.

The function f̂ is called the Gelfand transform of f . Clearly f̂ is absolutely
continuous. Also (f̂ )′(s) = f(s) almost everywhere.

Note that f̂(s) → 0 as s → 0. Further, if f̂(s) = 0 for all s ∈ (0,∞] then
f(s) = 0 almost everywhere.

Proposition 3.2. Let X, Y be Banach spaces and B(X, Y ) be the Ba-

nach space of bounded linear maps of X into Y . Suppose T is a multiplier

from L1(I, X) into L1(I, Y ). Then there exists a B(X, Y )-valued bounded

strongly continuous function φ on (0,∞] such that (Tf)∧(s) = φ(s)f̂(s) for

all s ∈ (0,∞] and f ∈ L1(I, X), where φ(s)f̂(s) is the value of φ(s) at f̂(s).

Proof. Let f, g ∈ L1(I) and x ∈ X. Then the function fx defined by
(fx)(s) = f(s)x belongs to L1(I, X). It is easy to see that (f ⋆ g)x =
(fx) ⋆ g = f ⋆ gx. Since T is a multiplier, we have

T ((f ⋆ g)x) = f ⋆ T (gx) = T (fx) ⋆ g.

Therefore, f̂(s)(T (gx))∧(s) = (T (fx))∧(s)ĝ(s). We define

φ(s)x =
(T (fx))∧(s)

f̂(s)
, provided f̂(s) 6= 0.

We see that the definition of φ(s) does not depend on the choice of f and
φ(s) is a linear map from X into Y . We now show that φ(s) ∈ B(X, Y ) and
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‖φ(s)‖ ≤ ‖T‖. Let s ∈ (0,∞]. Choose n such that s ≥ 1/n. Then ûn(s) = 1
and we have

‖φ(s)x‖ = ‖(T (unx))∧(s)‖ ≤ ‖T (un(x))‖1 ≤ ‖T‖ ‖x‖,

as ‖un‖1 = 1. Therefore φ(s) ∈ B(X, Y ) and ‖φ(s)‖ ≤ ‖T‖. It follows from
the definition of φ(s) that it is continuous in the strong operator topol-
ogy and (T (fx))∧(s) = φ(s)(fx)∧(s) for f ∈ L1(I) and x ∈ X. Since
{
∑n

i=1
fixi : fi ∈ L1(I), xi ∈ X} is dense in L1(I, X), we conclude that

(Tf)∧(s) = φ(s)f̂(s) for all f ∈ L1(I, X).

Proposition 3.3. Let U : X → Y be a bounded linear map. Then the

map Ũ : L1(I, X) → L1(I, Y ) defined by Ũf = U ◦ f is a multiplier from

L1(I, X) to L1(I, Y ) and

‖Ũf‖ ≤ ‖U‖ ‖f‖1.

Proof. Let f ∈ L1(I) and g ∈ L1(I, X). Then

f ⋆ g(s) = f(s)

s\
0

g(t) dt + g(s)

s\
0

f(t) dt.

Hence

Ũ(f ⋆ g)(s) = U((f ⋆ g)(s))

= f(s)

s\
0

U(g(t)) dt + U(g(s))

s\
0

f(t) dt = f ⋆ Ũg(s).

Also

(Ũf)∧(s) =

s\
0

U(f(t)) dt = U(f̂(s)).

Thus the multiplier function φ corresponding to Ũ is φ(s) = U for all s ∈
(0,∞].

The following definitions are taken from Hille and Phillips [1].

Definition. Let φ(s) be an operator-valued function defined on (0,∞).
We say that φ is of strong bounded variation on (0,∞) if for each x ∈ X the
function s 7→ φ(s)x is of strong bounded variation, that is,

sup
n∑

i=1

‖φ(ti)x − φ(ti−1)x‖ < ∞,

where all possible finite sets {t0, t1, . . . , tn} ⊂ (0,∞) such that t0 < t1 <
· · · < tn are allowed.

