PRIMITIVE LUCAS d-PSEUDOPRIMES AND CARMICHAEL-LUCAS NUMBERS

BY
WALTER CARLIP (Lancaster, PA) and LAWRENCE SOMER (Washington, DC)

Abstract

Let d be a fixed positive integer. A Lucas d-pseudoprime is a Lucas pseudoprime N for which there exists a Lucas sequence $U(P, Q)$ such that the rank of appearance of N in $U(P, Q)$ is exactly $(N-\varepsilon(N)) / d$, where the signature $\varepsilon(N)=\left(\frac{D}{N}\right)$ is given by the Jacobi symbol with respect to the discriminant D of U. A Lucas d-pseudoprime N is a primitive Lucas d-pseudoprime if $(N-\varepsilon(N)) / d$ is the maximal rank of N among Lucas sequences $U(P, Q)$ that exhibit N as a Lucas pseudoprime.

We derive new criteria to bound the number of d-pseudoprimes. In a previous paper, it was shown that if $4 \nmid d$, then there exist only finitely many Lucas d-pseudoprimes. Using our new criteria, we show here that if $d=4 m$, then there exist only finitely many primitive Lucas d-pseudoprimes when m is odd and not a square.

We also present two algorithms that produce almost every primitive Lucas d-pseudoprime with three distinct prime divisors when $4 \mid d$ and show that every number produced by these two algorithms is a Carmichael-Lucas number. We offer numerical evidence to support conjectures that there exist infinitely many Lucas d-pseudoprimes of this type when d is a square and infinitely many Carmichael-Lucas numbers with exactly three distinct prime divisors.

1. Introduction. Let d be a fixed, positive integer. In [15], the second author defined a type of Lucas pseudoprime called a Lucas d-pseudoprime and showed that if $4 \nmid d$, then there exist only finitely many Lucas d-pseudoprimes. This was extended in [3] to show that if 2^{r} exactly divides d then there are at most finitely many Lucas d-pseudoprimes that have at least $r+2$ distinct prime divisors. In this paper we offer some useful tools for bounding d-pseudoprimes and examine in more detail the situation when $4 \| d$.

In order to generalize the results of [3] and [15] we introduce the concept of a primitive Lucas d-pseudoprime. A Lucas d-pseudoprime N is a primitive Lucas d-pseudoprime if $(N-\varepsilon(N)) / d$ is the maximal rank of N among Lucas sequences $U(P, Q)$ that exhibit N as a Lucas pseudoprime, or equivalently, if N is a Lucas d-pseudoprime, but fails to be a Lucas d^{\prime}-pseudoprime for all proper divisors d^{\prime} of d. We provide a nice charac-

[^0]terization of primitive d-pseudoprimes and show that if $d=4 m$, then there exist only finitely many primitive Lucas d-pseudoprimes when m is odd and not a square. The proof relies on a more general result that all but a finite number of Lucas d-pseudoprimes, for fixed d, are standard Lucas d pseudoprimes. Standard Lucas d-pseudoprimes are odd composite integers that satisfy $N-\varepsilon(N)=\prod(p-\varepsilon(p))$, where ε is a signature function that supports N and the product is taken over prime divisors p of N. Integers of this form are interesting in their own right.

On the other hand, if $4 \mid d$ and d is a square, then primitive Lucas d pseudoprimes appear to be plentiful. We present two algorithms for generating square-free primitive Lucas d-pseudoprimes that have exactly three distinct odd prime divisors when $4 \mid d$ and d is a square. We prove that every number produced by both algorithms is, indeed, a square-free primitive Lucas d-pseudoprime with three distinct odd prime divisors and, conversely, that all but a finite number of primitive Lucas d-pseudoprimes of this form can be constructed by these algorithms. Moreover, each of the Lucas d-pseudoprimes generated by these algorithms is also a Carmichael-Lucas number.

We conjecture that there are an infinite number of primitive Lucas d pseudoprimes with three distinct prime divisors when $d=4 m$ and m is a square, and provide computational evidence supporting our conjecture by finding large numbers of them with our two algorithms. This contrasts with the case that $d=2 m$, with m odd, wherein there are only a finite number of d-pseudoprimes with three distinct divisors (see [3]), and with the cases that $d=1,2,3,5$, or 6 , wherein there exist at most four Lucas d-pseudoprimes (see [15]). Since each of the Lucas d-pseudoprimes generated by our algorithms is also a Carmichael-Lucas number, our algorithms also suggest that there are infinitely many Carmichael-Lucas numbers with exactly three distinct prime divisors.

A good account of Lucas pseudoprimes may be found in [1] and primality tests involving Lucas pseudoprimes are presented in [1] and [2]. A discussion of Lucas d-pseudoprimes appears in [11, pp. 131-132] and also in [12]. Carmichael-Lucas numbers are discussed in [16] and in [4], which also introduces the concept of standard Lucas d-pseudoprimes. An algorithm for generating many Carmichael numbers analogous to our algorithm for Carmichael-Lucas numbers was described by J. Chernick in [6].
2. Basic properties of Lucas pseudoprimes. Throughout this paper N denotes a positive odd composite integer with prime decomposition

$$
\begin{equation*}
N=\prod_{i=1}^{t} p_{i}^{k_{i}} \tag{1}
\end{equation*}
$$

where $p_{1}<\cdots<p_{t}$. The Lucas sequence of the first kind with parameters P and Q is the second order recurrence sequence $U(P, Q)=\left\{U_{i}\right\}$ defined by $U_{0}=0, U_{1}=1$, and, for all $n \geq 0$,

$$
\begin{equation*}
U_{n+2}=P U_{n+1}-Q U_{n} \tag{2}
\end{equation*}
$$

The integer $D=P^{2}-4 Q$ is the discriminant of $U(P, Q)$ and the function $\varepsilon: \mathbb{N} \rightarrow\{-1,0,1\}$ given by the Jacobi function $\varepsilon(n)=\left(\frac{D}{n}\right)$ is called the signature of $U(P, Q)$.

In general, we refer to any semigroup homomorphism from the natural numbers \mathbb{N} to the multiplicative semigroup $\{-1,0,1\}$ as a signature function. If N is an integer with decomposition (1), $\delta(N)=\left\{p_{1}, \ldots, p_{t}\right\}$, the set of prime divisors of N, and ε a given signature function, then the restriction $\varepsilon: \delta(N) \rightarrow\{-1,0,1\}$ is called the signature of N. We say that N is supported by ε if $\varepsilon(N) \neq 0$. Occasionally we need to identify the value of the signature on each prime in the decomposition of an integer N, in which case we sometimes write $\varepsilon\left(p_{1}, \ldots, p_{t}\right)$ to denote the t-tuple $\left(\varepsilon\left(p_{1}\right), \ldots, \varepsilon\left(p_{t}\right)\right)$.

The rank of appearance (or simply the rank) of an integer N in the sequence $U(P, Q)$ is the least positive integer n such that N divides U_{n}; it is denoted by $\varrho(N)$. It is well known that $\varrho(N)$ always exists when $(N, Q)=1$ and, in this case, $U_{n} \equiv 0(\bmod N)$ if and only if $\varrho(N)$ divides n. Édouard Lucas [9] proved that if $(p, Q D)=1$ for an odd prime p, then $U_{p-\varepsilon(p)} \equiv 0$ $(\bmod p)$, and therefore $\varrho(p)$ divides $p-\varepsilon(p)$. Composite integers that have a property typical of primes are often known as pseudoprimes, and Lucas' property motivates the definition of Lucas pseudoprimes.

Definition 2.1. An odd composite integer N is a Lucas pseudoprime with respect to the Lucas sequence $U(P, Q)$, with discriminant D and signature ε, if $(N, Q D)=1$ and $U_{N-\varepsilon(N)} \equiv 0(\bmod N)$.

If there exists a Lucas sequence $U(P, Q)$ such that N is a Lucas pseudoprime with respect to $U(P, Q)$ and $\varrho(N)=(N-\varepsilon(N)) / d$, then N is said to be a Lucas d-pseudoprime.

Note that if N is a Lucas pseudoprime with signature $\varepsilon(n)=\left(\frac{D}{n}\right)$, then the requirement that $(N, D)=1$ implies that ε supports N. Thus every Lucas pseudoprime is supported by its own signature.

