COLLOQUIUM MATHEMATICUM

INDUCED MODULES OF STRONGLY GROUP-GRADED ALGEBRAS

TH. THEOHARI-APOSTOLIDI and H. VAVATSOULAS (Thessaloniki)

Abstract

Various results on the induced representations of group rings are extended to modules over strongly group-graded rings. In particular, a proof of the graded version of Mackey's theorem is given.

1. Introduction. Let G be a group and $\Lambda=\bigoplus_{g \in G} \Lambda_{g}$ a strongly G graded ring that is an algebra over an artinian commutative ring R. For a subgroup H of G we consider the ring

$$
\Lambda_{H}=\bigoplus_{h \in H} \Lambda_{h}
$$

which is a strongly H-graded R-algebra. Let V be a left Λ_{H}-module and W a left Λ-module.

In the first section of this paper we examine the properties of the injective hulls, projective covers and the functor Hom under the induction and restriction functors.

In the second section we give the graded version of Mackey's theorem. A proof of this theorem was given by Boisen in [3] but the functions defined there do not have the required properties.

The reader is referred to [1], [4] and [6] for basic facts and notation of group representation theory, to [2] for background on modules over artinian algebras, and to [7]-[10] for graded rings theory.
2. Induction and restriction functors. Let G be a group and H a subgroup of G of finite index. Let R be a commutative artinian ring and

$$
\Lambda=\bigoplus_{g \in G} \Lambda_{g}
$$

a strongly G-graded R-algebra, that is, $\Lambda_{g} \Lambda_{h}=\Lambda_{g h}$ for all $g, h \in G$. Moreover, since $\Lambda_{g} \Lambda_{g^{-1}}=\Lambda_{1}$ for all g in G, where 1 is the unity of G, there exist elements $a_{g}^{(i)} \in \Lambda_{g}, b_{g^{-1}}^{(i)} \in \Lambda_{g^{-1}}$ and a positive integer n_{g} depending on g
such that

$$
\begin{equation*}
\sum_{i=1}^{n_{g}} a_{g}^{(i)} b_{g^{-1}}^{(i)}=1 \tag{2.1}
\end{equation*}
$$

Consider the strongly H-graded R-algebra $\Lambda_{H}=\bigoplus_{h \in H} \Lambda_{h}$. If V is a left Λ_{H}-module and W a left Λ-module we denote by $V^{G}=\Lambda \otimes_{\Lambda_{H}} V$ the induced Λ-module and by W_{H} the restriction of W viewed as a left Λ_{H}-module. We denote by T a left transversal of H in G. It is clear that

$$
V^{G}=\bigoplus_{t \in T} \Lambda_{t} \otimes_{\Lambda_{H}} V
$$

Moreover we set $V^{g}=\Lambda_{g} \otimes_{\Lambda_{H}} V$ for $g \in G$. Note that V^{g} is a left $\Lambda_{g H^{-1}-\text {-module. }}$

Finally, for a ring S we denote by $\bmod S$ the category of finitely generated left S-modules. We recall that a left Λ-module W is H-projective if the exact sequence of left Λ-modules

$$
0 \rightarrow X \rightarrow Y \rightarrow W \rightarrow 0
$$

for which the associated sequence of Λ_{H}-modules

$$
0 \rightarrow X_{H} \rightarrow Y_{H} \rightarrow W_{H} \rightarrow 0
$$

splits, is also a splitting sequence of Λ-modules. Equivalently, W is H projective if and only if $W \mid\left(W_{H}\right)^{G}([5])$, where the notation $X \mid Y$ means that the module X is isomorphic to a direct summand of the module Y.

For a module V, we denote by $I(V)$ and $P(V)$ the injective hull and projective cover of V, respectively.

Using the above notation we prove the following result, which is known for group rings.