φ is called strongly absolutely continuous if for every ε > 0 there exists
a δ > 0 such that whenever {(si, ti)} is a finite sequence of disjoint open
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intervals for which
∑

(ti − si) < δ, we have

n∑

i=1

‖φ(ti)x − φ(si)x‖ < ε.

For all results and notions regarding operator-valued functions on (0,∞),
we refer to [1].

Proposition 3.4. Let T be a multiplier from L1(I, X) to L1(I, Y ). Let

φ be the corresponding multiplier operator-valued function. Then φ(s) is of

strong bounded variation on (0,∞).

Proof. Let {t0, t1, . . . , tn} ⊂ (0,∞) be such that t0 < t1 < · · · < tn. Let
a = t0 and b = tn. Then {t0, t1, . . . , tn} is a partition of [a, b]. Choose an
integer m such that 1/m ≤ a. Then ûm(s) = 1 for all s ≥ 1/m. Let x ∈ X.
For s ≥ 1/m, we have φ(s)x = (T (umx))∧(s). Therefore,

n∑

i=1

‖φ(ti)x − φ(ti−1)x‖ =
n∑

i=1

‖(T (umx))∧(ti) − (T (umx))∧(ti−1)‖

=
n∑

i=1

∥∥∥
ti\

ti−1

T (umx)(r) dr
∥∥∥ ≤

b\
a

‖T (umx)(r) dr‖ ≤ ‖T (umx)‖1 ≤ ‖T‖ ‖x‖.

This completes the proof.

Proposition 3.5. Let T and φ be as in Proposition 3.4. Then the map

s 7→ φ(s)x is weakly absolutely continuous.

Proof. We have

(Tf)∧(s) = φ(s)f̂(s) for all s ∈ (0,∞] and f ∈ L1(I, X).

Let x ∈ X and y∗ ∈ Y ∗. Define S : L1(I) → L1(I) by

Sf(s) = 〈T (fx)(s), y∗〉 for f ∈ L1(I).

It can be easily seen that

S(f ⋆ g) = f ⋆ Sg for f, g ∈ L1(I).

Hence S is a multiplier of L1(I). By Theorem 2.1, there exists an abso-

lutely continuous function h on (0,∞] such that (Sf)∧(s) = h(s)f̂(s) for
all f ∈ L1(I). It also follows from the definition of S that (Sf)∧(s) =

〈f̂(s)φ(s)x, y∗〉. Choosing f ∈ L1(I) such that f̂(s) 6= 0, we see that
〈φ(s)x, y∗〉 = h(s). This shows that the map s 7→ φ(s)(x) is weakly ab-
solutely continuous.

Proposition 3.6. Let T and φ be as in Proposition 3.4. Then for each

x ∈ X, the function s 7→ φ(s)x is strongly differentiable almost everywhere.



ORDER CONVOLUTION AND MULTIPLIERS 59

Proof. Let n be any positive integer. Then for all s > 1/n,

φ(s)x = (T (unx))∧(s) =

s\
0

T (unx)(t) dt.

It follows from Corollary 2, p. 88 of [1] that the function s 7→ φ(s)x is
strongly differentiable almost everywhere on (1/n,∞), and hence on (0,∞),
since n is arbitrary. The derivative of this function is denoted by φ′(s)x.
It is easy to see that φ′(s) ∈ B(X, Y ) and ‖φ′(s)‖ ≤ ‖T‖ for almost all
s ∈ (0,∞).

Corollary 3.7. Let T and φ be as in Proposition 3.4. Then for all x ∈
X, s 7→ φ(s)x is strongly absolutely continuous and the function s 7→ φ′(s)x
is Bochner integrable such that

∞\
0

‖φ′(s)x‖ ds ≤ ‖T‖ ‖x‖.

Proof. It follows from Propositions 3.4 to 3.6 and Theorem 3.8.6 of [1]
that the function s 7→ φ(s)x is strongly absolutely continuous and s 7→
φ′(s)x is Bochner integrable. From the proof of Proposition 3.6, we see that
φ′(s)x = T (unx)(s) almost everywhere on (1/n,∞). Therefore

∞\
1/n

‖φ′(s)x‖ ds ≤

∞\
1/n

‖T (unx)(s)‖ ds ≤ ‖T‖ ‖x‖.