We require several number-theoretic functions in our study of pseudoprimes. If N an odd integer with decomposition (1) that is supported by signature ε, define

$$
\begin{align*}
\lambda(N, \varepsilon) & =\operatorname{lcm}\left\{p_{i}^{k_{i}-1}\left(p_{i}-\varepsilon\left(p_{i}\right)\right) \mid 1 \leq i \leq t\right\} \tag{3}\\
\lambda^{\prime}(N, \varepsilon) & =\operatorname{lcm}\left\{p_{i}-\varepsilon\left(p_{i}\right) \mid 1 \leq i \leq t\right\} \tag{4}\\
\psi(N, \varepsilon) & =\frac{\prod_{i=1}^{t}\left(p_{i}-\varepsilon\left(p_{i}\right)\right)}{2^{t-1}} \tag{5}
\end{align*}
$$

$$
\begin{align*}
& \xi(N, \varepsilon)=\frac{\prod_{i=1}^{t}\left(p_{i}-\varepsilon\left(p_{i}\right)\right)}{N}=\prod_{i=1}^{t}\left(\frac{p_{i}-\varepsilon\left(p_{i}\right)}{p_{i}^{k_{i}}}\right) \tag{6}\\
& T(N, \varepsilon)=\frac{\prod_{i=1}^{t}\left(p_{i}-\varepsilon\left(p_{i}\right)\right)}{\operatorname{lcm}\left\{p_{i}-\varepsilon\left(p_{i}\right) \mid 1 \leq i \leq t\right\}}=\frac{N \xi(N, \varepsilon)}{\lambda^{\prime}(N, \varepsilon)} \tag{7}
\end{align*}
$$

Note that each of these functions depends only on the value of ε on the primes that divide N. When N is a Lucas pseudoprime, we always have in mind a corresponding Lucas sequence $U(P, Q)$ with signature function ε, and it is this signature that appears in the evaluation of the functions defined above.

We require several known results on Lucas d-pseudoprimes. The first is a useful characterization of Lucas d-pseudoprimes.

Theorem 2.2. An integer N with prime decomposition (1) is a Lucas d-pseudoprime with signature ε if and only if

$$
\left.\frac{N-\varepsilon(N)}{d} \right\rvert\, \lambda^{\prime}(N, \varepsilon) \quad \text { and } \quad\left(\frac{N-\varepsilon(N)}{d}, p_{i}-\varepsilon\left(p_{i}\right)\right)>1
$$

for all i.
Proof. This is Theorem 2.6 of [4].
The final three lemmas in this section describe basic properties of Lucas d-pseudoprimes and appear in [3].

Lemma 2.3 (Lemma 4.1 of [3]). If N is a Lucas d-pseudoprime, then $(N, d)=1$ and there exist integers b and c such that

$$
\begin{equation*}
\frac{\lambda^{\prime}(N, \varepsilon)}{N-\varepsilon(N)}=\frac{b}{d} \leq \frac{\psi(N)}{N-\varepsilon(N)}=\frac{c}{d}<2\left(\frac{2}{3}\right)^{t} \tag{8}
\end{equation*}
$$

Lemma 2.4 (Lemma 4.2 of [3]). If N is a Lucas d-pseudoprime with prime decomposition (1), then $t<\log _{3 / 2}(2 d)$.

Lemma 2.5 (Lemma 4.3 of [3]). If N is a Lucas d-pseudoprime with prime decomposition (1) and $k_{i} \geq 2$, then

$$
\begin{equation*}
p_{i}^{k_{i}-1}<2(2 / 3)^{t}(d+1) \tag{9}
\end{equation*}
$$

In particular, N is square free when t is sufficiently large.
3. Carmichael-Lucas numbers. Carmichael-Lucas numbers are interesting and oft studied objects (see, e.g., [16], [8], [10], [11], and [4]). For future reference, we define Carmichael-Lucas numbers and present some of their well-known properties.

Definition 3.1. An odd composite integer N is a Carmichael-Lucas number with respect to a fixed signature ε that supports N if $U_{N-\varepsilon(N)} \equiv 0$
$(\bmod N)$ for every Lucas sequence $U(P, Q)$ whose signature restricts to ε on $\delta(N)$ and satisfies $(N, Q)=1$.

The following two theorems follow immediately from Williams' work in [16].

Theorem 3.2. If N is a Carmichael-Lucas number with signature ε, then N is square free and $\lambda^{\prime}(N, \varepsilon) \mid N-\varepsilon(N)$.

Theorem 3.3. If N is square free and ε is a signature function that supports N and for which $\lambda^{\prime}(N, \varepsilon) \mid N-\varepsilon(N)$, then N is a Carmichael-Lucas number.
4. Primitive pseudoprimes. The primitive Lucas d-pseudoprimes compose a subset of the Lucas d-pseudoprimes characterized by two extremal conditions. We define primitive d-pseudoprimes with a maximal condition as follows.

Definition 4.1. Suppose that N is a Lucas pseudoprime with signature ε and Ω is the set of all Lucas sequences $U(P, Q)$ with respect to which N is a Lucas pseudoprime with signature ε. Then N is a primitive Lucas d-pseudoprime with signature ε if $(N-\varepsilon(N)) / d$ is the maximal rank of N among the sequences in Ω.

Primitive Lucas d-pseudoprimes can be characterized by the following theorem.

Theorem 4.2. If N is an odd composite integer and ε a signature that supports N, then N is a primitive Lucas d-pseudoprime with signature ε if and only if $(N-\varepsilon(N), \lambda(N, \varepsilon))=(N-\varepsilon(N)) / d$.

Proof. Suppose that Ω is the set of Lucas sequences that exhibit N as a Lucas pseudoprime with signature ε, and let $(N-\varepsilon(N)) / d=(N-$ $\varepsilon(N), \lambda(N, \varepsilon)$. Clearly $\varrho_{U}(N) \mid N-\varepsilon(N)$ for each $U \in \Omega$ and, by a wellknown theorem of Carmichael [5], $\varrho_{U}(N) \mid \lambda(N, \varepsilon)$ as well. It follows that $\varrho_{U}(N) \mid(N-\varepsilon(N), \lambda(N, \varepsilon))$ for each $U \in \Omega$, and it suffices to show that $\varrho_{U}(N)=(N-\varepsilon(N)) / d$ for some $U \in \Omega$. However, $N-\varepsilon(N)$ is relatively prime to N, so $(N-\varepsilon(N), \lambda(N, \varepsilon)) \mid \lambda^{\prime}(N, \varepsilon)$, and obviously $\left(N-\varepsilon(N)\right.$, $p_{i}-$ $\left.\varepsilon\left(p_{i}\right)\right)>1$ while $p_{i}-\varepsilon\left(p_{i}\right) \mid \lambda(N, \varepsilon)$. It follows from Theorem 2.2 that N is a Lucas d-pseudoprime, and therefore $(N-\varepsilon(N)) / d$ occurs as $\varrho_{U}(N)$ for some $U \in \Omega$.

If N is a primitive d-pseudoprime with signature ε, then $(N-\varepsilon(N)) / d$ is the largest rank of N among sequences U that exhibit N as a Lucas pseudoprime and have signature coinciding with ε on the prime factors of N. We note, however, that N may occur with higher rank in Lucas sequences that do not exhibit N as a Lucas pseudoprime, and hence this rank is not
the largest rank of N among all Lucas sequences. This is because the ranks $\varrho_{U}(N)$ with respect to sequences U that exhibit N as a Lucas pseudoprime all divide $N-\varepsilon(N)$, while in general the rank of N divides $\lambda(N, \varepsilon)$. All ranks higher than $(N-\varepsilon(N)) / d$ divide $\lambda(N, \varepsilon)$, but fail to divide $N-\varepsilon(N)$. The following examples from the literature (see, e.g., [14] and [15]) clarify this situation.

Example 4.3.
(a) Let $N=21$ and suppose $\varepsilon(3)=\varepsilon(7)=-1$. It follows that $\varepsilon(N)=1$, $(N-\varepsilon(N)) / 5=4$, and $\lambda(N, \varepsilon)=\lambda^{\prime}(N, \varepsilon)=8$. Clearly $(N-\varepsilon(N), \lambda(N, \varepsilon))=$ $(20,8)=4=(N-\varepsilon(N)) / 5$, so N is a primitive Lucas 5 -pseudoprime. On the other hand, the maximal rank $\lambda(N, \varepsilon)=8$ does occur.
(b) Let $N=25$ and suppose $\varepsilon(5)=1$. Then $\varepsilon(N)=1,(N-\varepsilon(N)) / 6=4$, and $\lambda(N, \varepsilon)=20$. Clearly we have $(N-\varepsilon(N), \lambda(N, \varepsilon))=(24,20)=4=$ $(N-\varepsilon(N)) / 6$, so N is a primitive Lucas 6 -pseudoprime. On the other hand, the maximal rank $\lambda(N, \varepsilon)=20$ does occur.
(c) Let $N=49$ and suppose $\varepsilon(7)=-1$. Then $\varepsilon(N)=1,(N-\varepsilon(N)) / 6$ $=8$, and $\lambda(N, \varepsilon)=56$. Clearly $(N-\varepsilon(N), \lambda(N, \varepsilon))=(48,56)=8=$ $(N-\varepsilon(N)) / 6$, so N is a primitive Lucas 6-pseudoprime. On the other hand, the maximal rank $\lambda(N, \varepsilon)=56$ does occur.

Primitive Lucas d-pseudoprimes can also be described by a minimality property.