Lemma 2.1. Let V be a left Λ_{H}-module, W a left Λ-module and $\sigma \in G$. Then the following hold:
(i) $I\left(V^{G}\right)\left(\right.$ resp. $\left.P\left(V^{G}\right)\right)$ is isomorphic to a direct summand of $[I(V)]^{G}$ $\left(\right.$ resp. $\left.[P(V)]^{G}\right)$.
(ii) $I\left(W_{H}\right)$ (resp. $P\left(W_{H}\right)$) is isomorphic to a direct summand of $[I(W)]_{H}\left(\right.$ resp. $\left.[P(W)]_{H}\right)$.
(iii) If $H \unlhd G$, then $I\left(V^{\sigma}\right)$ (resp. $P\left(V^{\sigma}\right)$) is isomorphic to a direct summand of $[I(V)]^{\sigma}\left(\right.$ resp. $\left.[P(V)]^{\sigma}\right)$.
(iv) If W is H-projective, then $I(W)$ is isomorphic to a direct summand of $\left[I\left(W_{H}\right)\right]^{G}$.
(v) $P(W)$ is isomorphic to a direct summand of $\left[P\left(W_{H}\right)\right]^{G}$ and $P(W)$ is isomorphic to a direct summand of $\left\{[P(W)]_{H}\right\}^{G}$.
Proof. We prove (iii). The proofs of the remaining statements are analogous to those in the group ring case (see [6, Ch. 1, Prop. 12.5]).

Let H be a normal subgroup of G. Since the sequence

$$
0 \rightarrow V \stackrel{f}{\rightarrow} I(V)
$$

is exact, so is

$$
0 \rightarrow V^{\sigma} \xrightarrow{f^{\sigma}}[I(V)]^{\sigma},
$$

where f^{σ} is the restriction of $1 \otimes f$ to V^{σ}, i.e. $f^{\sigma}\left(\lambda_{\sigma} \otimes v\right)=\lambda_{\sigma} \otimes f(v)$ for $\lambda_{\sigma} \in \Lambda_{\sigma}$ and $v \in V$. Moreover, by [8, Section 3, Prop. 2], the module $[I(V)]^{\sigma}$ is also injective. Therefore for the first part of (iii) it remains to prove that f^{σ} is essential, that is, if X^{\prime} is any nonzero $\Lambda_{H^{\prime}}$-submodule of $[I(V)]^{\sigma}$, then $f^{\sigma}\left(V^{\sigma}\right) \cap X^{\prime} \neq\{0\}$. For this, let X be the Λ_{H}-submodule of $I(V)$ generated by the elements $\lambda_{H \sigma^{-1}} y$, where $\lambda_{H \sigma^{-1}} \in \Lambda_{H \sigma^{-1}}$ and

$$
y=\sum_{k=1}^{\nu} \lambda_{\sigma}^{(k)} x^{(k)}, \quad \text { with } \quad \sum_{k=1}^{\nu} \lambda_{\sigma}^{(k)} \otimes x^{(k)} \in X^{\prime}, \nu \in \mathbb{N} .
$$

Since f is essential, it follows from the relation $f(V) \cap X \neq\{0\}$ that there exists a nonzero element $x \in X$ such that $x=f(v)$ for some nonzero $v \in V$. Since $v \neq 0$, there exists $\mu \in\left\{1, \ldots, n_{\sigma}\right\}$ such that $b_{\sigma}^{(\mu)} \otimes v \neq 0$, because otherwise $\sum_{i=1}^{n_{\sigma}} a_{\sigma^{-1}}^{(i)} b_{\sigma}^{(i)} \otimes v=0$, where $a_{\sigma^{-1}}^{(i)}, b_{\sigma}^{(i)}$ are as in (2.1), and so $v=0$. Write

$$
x=\sum_{j=1, k=1}^{\varrho, \nu_{j}} \lambda_{H \sigma^{-1}}^{(j)} \lambda_{\sigma}^{(k)(j)} x^{(k)(j)}
$$

for some $\varrho \in \mathbb{N}$, where $\lambda_{H \sigma^{-1}}^{(j)} \in \Lambda_{H \sigma^{-1}}$ and $\sum_{k=1}^{\nu_{j}} \lambda_{\sigma}^{(k)(j)} x^{(k)(j)} \in X^{\prime}$ for $j \in\{1, \ldots, \varrho\}$. Then

$$
0 \neq f^{\sigma}\left(b_{\sigma}^{(\mu)} \otimes v\right)=b_{\sigma}^{(\mu)} \otimes f(v)=\sum_{j=1, k=1}^{\varrho, \nu_{j}} b_{\sigma}^{(\mu)} \lambda_{H \sigma^{-1}}^{(j)} \lambda_{\sigma}^{(k)(j)} \otimes x^{(k)(j)}
$$

and we get

$$
f^{\sigma}\left(b_{\sigma}^{(\mu)} \otimes v\right) \in X^{\prime} \cap f^{\sigma}\left(V^{\sigma}\right) \neq\{0\}
$$