Since n is arbitrary,
∞\
0

‖φ′(s)x‖ ds ≤ ‖T‖ ‖x‖.

Proposition 3.8. Let T and φ be as in Proposition 3.4. For f ∈L1(I, X),
let Mφ′(f) = φ′f . Then Mφ′ is a bounded linear map from L1(I, X) into

L1(I, Y ).

Proof. Let f ∈ L1(I, X). Then (Tf)∧(s) = φ(s)f̂(s). Therefore,

φ(s)f̂(s) =

s\
0

(Tf)(t) dt.

Differentiating, we have

φ(s)f(s) + φ′(s)f̂(s) = Tf(s) a.e.

Hence Mφ′(f) = Tf − φf . Since φ is bounded,

∞\
0

‖φ(s)f(s)‖ ds ≤ ‖φ‖∞

∞\
0

‖f(s)‖ ds.
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Therefore φf ∈ L1(I, Y ). It follows that Mφ′(f) ∈ L1(I, Y ). We also have

‖Mφ′(f)‖1 ≤ (‖T‖ + ‖φ‖∞)‖f‖1.

We are now in a position to prove our main result.

Theorem 3.9. Let T be a multiplier from L1(I, X) to L1(I, Y ) and φ
be the corresponding multiplier function from (0,∞) to B(X, Y ). Then, for

all x ∈ X,

(i) s 7→ φ(s)x is of strong bounded variation on (0,∞),
(ii) s 7→ φ(s)x is strongly differentiable almost everywhere,
(iii) s 7→ φ(s)x is strongly absolutely continuous,

(iv) if Mφ′(f) = φ′f̂ then Mφ′ : L1(I, X) → L1(I, Y ) is a bounded linear

map,
(v) (Tf)∧(s) = φ(s)(f̂(s)) for all s ∈ (0,∞) and f ∈ L1(I, X).

Conversely , if φ is a bounded B(X, Y )-valued function on (0,∞) satisfy-

ing (i) to (iv) then there exists a multiplier T from L1(I, X) to L1(I, Y )
satisfying (v).

Proof. Let T be a multiplier from L1(I, X) to L1(I, Y ) and φ be the cor-
responding multiplier function. Then (i) and (ii) follow from Proposition 3.4
and 3.6 respectively. Further, (iii) and (iv) follow from Corollary 3.7 and
Proposition 3.8 respectively. Moreover, (v) is a consequence of the relation-
ship between T and φ.

Conversely, suppose φ is a bounded B(X, Y )-valued function on (0,∞)
which satisfies all conditions (i) to (iv). We define

T : L1(I, X) → L1(I, Y )

by

Tf(s) = φ(s)f(s) + φ′(s)f̂(s) a.e. for f ∈ L1(I, X).

Since φ is bounded and continuous in the strong operator topology, the
function φ(s)f(s) is strongly measurable and

∞\
0

‖φ(s)f(s)‖ ds ≤ ‖φ‖∞‖f‖1.

Therefore, ‖Tf‖1 ≤ [‖φ‖∞ + ‖Mφ′‖]‖f‖1 and we conclude that T is a
bounded linear map from L1(I, X) to L1(I, Y ).

We can easily see that the derivative of φf̂ equals φ(s)f(s)+φ′(s)f̂(s) =

Tf(s) almost everywhere. Hence, (Tf)∧(s) = φ(s)f̂(s) for all s ∈ (0,∞].
This completes the proof of the theorem.
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Note. If the bounded operator-valued function φ satisfies (i)–(iii) and
∞\
0

‖φ′(s)‖ ds < ∞,

then (iv) automatically holds. But this condition is much stronger than (iv).
Finally, we remark that we could have taken I to be any finite or infinite
subinterval of the real line and obtained analogous multiplier results in the
more general setting.
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