Theorem 4.4. An odd composite integer N is a primitive Lucas d pseudoprime with signature ε if and only if N is a Lucas d-pseudoprime with respect to signature ε, but fails to be a Lucas d^{\prime}-pseudoprime with respect to signature ε for all proper divisors d^{\prime} of d.

Proof. Suppose N is a Lucas d-pseudoprime, but not a Lucas d^{\prime}-pseudoprime for any proper divisor d^{\prime} of d. Let $(N-\varepsilon(N)) / k=(N-\varepsilon(N), \lambda(N, \varepsilon))$. By [5], $(N-\varepsilon(N)) / d \mid \lambda(N, \varepsilon)$ and hence $(N-\varepsilon(N)) / d \mid(N-\varepsilon(N)) / k$ and $k \mid d$. By Theorem 4.2, N is a primitive Lucas k-pseudoprime, and therefore certainly a Lucas k-pseudoprime. By hypothesis, k cannot be a proper divisor of d, so $k=d$ and N is a primitive Lucas d-pseudoprime.

The converse follows immediately from the definition.
Theorem 4.5. Suppose that N is a Lucas d-pseudoprime with signature ε and that b is given by (8). Then N is a primitive d-pseudoprime if and only if $(b, d)=1$. If N is also square free, then N is a Carmichael-Lucas number if and only if $b=1$.

Proof. The first assertion follows immediately from Theorem 4.2, and the second from Theorems 3.2 and 3.3.

The example below illustrates the previous theorems. Note that in general each Lucas d-pseudoprime is also a primitive d^{\prime}-pseudoprime for some d^{\prime} dividing d.

Example 4.6. Let $N=186961=31 \cdot 37 \cdot 163$ and choose a signature ε such that $\varepsilon(31)=1, \varepsilon(37)=-1$, and $\varepsilon(163)=-1$.

Then $\varepsilon(186961)=1$, and $(186961-1) / 12=((186961-1) / 4) / 3=15580$, which divides $(186961-1) / 4=\lambda^{\prime}(N, \varepsilon)$. Moreover, $((N-\varepsilon(N)) / 12,30)=$ $(15580,30)=10 \neq 1,((N-\varepsilon(N)) / 12,38)=(15580,38)=38 \neq 1$, and $((N-\varepsilon(N)) / 12,164)=(15580,164)=164 \neq 1$. By Theorem 2.2, N is a Lucas 12 -pseudoprime with respect to the signature ε. However, since $\lambda^{\prime}(N, \varepsilon) /(N-\varepsilon(N))=1 / 4=3 / 12, N$ is not a primitive Lucas 12 -pseudoprime with respect to ε.

On the other hand, $\lambda(N, \varepsilon)=\lambda^{\prime}(N, \varepsilon)=\operatorname{lcm}\{30,38,164\}=46740=$ $(186961-1) / 4=(N-\varepsilon(N)) / 4$. It follows that N is a primitive 4 -pseudoprime with respect to ε and, since $\lambda^{\prime}(N, \varepsilon) /(N-\varepsilon(N))=1 / 4, N$ is also a Carmichael-Lucas number with respect to ε.
5. Machinery. We require the following notation and results from [3]. Define $\delta(N)=\{p \mid p$ divides $N\}$ and, if Ω is a set of natural numbers, define

$$
\delta(\Omega)=\bigcup_{N \in \Omega} \delta(N) .
$$

If N has decomposition (1), write

$$
\begin{equation*}
N_{1}=\prod_{i=1}^{t} p_{i}, \quad N_{2}=\prod_{i=1}^{t} p_{i}^{k_{i}-1} \tag{10}
\end{equation*}
$$

so that $N=N_{1} N_{2}$ with N_{1} square free.
The following theorems are the primary tool and the main theorem of [3].
Theorem 5.1 (Theorem 2.3 of [3]). Suppose that Ω is an infinite set of positive integers with each $N \in \Omega$ supported by corresponding signature ε and for which $|\delta(N)|=t$ for all $N \in \Omega$. Suppose as well that $\left\{N_{2} \mid N \in \Omega\right\}$ is bounded. If c and d are integers such that $(N, d)=1$ for all $N \in \Omega$ and

$$
\begin{equation*}
\lim _{N \in \Omega} \xi(N)=c / d, \tag{11}
\end{equation*}
$$

then $c=d$.
Theorem 5.2 (Theorem 4.4 of [3]). Let d be a fixed positive integer and suppose that 2^{r} exactly divides d. Then there are at most a finite number of Lucas d-pseudoprimes N such that $|\delta(N)| \geq r+2$.
6. Bounds. In this section we present our main results on d-pseudoprimes, along with a few useful lemmas. Several of these results concern bounds on the number of d-pseudoprimes with a fixed number of distinct prime divisors.

Definition 6.1. Denote by $\mathscr{N}_{d}(t)$ the number of distinct d-pseudoprimes N with exactly t distinct prime divisors.

Theorem 6.2. Let d be a fixed positive integer. Then only a finite number of Lucas d-pseudoprimes have exactly one prime divisor. In fact, $\mathscr{N}_{d}(1)$ $<d \log (2 d)$.

Proof. It follows immediately from Lemma 2.5 that $\mathscr{N}_{d}(1)$ is finite. Moreover, for a given prime p and positive integer k, for p^{k} to be a d-pseudoprime it is necessary that

$$
\begin{equation*}
p^{k-1}<\frac{4(d+1)}{3} \leq 2 d \tag{12}
\end{equation*}
$$

Now $p^{k-1}<2 d$ if and only if $k-1<\log (2 d) / \log (p)<\log (2 d)$. Since $\pi(2 d) \leq d$, there are at most $\pi(2 d) \log (2 d) \leq d \log (2 d)$ prime powers less than $2 d$, and it follows that $\mathscr{N}_{d}(1)<d \log (2 d)$.

Of course d is, in general, a poor estimate of $\pi(2 d)$. By the prime number theorem, $\pi(2 d) \sim 2 d / \log (2 d)$, which suggests that $2 d$ is a better upper bound for $\mathscr{N}_{d}(1)$.

Before we consider d-pseudoprimes divisible by exactly two distinct primes, we prove a general finiteness criterion for an important class of Lucas d-pseudoprimes, the standard Lucas d-pseudoprimes. We show in Theorem 6.4 that all but a finite number of Lucas d-pseudoprimes are standard.

Definition 6.3. A Lucas d-pseudoprime N is called standard if

$$
\begin{equation*}
N-\varepsilon(N)=\prod_{i=1}^{t}\left(p_{i}-\varepsilon\left(p_{i}\right)\right) \tag{13}
\end{equation*}
$$

and exceptional otherwise.
Observe that the condition (13) may be reformulated as

$$
\begin{equation*}
b T(N, \varepsilon)=d \tag{14}
\end{equation*}
$$

where, as usual, b is given by (8).
We make two easy observations about standard Lucas d-pseudoprimes. First, if N is a square-free standard Lucas d-pseudoprime, then Theorem 3.3 implies that N is a Carmichael-Lucas number. Second, if N is a primitive standard Lucas d-pseudoprime, then Theorem 4.5 implies that $(b, d)=1$, and therefore $b=1$ and $T(N, \varepsilon)=d$.

Theorem 6.4. Let d be a fixed positive integer. Then there exist at most finitely many exceptional Lucas d-pseudoprimes.

Proof. For a fixed positive integer d, let Ω^{*} be the set of Lucas d pseudoprimes that satisfy $b T(N, \varepsilon) \neq d$ and, by way of contradiction, suppose that Ω^{*} has infinite cardinality.

By Lemma 2.4, the number of distinct primes in the decomposition of elements of Ω^{*} is bounded, so there exists an integer t such that an infinite number of elements of Ω^{*} have exactly t distinct prime divisors. By Lemma 2.3, corresponding to each $N \in \Omega^{*}$ there exist integers b and c satisfying (8), and among those with exactly t distinct prime divisors, there are only a finite number of possible values of b and c. Consequently, there exist fixed integers b and c such that the subset $\Omega \subseteq \Omega^{*}$ consisting of those elements of Ω^{*} that have exactly t distinct prime divisors and satisfy (8) for these fixed values of b and c has infinite cardinality.

By Lemma 2.5, the powers of the primes occurring in decompositions of elements of Ω are bounded. It follows that $\delta(\Omega)$ is unbounded, and consequently

$$
\lim _{N \in \Omega} \frac{\varepsilon(N)}{\psi(N)}=0
$$

It then follows that

$$
\begin{aligned}
\frac{2^{t-1} c}{d} & =2^{t-1} \frac{\psi(N)}{N-\varepsilon(N)}=2^{t-1} \lim _{N \in \Omega} \frac{\psi(N)}{N-\varepsilon(N)}=2^{t-1} \lim _{N \in \Omega} \frac{1}{\frac{N-\varepsilon(N)}{\psi(N)}} \\
& =2^{t-1} \lim _{N \in \Omega} \frac{1}{\frac{N}{\psi(N)}-\frac{\varepsilon(N)}{\psi(N)}}=2^{t-1} \lim _{N \in \Omega} \frac{\psi(N)}{N}=\lim _{N \in \Omega} \xi(N, \varepsilon)
\end{aligned}
$$

By Lemma 2.5, $\left\{N_{2} \mid N \in \Omega\right\}$ is bounded and, by Lemma 2.3, $(N, d)=1$ for all $N \in \Omega$. Moreover, by definition of Lucas d-pseudoprime, each Lucas d-pseudoprime $N \in \Omega$ is supported by its own signature. Therefore, Theorem 5.1 implies that $2^{t-1} c / d=1$.