This proves that f^{σ} is essential and therefore $I\left(V^{\sigma}\right) \cong[I(V)]^{\sigma}$.
The second part of (iii) is proved analogously.
Theorem 2.2. Let H be a normal subgroup of G. Assume that the Krull-Schmidt-Azumaya theorem holds in $\bmod \Lambda$. Then the following hold for a left Λ_{H}-module V and a left Λ-module W :
(i) $I\left(V^{G}\right) \cong[I(V)]^{G}$ and $P\left(V^{G}\right) \cong[P(V)]^{G}$ as left Λ-modules.
(ii) $I\left[\left(V^{G}\right)_{H}\right] \cong\left[I\left(V^{G}\right)\right]_{H}$ and $P\left[\left(V^{G}\right)_{H}\right] \cong\left[P\left(V^{G}\right)\right]_{H}$ as left Λ_{H}-modules.
(iii) If W is H-projective then

$$
I\left(W_{H}\right) \cong[I(W)]_{H} \quad \text { and } \quad P\left(W_{H}\right) \cong[P(W)]_{H}
$$

as left Λ_{H}-modules.

Proof. We will prove the injective hull case. The projective cover case is analogous.
(i), (ii). It follows from Lemma 2.1(i),(ii), that there exist Z and Y in $\bmod \Lambda$ such that

$$
\begin{align*}
I\left(V^{G}\right) \oplus Z & \cong[I(V)]^{G} \tag{2.2}\\
I\left[\left(V^{G}\right)_{H}\right] \oplus Y & \cong\left[I\left(V^{G}\right)\right]_{H} \tag{2.3}
\end{align*}
$$

Moreover, by Lemma 2.1(iii),

$$
\begin{equation*}
\left([I(V)]^{G}\right)_{H} \cong \bigoplus_{t \in T}[I(V)]^{t} \cong \bigoplus_{t \in T} I\left(V^{t}\right) \cong I\left(\bigoplus_{t \in T} V^{t}\right) \cong I\left[\left(V^{G}\right)_{H}\right] \tag{2.4}
\end{equation*}
$$

Now, using (2.2) and (2.3), the relation (2.4) becomes

$$
\left[I\left(V^{G}\right)\right]_{H} \oplus Z_{H} \cong I\left[\left(V^{G}\right)_{H}\right]
$$

and so

$$
I\left[\left(V^{G}\right)_{H}\right] \oplus Y \oplus Z_{H} \cong I\left[\left(V^{G}\right)_{H}\right]
$$

By applying the Krull-Schmidt-Azumaya theorem to the above relation, it follows that $Y=Z_{H}=0$, and parts (i) and (ii) of the theorem follow from (2.2) and (2.3).
(iii) If W is H-projective, then there exists a Λ-module X such that

$$
W \oplus X \cong\left(W_{H}\right)^{G} .
$$

Then, by (ii),

$$
\begin{align*}
& {[I(W)]_{H} \oplus[I(X)]_{H}} \tag{2.5}\\
& \cong[I(W) \oplus I(X)]_{H} \cong[I(W \oplus X)]_{H} \cong\left[I\left(W_{H}\right)^{G}\right]_{H} \cong I\left(\left[\left(W_{H}\right)^{G}\right]_{H}\right) \\
& \quad \cong I\left[(W \oplus X)_{H}\right] \cong I\left(W_{H} \oplus X_{H}\right) \cong I\left(W_{H}\right) \oplus\left(X_{H}\right)
\end{align*}
$$

Now, from Lemma 2.1(ii), there exist U and M in $\bmod \Lambda$ such that

$$
[I(W)]_{H} \cong I\left(W_{H}\right) \oplus U, \quad[I(X)]_{H} \cong I\left(X_{H}\right) \oplus M
$$

Combining the above relations with (2.5) and using the Krull-SchmidtAzumaya theorem, we deduce that $U=M=0$, and (iii) follows.