Now,

$$
\begin{aligned}
d & =d \frac{2^{t-1} c}{d}=d \frac{2^{t-1} \psi(N)}{N-\varepsilon(N)}=d \frac{2^{t-1} \psi(N)}{\lambda^{\prime}(N, \varepsilon)} \frac{\lambda^{\prime}(N, \varepsilon)}{N-\varepsilon(N)} \\
& =d T(N, \varepsilon) \frac{b}{d}=b T(N, \varepsilon)
\end{aligned}
$$

This contradicts our original hypothesis and completes the proof.
This criterion has several interesting consequences. First of these is that for any fixed integer d, there are only a finite number of d-pseudoprimes with exactly two distinct prime factors.

Theorem 6.5. Let d be a fixed positive integer. Then only a finite number of Lucas d-pseudoprimes have exactly two distinct prime divisors.

Proof. Assume that there are an infinite number of Lucas d-pseudoprimes with exactly two distinct prime divisors, and let Ω be the set of those that are standard. By Theorem $6.4, \Omega$ has infinite cardinality.

If $N \in \Omega$ has decomposition (1), then

$$
\begin{equation*}
\left(p_{1}-\varepsilon\left(p_{1}\right)\right)\left(p_{2}-\varepsilon\left(p_{2}\right)\right)=N-\varepsilon(N)=p_{1}^{k_{1}} p_{2}^{k_{2}}-\varepsilon\left(p_{1}\right)^{k_{1}} \varepsilon\left(p_{2}\right)^{k_{2}} \tag{15}
\end{equation*}
$$

If either $k_{1}>1$ or $k_{2}>1$, then

$$
\begin{aligned}
1 & =\frac{\left(p_{1}-\varepsilon\left(p_{1}\right)\right)\left(p_{2}-\varepsilon\left(p_{2}\right)\right)}{N-\varepsilon(N)}=\frac{\left(p_{1}-\varepsilon\left(p_{1}\right)\right)\left(p_{2}-\varepsilon\left(p_{2}\right)\right)}{p_{1}^{k_{1}} p_{2}^{k_{2}}-\varepsilon(N)} \\
& \leq \frac{\left(p_{1}+1\right)\left(p_{2}+1\right)}{p_{1}^{2} p_{2}-1} \leq \frac{(3+1)(5+1)}{9 \cdot 5-1}=\frac{24}{44}<1
\end{aligned}
$$

a contradiction.
Therefore $k_{1}=k_{2}=1$ and (15) yields

$$
\begin{equation*}
p_{1} \varepsilon\left(p_{2}\right)+p_{2} \varepsilon\left(p_{1}\right)=2 \varepsilon\left(p_{1}\right) \varepsilon\left(p_{2}\right) \tag{16}
\end{equation*}
$$

If $\varepsilon\left(p_{1}\right)=\varepsilon\left(p_{2}\right)$, then $p_{1}+p_{2}= \pm 2$, which is impossible. Since $p_{2}>p_{1}$, it follows that $\varepsilon\left(p_{1}\right)=-1, \varepsilon\left(p_{2}\right)=1$, and $p_{2}-p_{1}=2$. In particular, p_{1} and p_{2} are twin primes. Now (15) implies that

$$
\begin{equation*}
\frac{d}{b}=\frac{N-\varepsilon(N)}{\operatorname{lcm}\left\{p_{1}-\varepsilon\left(p_{1}\right), p_{2}-\varepsilon\left(p_{2}\right)\right\}}=\frac{p_{1}\left(p_{1}+2\right)+1}{\operatorname{lcm}\left\{p_{1}+1, p_{1}+2-1\right\}}=p_{1}+1 \tag{17}
\end{equation*}
$$

and therefore $d=b\left(p_{1}+1\right)$. Clearly, there are only finitely many prime twins p_{1} and $p_{1}+2$ such that $p_{1}+1$ divides d, and hence Ω has finite cardinality, a contradiction.

Next, we consider the consequences of Theorem 6.4 to primitive Lucas d-pseudoprimes.

Theorem 6.6. Let d be a fixed positive integer. Then there exist at most finitely many primitive Lucas d-pseudoprimes N such that $T(N, \varepsilon) \neq d$.

Proof. By Theorem 6.4 all but a finite number of the primitive $\mathrm{Lu}-$ cas d-pseudoprimes are standard and, as previously noted, these satisfy $T(N, \varepsilon)=d$.

Our final result of this section applies the main theorem of [3]. To simplify the exposition, we begin with a useful lemma.

Lemma 6.7. If $N=p_{1} p_{2} p_{3}$ is a product of three distinct primes, ε is a signature function that supports N and

$$
\begin{equation*}
\left(p_{1}-\varepsilon\left(p_{1}\right)\right)\left(p_{2}-\varepsilon\left(p_{2}\right)\right)\left(p_{3}-\varepsilon\left(p_{3}\right)\right)=p_{1} p_{2} p_{3}-\varepsilon\left(p_{1} p_{2} p_{3}\right) \tag{18}
\end{equation*}
$$

then the integer

$$
\begin{equation*}
d=\frac{\left(p_{1}-\varepsilon\left(p_{1}\right)\right)\left(p_{2}-\varepsilon\left(p_{2}\right)\right)\left(p_{3}-\varepsilon\left(p_{3}\right)\right)}{\operatorname{lcm}\left\{\left(p_{1}-\varepsilon\left(p_{1}\right)\right),\left(p_{2}-\varepsilon\left(p_{2}\right)\right),\left(p_{3}-\varepsilon\left(p_{3}\right)\right\}\right.}=T(N, \varepsilon) \tag{19}
\end{equation*}
$$

is a perfect square.
Proof. Suppose that p is a prime and $p^{k} \| \operatorname{lcm}\left\{p_{1}-\varepsilon\left(p_{1}\right), p_{2}-\varepsilon\left(p_{2}\right)\right.$, $\left.p_{3}-\varepsilon\left(p_{3}\right)\right\}$ and $p^{k_{1}}\left\|p_{1}-\varepsilon\left(p_{1}\right), p^{k_{2}}\right\| p_{2}-\varepsilon\left(p_{2}\right)$, and $p^{k_{3}} \| p_{3}-\varepsilon\left(p_{3}\right)$. Then $k=\max \left\{k_{1}, k_{2}, k_{3}\right\}$. Since we have made no assumptions about the ordering of the primes, we may assume, without loss of generality, that $k=k_{1}$. Then (18) implies that

$$
p_{1} p_{2} p_{3}-\varepsilon\left(p_{1} p_{2} p_{3}\right) \equiv\left(p_{1}-\varepsilon\left(p_{1}\right)\right)\left(p_{2}-\varepsilon\left(p_{2}\right)\right)\left(p_{3}-\varepsilon\left(p_{3}\right)\right) \equiv 0\left(\bmod p^{k_{2}}\right)
$$

and therefore

$$
\begin{aligned}
\varepsilon\left(p_{1}\right) \varepsilon\left(p_{2}\right)\left(p_{3}-\varepsilon\left(p_{3}\right)\right) & \equiv p_{2} p_{3}\left(p_{1}-\varepsilon\left(p_{1}\right)\right)+\varepsilon\left(p_{1}\right) \varepsilon\left(p_{2}\right)\left(p_{3}-\varepsilon\left(p_{3}\right)\right) \\
& \equiv p_{1} p_{2} p_{3}-\varepsilon\left(p_{1}\right) \varepsilon\left(p_{2}\right) \varepsilon\left(p_{3}\right)-\varepsilon\left(p_{1}\right) p_{3}\left(p_{2}-\varepsilon\left(p_{2}\right)\right) \\
& \equiv 0\left(\bmod p^{k_{2}}\right)
\end{aligned}
$$

Since $\varepsilon\left(p_{1}\right) \varepsilon\left(p_{2}\right)= \pm 1$, it follows that $p^{k_{2}} \mid p_{3}-\varepsilon\left(p_{3}\right)$, i.e., $k_{2} \leq k_{3}$.
Similarly,

$$
p_{1} p_{2} p_{3}-\varepsilon\left(p_{1} p_{2} p_{3}\right) \equiv\left(p_{1}-\varepsilon\left(p_{1}\right)\right)\left(p_{2}-\varepsilon\left(p_{2}\right)\right)\left(p_{3}-\varepsilon\left(p_{3}\right)\right) \equiv 0\left(\bmod p^{k_{3}}\right)
$$

and therefore

$$
\begin{aligned}
\varepsilon\left(p_{1}\right) \varepsilon\left(p_{3}\right)\left(p_{2}-\varepsilon\left(p_{2}\right)\right) & \equiv p_{2} p_{3}\left(p_{1}-\varepsilon\left(p_{1}\right)\right)+\varepsilon\left(p_{1}\right) \varepsilon\left(p_{3}\right)\left(p_{2}-\varepsilon\left(p_{2}\right)\right) \\
& \equiv p_{1} p_{2} p_{3}-\varepsilon\left(p_{1}\right) \varepsilon\left(p_{2}\right) \varepsilon\left(p_{3}\right)-\varepsilon\left(p_{1}\right) p_{2}\left(p_{3}-\varepsilon\left(p_{3}\right)\right) \\
& \equiv 0\left(\bmod p^{k_{3}}\right)
\end{aligned}
$$

Now $\varepsilon\left(p_{1}\right) \varepsilon\left(p_{3}\right)= \pm 1$, and therefore $p^{k_{3}} \mid p_{2}-\varepsilon\left(p_{2}\right)$, i.e., $k_{3} \leq k_{2}$.
We now see that $k_{2}=k_{3} \leq k_{1}$, and hence $p^{k_{1}} \| \lambda^{\prime}(N, \varepsilon)$, while $p^{k_{1}+2 k_{2}} \|$ $\left(p_{1}-\varepsilon\left(p_{1}\right)\right)\left(p_{2}-\varepsilon\left(p_{2}\right)\right)\left(p_{3}-\varepsilon\left(p_{3}\right)\right)$. Thus, $p^{2 k_{2}} \| d$, and it follows that every prime in the factorization of d occurs to an even power. Therefore d is a perfect square.

TheOrem 6.8. If $d=4 m$, with m odd and not a square, then there exist only finitely many primitive Lucas d-pseudoprimes.

Proof. Assume that $d=4 m$, with m odd and not a square. By Theorems $6.4,6.2,6.5$, and 5.2 , we need only show that there are at most finitely many primitive standard Lucas d-pseudoprimes with exactly three distinct prime divisors. In fact, we will show that there are none.

Suppose that N is a primitive standard Lucas d-pseudoprime with exactly three distinct prime divisors. Then $b=1$ and

$$
\begin{equation*}
\prod_{i=1}^{3}\left(p_{i}-\varepsilon\left(p_{i}\right)\right)=d \lambda^{\prime}(N, \varepsilon)=N-\varepsilon(N) \tag{20}
\end{equation*}
$$

Now if $p^{2} \mid N$ for some prime p, then (20) implies that

$$
\begin{align*}
1 & =\frac{\prod_{i=1}^{3}\left(p_{i}-\varepsilon\left(p_{i}\right)\right)}{N-\varepsilon(N)} \leq \frac{\prod_{i=3}^{t}\left(p_{i}-\varepsilon\left(p_{i}\right)\right)}{p_{1}^{2} p_{2} p_{3}-1} \tag{21}\\
& \leq \frac{(3+1)(5+1)(7+1)}{9 \cdot 5 \cdot 7-1}=\frac{192}{314}<1,
\end{align*}
$$

a contradiction. Thus N is square free, and

$$
\left(p_{1}-\varepsilon\left(p_{1}\right)\right)\left(p_{2}-\varepsilon\left(p_{2}\right)\right)\left(p_{3}-\varepsilon\left(p_{3}\right)\right)=p_{1} p_{2} p_{3}-\varepsilon\left(p_{1} p_{2} p_{3}\right)
$$

By Lemma $6.7, d$ is a perfect square, contrary to the hypotheses.
7. Numerical results. In this final section we present some computational results. We describe two algorithms that produce Lucas d-pseudoprimes with three distinct prime factors. The integer d is a byproduct of the algorithms and is always an even perfect square. We prove that these algorithms always produce primitive Lucas d-pseudoprimes that are also Carmichael-Lucas numbers and show that the two algorithms together generate all but a finite number of the primitive d-pseudoprimes of this form.

We have implemented the algorithms in Java, C++, and GAP [7], and present computational evidence that the algorithms can be used to produce many primitive Lucas d-pseudoprimes (for many values of d) and many Carmichael-Lucas numbers. Unfortunately, although it seems likely that these algorithms can produce an infinite number of primitive Lucas d-pseudoprimes for any fixed d, a proof of this conjecture seems intractable.

Algorithm 7.1.

1. Choose an odd positive integer $k>1$ such that -3 is a square modulo k and find α such that $\alpha^{2} \equiv-3(\bmod k)$.
2. Choose an odd prime p_{1} such that $p_{1} \equiv(1+\alpha) / 2(\bmod k)$ and both $p_{2}=p_{1}-1+k$ and $p_{3}=\left(p_{1}\left(p_{2}+1\right)-p_{2}\right) / k$ are primes.
3. Set $m=\operatorname{lcm}\left\{p_{1}-1, p_{2}+1, p_{3}+1\right\}$.
4. Set $N=p_{1} p_{2} p_{3}$ and $d=(N-1) / m$.

We prove below that each N generated by Algorithm 7.1 is a primitive Lucas d-pseudoprime. For each value of k chosen in Algorithm 7.1, construction of a primitive d-pseudoprime N requires finding values of x such that the three functions $f_{1}(x)=x, f_{2}(x)=x-1+k$, and $f_{3}(x)=$ $(x(x+k)-x+1-k) / k=(1 / k)\left(x^{2}+(k-1) x-(k-1)\right)$ are prime. Thus, Algorithm 7.1 will produce an infinite number of primitive d-pseudoprimes (for a possibly infinite number of values for d) if Schinzel and Sierpiński's Hypothesis H (see [13]) is valid.

Remark. Although no ordering of the primes p_{1}, p_{2}, and p_{3} is assumed in Algorithm 7.1, it is easy to see that $p_{1}<p_{2}$. Moreover, by Step 2 of

Algorithm 7.1,

$$
\begin{equation*}
p_{3}=\frac{p_{1}\left(p_{1}+k\right)-p_{1}+1-k}{k}=\frac{p_{1}^{2}-p_{1}+1}{k}+p_{1}-1 . \tag{22}
\end{equation*}
$$

Since Step 2 of Algorithm 7.1 implies that $k \mid p_{1}^{2}-p_{1}+1$, it follows that p_{3} is automatically an integer, and $p_{1} \leq p_{3}$. If $p_{1}=p_{3}$, then $k=p_{1}^{2}-p_{1}+1$, which implies that $p_{2}=p_{1}^{2}$, impossible since p_{2} is prime. Thus $p_{1}<p_{3}$. Now, if $p_{2}=p_{3}$, then $k p_{2}=p_{1}\left(p_{2}+1\right)-p_{2}$, and it follows that $p_{2} \mid p_{1}$, which is impossible. Thus, the primes p_{1}, p_{2}, and p_{3} are necessarily distinct. Finally, we note that if $p_{1}^{2}-p_{1}+1>k^{2}$, then (22) implies that $p_{3}>p_{2}$. In this case, we obtain the usual ordering $p_{1}<p_{2}<p_{3}$.

Algorithm 7.2.

1. Choose an odd positive integer k such that -3 is a square modulo k and find α such that $\alpha^{2} \equiv-3(\bmod k)$.
2. Choose an odd prime p_{1} such that $p_{1} \equiv(-1+\alpha) / 2(\bmod k)$ and both $p_{2}=p_{1}+1+k$ and $p_{3}=\left(p_{1}\left(p_{2}-1\right)+p_{2}\right) / k$ are primes.
3. Compute $m=\operatorname{lcm}\left\{p_{1}+1, p_{2}-1, p_{3}-1\right\}$.
4. Set $N=p_{1} p_{2} p_{3}$ and $d=(N+1) / m$.

As with the previous algorithm, Algorithm 7.2 will produce an infinite number of primitive d-pseudoprimes (again, for a potentially infinite number of values for d) if Schinzel and Sierpiński's Hypothesis H is valid, in this case, applied to the polynomials $g_{1}(x)=x, g_{2}(x)=x+1+k$, and $g_{3}(x)=$ $(x(x+k)+x+1+k) / k=(1 / k)\left(x^{2}+(k+1) x+(k+1)\right)$.