Theorem 2.3. Let W be a left Λ-module and H a subgroup of G of finite index. Then there exists an isomorphism

$$
\Theta: \operatorname{Hom}_{\Lambda}(W, \Lambda) \rightarrow \operatorname{Hom}_{\Lambda_{H}}\left(W_{H}, \Lambda_{H}\right)
$$

of right Λ_{H}-modules. This isomorphism is natural. In particular, if W is a Λ - Λ-bimodule, then Θ is a $\Lambda-\Lambda_{H}$-bimodule isomorphism.

Proof. As W is a left Λ-module, $\operatorname{Hom}_{\Lambda}(W, \Lambda)$ becomes a right Λ-module under the rule $(f \cdot \lambda)(w)=f(w) \lambda$ for $f \in \operatorname{Hom}_{\Lambda}(W, \Lambda), \lambda \in \Lambda$ and $w \in W$. Similarly $\operatorname{Hom}_{\Lambda_{H}}\left(W_{H}, \Lambda_{H}\right)$ becomes a right Λ_{H}-module. Let $f \in$ $\operatorname{Hom}_{\Lambda}(W, \Lambda)$ and $w \in W$. Then $f(w)=\sum_{t \in T} f(w)_{t H}$ for $f(w) \in \Lambda_{t H}$. We
define

$$
\Theta: \operatorname{Hom}_{\Lambda}(W, \Lambda) \rightarrow \operatorname{Hom}_{\Lambda_{H}}\left(W_{H}, \Lambda_{H}\right) \quad \text { by } \quad \Theta(f)(w)=f(w)_{H}
$$

It is easy to see that Θ is a right Λ_{H}-homomorphism. To prove that Θ is onto, for each $\mu \in \operatorname{Hom}_{\Lambda_{H}}\left(W_{H}, \Lambda_{H}\right)$ we define

$$
\widetilde{\mu}: W \rightarrow \Lambda \quad \text { by } \quad \widetilde{\mu}(w)=\sum_{t \in T} \sum_{i} a_{t}^{(i)} \mu\left(b_{t^{-1}}^{(i)} w\right)
$$

where $a_{t}^{(i)} \in \Lambda_{t}$ and $b_{t^{-1}}^{(i)} \in \Lambda_{t^{-1}}$ are as in (2.1). It is easy to see that $\tilde{\mu} \in \operatorname{Hom}_{\Lambda}(W, \Lambda)$. Moreover, $\Theta(\widetilde{\mu})(w)=\widetilde{\mu}(w)_{H}=\mu(w)$ for $w \in W$. To prove that Θ is a monomorphism, let $w \in W$ and $f \in \operatorname{ker} \Theta$. Since

$$
f(w)=\sum_{t \in T} f(w)_{t H}=\sum_{t \in T} \sum_{i} a_{t}^{(i)} b_{t^{-1}}^{(i)} f(w)_{t H}
$$

for any $g \in T$ we get $0=\Theta(f)\left(b_{g^{-1}}^{(i)} w\right)=b_{g^{-1}}^{(i)} f(w)_{g H}$ and hence $f(w)=0$, for all $w \in W$. The fact that Θ is a Λ - Λ_{H}-homomorphism is proved by straightforward calculations.

Corollary 2.4. Let W be a left Λ-module and H a subgroup of G of finite index. Then

$$
\operatorname{Ext}_{\Lambda}^{n}(W, \Lambda) \cong \operatorname{Ext}_{\Lambda_{H}}^{n}\left(W_{H}, \Lambda_{H}\right)
$$

as abelian groups, for all $n \in \mathbb{N}$.
Theorem 2.5. Let G be a group, H a subgroup of G of finite index and V a left Λ_{H}-module. Then

$$
\left[\operatorname{Hom}_{\Lambda_{H}}\left(V, \Lambda_{H}\right)\right]^{G} \cong \operatorname{Hom}_{\Lambda}\left(V^{G}, \Lambda\right)
$$

as right Λ-modules. This isomorphism is natural.
Proof. Since $\operatorname{Hom}_{\Lambda_{H}}\left(V, \Lambda_{H}\right)$ is a right Λ_{H}-module, it follows that each element of $\left[\operatorname{Hom}_{\Lambda_{H}}\left(V, \Lambda_{H}\right)\right]^{G}$ is of the form $\sum_{t \in T} f_{t^{-1}} \otimes \lambda_{t^{-1}}$ for some $f_{t^{-1}} \in$ $\operatorname{Hom}_{\Lambda_{H}}\left(V, \Lambda_{H}\right)$ and $\lambda_{t^{-1}} \in \Lambda_{t^{-1}}$. We consider the map