Remark. Although no ordering of the primes p_{1}, p_{2}, and p_{3} is assumed in Algorithm 7.2, it is easy to see that $p_{1}<p_{2}$. Moreover, by Step 2 of Algorithm 7.2,

$$
\begin{equation*}
p_{3}=\frac{p_{1}\left(p_{1}+k\right)+p_{1}+1+k}{k}=\frac{p_{1}^{2}+p_{1}+1}{k}+p_{1}+1 . \tag{23}
\end{equation*}
$$

Since Step 2 of Algorithm 7.2 implies that $k \mid p_{1}^{2}+p_{1}+1$, it follows that p_{3} is automatically an integer, and $p_{1}<p_{3}$. In addition, if $p_{2}=p_{3}$, then $k p_{2}=p_{1}\left(p_{2}-1\right)+p_{2}$, and it follows that $p_{2} \mid p_{1}$, which is impossible. Thus, the primes p_{1}, p_{2}, and p_{3} are necessarily distinct. Finally, we note that if $p_{1}^{2}+p_{1}+1>k^{2}$, then (23) implies that $p_{3}>p_{2}$. In this case, we obtain the usual ordering $p_{1}<p_{2}<p_{3}$.

The next two theorems verify that Algorithms 7.1 and 7.2 do, indeed, produce primitive d-pseudoprimes.

Theorem 7.3. Each integer $N=p_{1} p_{2} p_{3}$ produced by Algorithm 7.1 is a Carmichael-Lucas number and a primitive Lucas d-pseudoprime with signature ε satisfying $\varepsilon\left(p_{1}, p_{2}, p_{3}\right)=(1,-1,-1)$. Furthermore $4 \mid d, 3 \nmid d$, and d is a square.

Proof. It is immediate from the construction of N that

$$
\begin{align*}
\lambda(N, \varepsilon) & =\lambda^{\prime}(N, \varepsilon)=\frac{N-\varepsilon(N)}{d} \tag{24}\\
& =\frac{\left(p_{1}-\varepsilon\left(p_{1}\right)\right)\left(p_{2}-\varepsilon\left(p_{2}\right)\right)\left(p_{3}-\varepsilon\left(p_{3}\right)\right)}{d}
\end{align*}
$$

for $\varepsilon\left(p_{1}, p_{2}, p_{3}\right)=(1,-1,-1)$. Thus Theorem 4.2 implies that N is a primitive d-pseudoprime and $b=1$. Since $b=1$ and N is square free and primitive, Theorem 4.5 implies that N is a Carmichael-Lucas number.

The fact that $4 \mid d$ follows immediately from (24), and the fact that d is a square follows from Lemma 6.7. Thus it remains only to prove that $3 \nmid d$.

Since $\left(\frac{-3}{k}\right)=1$ and -3 is not a quadratic residue modulo 9 , quadratic reciprocity and the Chinese remainder theorem imply that k has prime decomposition

$$
\begin{equation*}
k=3^{r} \prod_{i=1}^{s} q_{i} \tag{25}
\end{equation*}
$$

where $r=0$ or $r=1$ and each prime q_{i} satisfies $q_{i} \equiv 1(\bmod 6)$. The primes q_{i} in (25) need not be distinct.

It follows from (25) that either $k \equiv 1(\bmod 6)$ or $k \equiv 3(\bmod 9)$.
First suppose that $k \equiv 1(\bmod 6)$. If $p_{1}=3$, then $p_{2}=p_{1}-1+k \equiv 0$ $(\bmod 3)$, which is a contradiction, since $p_{2}>p_{1}$. Therefore $p_{1} \equiv 1(\bmod 3)$ or $p_{1} \equiv 2(\bmod 3)$. In either case, $p_{2} \equiv p_{1}-1+k \equiv p_{1}(\bmod 3)$ and $p_{3} \equiv k p_{3} \equiv p_{1}\left(p_{2}+1\right)-p_{2} \equiv p_{1}^{2} \equiv 1(\bmod 3)$. In this case, exactly one of $p_{1}-1, p_{2}+1$, and $p_{3}+1$ is divisible by 3 , and, by $(24), d$ is not divisible by 3 .

Now suppose instead that $k \equiv 3(\bmod 9)$. Then $p_{2}=p_{1}-1+k \equiv p_{1}+2$ $(\bmod 9)$ and $3 p_{3} \equiv k p_{3} \equiv p_{1}\left(p_{2}+1\right)-p_{2} \equiv p_{1}^{2}+2 p_{1}-2(\bmod 9)$. Thus, if $p_{1}-1$ is divisible by 3 , then $p_{1} \equiv 1,4$, or $7(\bmod 9)$ and $3 p_{3} \equiv 1,4$, or 7 $(\bmod 9)$. None of these is possible, so $p_{1}-1$ is not divisible by 3 . On the other hand, $3 p_{3} \equiv k p_{3} \equiv p_{1}\left(p_{2}+1\right)-p_{2} \equiv\left(p_{2}+1-k\right)\left(p_{2}+1\right)-p_{2} \equiv p_{2}^{2}-2 p_{2}-2$ $(\bmod 9)$. If $p_{2}+1$ is divisible by 3 , then $p_{2} \equiv 2,5$, or $8(\bmod 9)$, and again $3 p_{3} \equiv 1,4$, or $7(\bmod 9)$. None of these is possible, so $p_{2}+1$ is not divisible by 3 . It now follows that at most one of $p_{1}-1, p_{2}+1$, and $p_{3}+1$ is divisible by 3 , and, by (24), d is not divisible by 3 .

Thus, in all cases $3 \nmid d$, as desired.
Theorem 7.4. Each integer $N=p_{1} p_{2} p_{3}$ produced by Algorithm 7.2 is a Carmichael-Lucas number and a primitive Lucas d-pseudoprime with signature ε satisfying $\varepsilon\left(p_{1}, p_{2}, p_{3}\right)=(-1,1,1)$. Furthermore $4 \mid d$, d is a square and, with the sole exception of the 16-pseudoprime 255, 9|d.

Proof. As before, it is immediate from the construction of N that

$$
\begin{align*}
\lambda(N, \varepsilon) & =\lambda^{\prime}(N, \varepsilon)=\frac{N-\varepsilon(N)}{d} \tag{26}\\
& =\frac{\left(p_{1}-\varepsilon\left(p_{1}\right)\right)\left(p_{2}-\varepsilon\left(p_{2}\right)\right)\left(p_{3}-\varepsilon\left(p_{3}\right)\right)}{d}
\end{align*}
$$

for $\varepsilon\left(p_{1}, p_{2}, p_{3}\right)=(-1,1,1)$. Thus Theorem 4.2 implies that N is a primitive d-pseudoprime and $b=1$. Since $b=1$ and N is square free and primitive, Theorem 4.5 implies that N is a Carmichael-Lucas number.

The fact that $4 \mid d$ again follows from (26), and the fact that d is a square follows from Lemma 6.7. Thus it remains only to prove that $9 \mid d$ when $N \neq 255$.

As in Theorem 7.3, the fact that -3 is a quadratic residue modulo k forces (25) to hold, and again, either $k \equiv 1(\bmod 6)$ or $k \equiv 3(\bmod 9)$.

First suppose that $p_{1}=3$. Since p_{1} is a root of $x^{2}+x+1$ modulo k, we see that $k \mid 13$. Therefore $k=1$ or $k=13$. In the former case, we obtain $p_{1}=3, p_{2}=5$, and $p_{3}=17$; in the latter case, we obtain $p_{1}=3, p_{2}=17$, and $p_{3}=5$. In both cases, N is the primitive 16 -pseudoprime 255 .

Now assume that $p_{1}>3$ and $k \equiv 1(\bmod 6)$. Then $p_{1} \equiv 1(\bmod 3)$ or $p_{1} \equiv 2(\bmod 3)$. It follows that $p_{2}=p_{1}+1+k \equiv p_{1}+2(\bmod 3)$. If $p_{1} \equiv 1$ $(\bmod 3)$, then this implies that $p_{2} \equiv 0(\bmod 3)$, which is impossible, since $p_{2}>p_{1}>3$. Therefore $p_{1} \equiv 2(\bmod 3), p_{2} \equiv 1(\bmod 3)$, and $p_{3} \equiv k p_{3} \equiv$ $p_{1}\left(p_{2}-1\right)+p_{2} \equiv 1(\bmod 3)$. It follows that all three of $p_{1}+1, p_{2}-1$, and $p_{3}-1$ are divisible by 3 and, by (26), d is divisible by 9 .

Finally, assume that $p_{1}>3$ and $k \equiv 3(\bmod 9)$. Again, either $p_{1} \equiv 1$ $(\bmod 3)$ or $p_{1} \equiv 2(\bmod 3)$. But p_{1} is a root of $x^{2}+x+1 \operatorname{modulo} 3$, and hence $p_{1} \equiv 1(\bmod 3)$. It follows that $p_{1} \equiv 1,4$, or $7(\bmod 9)$, and $p_{2}=p_{1}+1+k \equiv$ 5,8 , or $2(\bmod 9)$. But then, in every case, $3 p_{3} \equiv k p_{3} \equiv p_{1}\left(p_{2}-1\right)+p_{2} \equiv$ $0(\bmod 9)$. It follows that $3 \mid p_{3}$, a contradiction, since $p_{3}>p_{1}>3$. Thus this final case never occurs.

Theorem 7.5. Let $d=4 m$ for some integer m. Then all but a finite number of primitive Lucas d-pseudoprimes with exactly three distinct prime factors can be generated by Algorithm 7.1 or Algorithm 7.2.

Proof. Fix $d=4 m$ and let Ω be the set of standard primitive Lucas d-pseudoprimes N that have exactly three distinct prime factors. By Theorem $6.4, \Omega$ contains all but a finite number of the primitive Lucas d-pseudoprimes with exactly three distinct prime factors. By (21) and the argument given in the proof of Theorem 6.8 , each $N \in \Omega$ is square free, and we write $N=p_{1} p_{2} p_{3}$ with the usual ordering $p_{1}<p_{2}<p_{3}$. Moreover, as in the proof of Theorem 6.8 , each $N \in \Omega$ satisfies (20).

Clearly (20) cannot hold if either $\varepsilon\left(p_{1}, p_{2}, p_{3}\right)=(1,1,1)$ or $\varepsilon\left(p_{1}, p_{2}, p_{3}\right)=$ $(-1,-1,-1)$. In fact, it is easy to show that (20) also fails if $\varepsilon\left(p_{1}, p_{2}, p_{3}\right)$ is
one of $(1,-1,1),(1,1,-1),(-1,1,-1)$, or $(-1,-1,1)$. Thus, for example, if $\varepsilon\left(p_{1}, p_{2}, p_{3}\right)=(-1,1,-1)$, then
$\prod_{i=1}^{3}\left(p_{i}-\varepsilon\left(p_{i}\right)\right)-N+\varepsilon(N)=\left(p_{1}+1\right)\left(p_{2}-1\right)\left(p_{3}+1\right)-p_{1} p_{2} p_{3}+1$
$=p_{1} p_{2}-p_{1} p_{3}+p_{2} p_{3}-p_{1}+p_{2}-p_{3}=p_{3}\left(p_{2}-p_{1}-1\right)+p_{1}\left(p_{2}-1\right)+p_{2}>0$, contrary to (20).

It follows that $\varepsilon\left(p_{1}, p_{2}, p_{3}\right)=(1,-1,-1)$ or $\varepsilon\left(p_{1}, p_{2}, p_{3}\right)=(-1,1,1)$, and Ω may be partitioned into two subsets $\Omega_{(-1,1,1)}$ and $\Omega_{(1,-1,-1)}$ containing those elements of N having each of these two remaining signatures. We claim that the elements of $\Omega_{(1,-1,-1)}$ can be produced by Algorithm 7.1 and those of $\Omega_{(-1,1,1)}$ by Algorithm 7.2.

Case 1. If $N \in \Omega_{(1,-1,-1)}$, then N may be found by Algorithm 7.1.
Let $N \in \Omega_{(1,-1,-1)}$. By (20),

$$
\begin{aligned}
\left(p_{1}-1\right)\left(p_{2}+1\right)\left(p_{3}+1\right)-p_{1} & p_{2} p_{3}+1 \\
& =p_{1} p_{2}+p_{1} p_{3}-p_{2} p_{3}+p_{1}-p_{2}-p_{3} \\
& =p_{3}\left(p_{1}-p_{2}-1\right)+p_{1} p_{2}+p_{1}-p_{2}=0 .
\end{aligned}
$$

Set $k=p_{2}-p_{1}+1$. Then

$$
\begin{equation*}
p_{1}=p_{2}+1-k \quad \text { and } \quad p_{3}=\frac{-p_{1} p_{2}-p_{1}+p_{2}}{p_{1}-p_{2}-1}=\frac{p_{1}\left(p_{2}+1\right)-p_{2}}{k} . \tag{27}
\end{equation*}
$$

It follows from (27) that

$$
p_{1} \equiv p_{2}+1(\bmod k) \quad \text { and } \quad p_{1}\left(p_{2}+1\right)-p_{2} \equiv p_{1}^{2}-p_{1}+1 \equiv 0(\bmod k) .
$$

Therefore -3 is a quadratic residue modulo k, and

$$
\begin{equation*}
p_{1} \equiv(1+\alpha) / 2(\bmod k) \tag{28}
\end{equation*}
$$

for some α satisfying $\alpha^{2} \equiv-3(\bmod k)$.
Clearly, k will eventually be chosen in Step 1 of Algorithm 7.1, p_{1} computed in Step 2, and primes p_{2} and p_{3} determined by k and p_{1}. Therefore the primitive Lucas d-pseudoprime N will eventually be constructed by Algorithm 7.1.

Case 2. If $N \in \Omega_{(-1,1,1)}$, then N may be found by Algorithm 7.2.
Let $N \in \Omega_{(-1,1,1)}$. By (20),

$$
\begin{aligned}
\left(p_{1}+1\right)\left(p_{2}-1\right)\left(p_{3}-1\right)-p_{1} & p_{2} p_{3}-1 \\
& =-p_{1} p_{2}-p_{1} p_{3}+p_{2} p_{3}+p_{1}-p_{2}-p_{3} \\
& =p_{3}\left(p_{2}-p_{1}-1\right)-p_{1} p_{2}+p_{1}-p_{2}=0 .
\end{aligned}
$$

Set $k=p_{2}-p_{1}-1$. Then

$$
\begin{equation*}
p_{2}=p_{1}+1+k \quad \text { and } \quad p_{3}=\frac{p_{1} p_{2}-p_{1}+p_{2}}{p_{2}-p_{1}-1}=\frac{p_{1}\left(p_{2}-1\right)+p_{2}}{k} . \tag{29}
\end{equation*}
$$

It follows from (29) that

$$
p_{2} \equiv p_{1}+1(\bmod k) \quad \text { and } \quad p_{1}\left(p_{2}-1\right)+p_{2} \equiv p_{1}^{2}+p_{1}+1 \equiv 0(\bmod k)
$$

Therefore -3 is a quadratic residue modulo k, and

$$
\begin{equation*}
p_{1} \equiv(-1+\alpha) / 2(\bmod k) \tag{30}
\end{equation*}
$$

for some α satisfying $\alpha^{2} \equiv-3(\bmod k)$. Clearly, k will eventually be chosen in Step 1 of Algorithm 7.2, p_{1} computed in Step 2, and primes p_{2} and p_{3} determined by k and p_{1}. Therefore the primitive Lucas d-pseudoprime N will eventually be constructed by Algorithm 7.2.

The following corollary follows immediately from the previous results.
Corollary 7.6. If $d=4 m, m$ odd, then all but a finite number of primitive Lucas d-pseudoprimes are Carmichael-Lucas numbers.

Table 1. Number n of primitive Lucas d-pseudoprimes found with Algorithm 7.1 using $1 \leq k \leq 5000$ and $p_{1}, p_{2} \leq 10^{7}$ and $p_{3} \leq 10^{10}$

d	n								
4	10177	6400	14	25600	2	68644	1	295936	1
16	2719	6724	4	26896	1	71824	1	313600	1
64	690	7396	3	27556	1	73984	1	357604	1
100	957	7744	7	28900	1	78400	5	440896	1
196	278	8464	15	30976	2	80656	1	470596	2
256	151	8836	5	31684	1	81796	1	550564	1
400	258	9604	4	33124	2	84100	1	605284	1
484	154	10000	11	33856	1	85264	2	792100	1
676	63	11236	4	35344	1	87616	1	1249924	1
784	47	12100	13	36100	3	91204	2	1336336	1
1024	44	12544	5	37636	1	94864	1	1517824	1
1156	35	13456	2	38416	3	96100	4	1779556	1
1444	25	13924	2	40000	5	102400	1	1795600	1
1600	72	14884	2	40804	3	103684	2	1827904	1
1936	30	15376	1	43264	2	115600	1	1926544	1
2116	29	16384	1	45796	1	118336	1	1948816	1
2500	41	16900	12	47524	2	119716	1	2244004	1
2704	11	17956	3	48400	2	122500	1	2637376	1
3136	9	18496	2	50176	1	135424	1	2992900	1
3364	21	19600	6	52900	1	144400	1	4368100	2
3844	5	20164	2	53824	1	158404	1	4443664	1
4096	13	21316	1	55696	1	183184	1	8202496	1
4624	9	21904	3	58564	1	204304	1	10125124	1
4900	26	23104	3	62500	2	220900	1	10640644	1
5476	9	23716	2	64516	2	240100	1	11971600	1
5776	7	24964	2	67600	2	246016	1	13410244	1