$$
\Delta:\left[\operatorname{Hom}_{\Lambda_{H}}\left(V, \Lambda_{H}\right)\right]^{G} \rightarrow \operatorname{Hom}_{\Lambda}\left(V^{G}, \Lambda\right)
$$

defined by

$$
\Delta\left(\sum_{t \in T} f_{t^{-1}} \otimes \lambda_{t^{-1}}\right)=f, \text { where } f\left(\sum_{s \in S} \mu_{s} \otimes v_{s}\right)=\sum_{s \in S} \sum_{t \in T} \mu_{s} f_{t^{-1}}\left(v_{s}\right) \lambda_{t^{-1}}
$$

for another set S of left transversals of H in $G, \mu_{s} \in \Lambda_{s}$ and $v_{s} \in V$. Let us prove that Δ is independent of the choice of T and S. Let T^{\prime} and S^{\prime} be any two sets of left transversals of H in G. For any $s^{\prime} \in S^{\prime}$, there exists a unique $s \in S$ and a unique $h_{s} \in H$ such that $s^{\prime}=s h_{s}$. Similarly for any $t^{\prime} \in T^{\prime}$, there exist unique $t \in T$ and $h_{t} \in H$ such that $t^{\prime}=t h_{t}$. Let $\lambda_{s^{\prime}}=\sum_{i} \lambda_{s}^{(i)} \lambda_{h_{s}}^{(i)}$ and $\lambda_{t^{\prime-1}}=\sum_{j} \lambda_{h_{t}^{-1}}^{(j)} \lambda_{t^{-1}}^{(j)}$ for some $\lambda_{s^{\prime}} \in \Lambda_{s^{\prime}}$ and $\lambda_{t^{\prime-1}} \in \Lambda_{t^{\prime-1}}$, where $\lambda_{x}^{(i)}, \lambda_{x}^{(j)} \in \Lambda_{x}$ for $x \in G$. Then

$$
\begin{aligned}
& f\left(\sum_{s^{\prime} \in S^{\prime}} \lambda_{s^{\prime}} \otimes v_{s^{\prime}}\right)=f\left(\sum_{i} \sum_{s \in S} \lambda_{s}^{(i)} \otimes \lambda_{h_{s}}^{(i)} v_{s^{\prime}}\right) \\
& =\sum_{i} \sum_{s \in S} \sum_{t \in T} \lambda_{s}^{(i)} f_{t^{-1}}\left(\lambda_{h_{s}}^{(i)} v_{s^{\prime}}\right) \lambda_{t^{-1}}=\sum_{s^{\prime} \in S^{\prime}} \sum_{t \in T} \lambda_{s^{\prime}} f_{t^{-1}}\left(v_{s^{\prime}}\right) \lambda_{t^{-1}}
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& \Delta\left(\sum_{t^{\prime} \in T^{\prime}} f_{t^{\prime-1}} \otimes \lambda_{t^{\prime-1}}\right)\left(\sum_{s \in S} \lambda_{s} \otimes v_{s}\right)=\sum_{j} \sum_{s \in S} \sum_{t \in T} \lambda_{s}\left(f_{t^{\prime-1}} \cdot \lambda_{h_{t}^{-1}}^{(j)}\right)\left(v_{s}\right) \lambda_{t^{-1}}^{(j)} \\
&= \sum_{j} \sum_{s \in S} \sum_{t \in T} \lambda_{s} f_{t^{\prime-1}}\left(v_{s}\right) \lambda_{h_{t}^{-1}}^{(j)} \lambda_{t^{-1}}^{(j)}=\sum_{s \in S} \sum_{t \in T} \lambda_{s} f_{t^{\prime-1}}\left(v_{s}\right) \lambda_{t^{\prime-1}}
\end{aligned}
$$

The map f is a Λ-homomorphism. Indeed, let $g \in G$ and $S^{\prime}=\{g s: s \in S\}$. Then

$$
\begin{aligned}
f\left(\lambda_{g} \sum_{s \in S} \lambda_{s} \otimes v_{s}\right) & =f\left(\sum_{g s \in S^{\prime}} \lambda_{g} \lambda_{s} \otimes v_{s}\right)=\sum_{t \in T} \sum_{g s \in S^{\prime}} \lambda_{g} \lambda_{s} f_{t^{-1}}\left(v_{s}\right) \lambda_{t^{-1}} \\
& =\lambda_{g} f\left(\sum_{s \in S} \lambda_{s} \otimes v_{s}\right) .
\end{aligned}
$$