Table 2. Number n of primitive Lucas d-pseudoprimes found with Algorithm 7.2 using $1 \leq k \leq 5000$ and $p_{1}, p_{2} \leq 10^{7}$ and $p_{3} \leq 10^{10}$

d	n								
16	1	63504	1	419904	1	34222500	1	2120602500	1
36	3116	66564	2	435600	1	34574400	1	2170628100	1
144	744	69696	1	443556	1	40449600	1	2315534400	1
324	357	72900	4	459684	1	45968400	1	2379488400	1
576	165	76176	1	476100	2	81000000	1	2453220900	1
900	319	79524	1	518400	1	85377600	1	2555302500	1
1296	91	82944	1	571536	1	92736900	1	2607123600	1
1764	77	86436	2	589824	1	110880900	1	2794179600	1
2304	47	90000	4	617796	1	118592100	1	2838758400	1
2916	27	97344	1	705600	1	143280900	1	2984436900	1
3600	65	108900	4	736164	1	187142400	1	3286728900	1
4356	30	116964	2	756900	1	191268900	1	3778560900	1
5184	22	121104	1	876096	1	196280100	1	4292870400	1
6084	16	138384	1	1052676	2	211702500	1	4320432900	1
7056	18	142884	2	1115136	1	263412900	1	4662158400	1
8100	42	147456	1	1166400	1	277222500	1	4781722500	1
9216	11	152100	1	1382976	1	326163600	1	5033902500	1
10404	8	156816	1	1397124	1	328334400	1	5119402500	1
11664	10	161604	3	1512900	1	343731600	1	5875222500	1
12996	4	171396	1	1572516	1	366339600	1	6168531600	1
14400	17	176400	3	1602756	1	375584400	1	6206288400	1
15876	8	181476	1	1664100	1	466560000	1	6801300900	1
17424	8	186624	1	1742400	1	476985600	1	6870752100	1
19044	6	191844	1	1988100	1	546156900	1	6995649600	1
20736	2	197136	1	2090916	1	560268900	1	7066083600	1
22500	11	202500	2	2340900	1	714492900	1	7121672100	1
24336	9	207936	1	4161600	1	722534400	1	7459776900	1
26244	5	213444	2	5089536	1	766736100	1	8040708900	1
32400	10	224676	1	5336100	2	864360000	1	8306499600	1
34596	3	230400	1	5531904	1	916272900	1	8504528400	1
36864	2	236196	1	6502500	1	1087020900	1	8548851600	1
39204	5	242064	1	6594624	1	1098922500	1	8582169600	1
41616	1	248004	1	7452900	1	1190250000	1	8738510400	1
44100	5	260100	2	7952400	1	1244678400	1	9175724100	1
46656	8	272484	1	11289600	1	1370480400	1	9250592400	1
49284	2	324900	2	11492100	1	1413008100	1	9576579600	1
51984	5	331776	1	18147600	1	1490732100	1		
54756	3	345744	2	19713600	1	1743897600	1		
57600	6	360000	2	21622500	1	1853302500	1		
60516	2	367236	1	24206400	1	1998090000	1		

We implemented Algorithms 7.1 and 7.2 in Java, C++, and GAP, and were able to construct many primitive Lucas d-pseudoprimes for many values of d when d is an even perfect square. Thus, beginning with $k=1549$, Algorithm 7.1 produced the primitive d-pseudoprime $5155460949210001=$ $52391 \cdot 53939 \cdot 1824349$, with $d=96100=(2 \cdot 5 \cdot 31)^{2}$. Beginning with $k=3823$, Algorithm 7.2 produced the primitive d-pseudoprime $249540023224799=$ $29399 \cdot 33223 \cdot 255487$, with $d=86436=(2 \cdot 3 \cdot 49)^{2}$. We applied Algorithms 7.1 and 7.2 for all values of k such that $1 \leq k \leq 5000$, with the restriction that $p_{1}, p_{2}<10^{7}$ and $p_{3}<10^{10}$, and found a total of $16118 d$-pseudoprimes with Algorithm 7.1 and $5471 d$-pseudoprimes with Algorithm 7.2.

As mentioned above, Schinzel and Sierpiński's Hypothesis H (see [13]) implies that Algorithms 7.1 and 7.2 each generate an infinite number of primitive d-pseudoprimes (with d ranging over a possibly infinite set of values) for each choice of k. Even for a fixed even perfect square d, however, primitive d-pseudoprimes appear to be plentiful. Thus, for example, our experiment produced 10177 primitive 4 -pseudoprimes, 2720 primitive 16 -pseudoprimes, and 957 primitive 100 -pseudoprimes in relatively short order. This stands in stark contrast with the conclusion of Theorem 6.8 that there are only a finite number of them when d is divisible by four but not a perfect square.

Tables 1 and 2 summarize how many d-pseudoprimes we constructed for various values of d.
8. Further developments. In this paper we have examined the distribution of primitive Lucas d-pseudoprimes, concentrating our attention on the case that $4 \| d$. In this case all but a finite number of the d-pseudoprimes have exactly three distinct prime divisors. A careful analysis of this situation shows that a necessary condition for the existence of an infinite number of primitive d-pseudoprimes is that d be a perfect square. Our algorithms suggest that there may be an infinite number of primitive d-pseudoprimes with exactly three prime divisors, but a proof of this conjecture remains open. An analysis of our algorithms may prove useful in providing asymptotic estimates of the size of primitive d-pseudoprimes with three factors.

A broad range of questions generalizing our study remain open. In [3], we showed that if $2^{r} \| d$, then only finitely many Lucas d-pseudoprimes have more than $r+1$ prime factors, but if the number t of prime divisors satisfies $3<t \leq r+1$, there may be infinitely many primitive d-pseudoprimes. Our main tool, Theorem 6.4, applies in this case and allows us to restrict our attention to numbers satisfying (13) and, in a related paper, [4], we show that almost all Lucas d-pseudoprimes are square free.

Does the existence of infinitely many d-pseudoprimes with t divisors place any constraints on the structure of d ? Are there generalizations of our algorithms to produce d-pseudoprimes with more than three prime factors?

In the case that there are infinitely many primitive d-pseudoprimes, can anything be said about their asymptotic growth? In the case that there are only finitely many primitive d-pseudoprimes, can an absolute bound be determined?

We are actively investigating these questions. Our paper [4] includes a preliminary investigation of numbers that satisfy (13), and we are currently working on a paper that provides an absolute bound for the number of Lucas d-pseudoprimes in some cases.

REFERENCES

[1] R. Baillie and S. S. Wagstaff, Jr., Lucas pseudoprimes, Math. Comp. 35 (1980), 1391-1417.
[2] J. Brillhart, D. H. Lehmer and J. L. Selfridge, New primality criteria and factorizations of $2^{m} \pm 1$, ibid. 29 (1975), 620-647.
[3] W. Carlip, E. Jacobson and L. Somer, Pseudoprimes, perfect numbers, and a problem of Lehmer, Fibonacci Quart. 36 (1998), 361-371.
[4] W. Carlip and L. Somer, Square-free Lucas d-pseudoprimes and Carmichael-Lucas numbers, Czechoslovak Math. J., to appear.
[5] R. D. Carmichael, On the numerical factors of the arithmetic forms $\alpha^{n} \pm \beta^{n}$, Ann. of Math. (2) 15 (1913), 30-70.
[6] J. Chernick, On Fermat's simple theorem, Bull. Amer. Math. Soc. 45 (1939), 269274.
[7] The GAP Group, GAP—Groups, Algorithms, and Programming, Version 4.2, 2000, http://www.gap-system.org.
[8] J. Grantham, Frobenius pseudoprimes, Math. Comp. 70 (2001), 873-891.
[9] É. Lucas, Théorie des fonctions numériques simplement périodiques, Amer. J. Math. 1 (1878), 184-240, 289-321.
[10] S. M. S. Müller, Carmichael numbers and Lucas tests, in: Finite Fields: Theory, Applications, and Algorithms (Waterloo, ON, 1997), Contemp. Math. 225, Amer. Math. Soc., Providence, RI, 1999, 193-202.
[11] P. Ribenboim, The New Book of Prime Number Records, Springer, New York, 1996.
[12] J. Roberts, Lure of the Integers, Math. Assoc. America, Washington, DC, 1992.
[13] A. Schinzel and W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, Acta Arith. 4 (1958), 185-208; erratum, 5 (1958), 259.
[14] L. Somer, On Fermat d-pseudoprimes, in: Théorie des nombres (Québec, QC, 1987), de Gruyter, Berlin, 1989, 841-860.
[15] -, On Lucas d-pseudoprimes, in: Applications of Fibonacci Numbers, Vol. 7 (Graz, 1996), Kluwer, Dordrecht, 1998, 369-375.
[16] H. C. Williams, On numbers analogous to the Carmichael numbers, Canad. Math. Bull. 20 (1977), 133-143.

Department of Mathematics
Franklin and Marshall College
Lancaster, PA 17604, U.S.A.
E-mail: c3ar@math.uchicago.edu

Department of Mathematics Catholic University of America
Washington, DC 20064, U.S.A.
E-mail: somer@cua.edu

[^0]: 2000 Mathematics Subject Classification: Primary 11Y11, 11B39; Secondary 11A51, 11A41, 11B37.

 Key words and phrases: Lucas, Fibonacci, pseudoprime, Fermat.