We now prove that Δ is a Λ-homomorphism of right Λ-modules. Let $g \in G$, and consider the set $\left\{g^{-1} t: t \in T\right\}$ of right transversals of H in G and elements $a_{g^{-1} t}^{(i)} \in \Lambda_{g^{-1} t}$ and $b_{t^{-1} g}^{(i)} \in \Lambda_{t^{-1} g}$ with $\sum_{i} a_{g^{-1} t}^{(i)} b_{t^{-1} g}^{(i)}=1$, as in (2.1). If

$$
\varphi=\sum_{t \in T} f_{t^{-1}} \otimes \lambda_{t^{-1}} \in\left[\operatorname{Hom}_{\Lambda_{H}}\left(V, \Lambda_{H}\right)\right]^{G},
$$

then

$$
\varphi \cdot \lambda_{g}=\sum_{i} \sum_{t \in T} f_{t^{-1}}\left(\lambda_{t^{-1}} \lambda_{g} a_{g^{-1} t}^{(i)}\right) \otimes b_{t^{-1} g}^{(i)}
$$

and

$$
\begin{aligned}
\Delta\left(\varphi \cdot \lambda_{g}\right)\left(\sum_{s \in S} \lambda_{s} \otimes v_{s}\right) & =\sum_{j} \sum_{t \in T} \sum_{s \in S} \lambda_{s}\left[f_{t^{-1}}\left(\lambda_{t^{-1}} \lambda_{g} a_{g^{-1} t}^{(i)}\right)\right]\left(v_{s}\right) b_{t^{-1} g}^{(i)} \\
& =\sum_{t \in T} \sum_{s \in S} \lambda_{s} f_{t^{-1}}\left(v_{s}\right) \lambda_{t^{-1}} \lambda_{g}=\left[\Delta(\varphi) \cdot \lambda_{g}\right]\left(\sum_{s \in S} \lambda_{s} \otimes v_{s}\right) .
\end{aligned}
$$

We now define the inverse of Δ. Let $f \in \operatorname{Hom}_{\Lambda}\left(V^{G}, \Lambda\right)$. Then $f(1 \otimes v) \in$ $\Lambda=\bigoplus_{t \in T} \Lambda_{H} \Lambda_{t^{-1}}$ for $v \in V$, and for each $t \in T$ there exists a unique $f_{H t^{-1}}^{v} \in \Lambda_{H} \Lambda_{t^{-1}}$ such that

$$
f(1 \otimes v)=\sum_{t \in T} f_{H t^{-1}}^{v}
$$

Let $a_{t}^{(i)} \in \Lambda_{t}$ and $b_{t^{-1}}^{(i)} \in \Lambda_{t^{-1}}$ be as in (2.1). We define

$$
f_{i, t^{-1}, a}: V \rightarrow \Lambda_{H}, \quad v \mapsto f_{H t^{-1}}^{v} a_{t}^{(i)}
$$

Since f is a Λ-homomorphism it follows that, for $x \in \Lambda_{H}$ and $v \in V$,

$$
f(1 \otimes x v)=x f(1 \otimes v)
$$

and we get

$$
f_{H t^{-1}}^{x v}=x f_{H t^{-1}}^{v},
$$

because of the unique decomposition, and so $f_{i, t^{-1, a}}$ is a Λ_{H}-homomorphism. Now we define

$$
\Psi: \operatorname{Hom}_{\Lambda}\left(V^{G}, \Lambda\right) \rightarrow\left[\operatorname{Hom}_{\Lambda_{H}}\left(V, \Lambda_{H}\right)\right]^{G}
$$

by

$$
f \mapsto \sum_{i} \sum_{t \in T} f_{i, t^{-1}, a} \otimes b_{t^{-1}}^{(i)} .
$$

We remark that Ψ is independent of the choice of $a_{t}^{(i)}, b_{t^{-1}}^{(i)}$. Indeed, let $c_{t}^{(j)} \in \Lambda_{t}, d_{t^{-1}}^{(j)} \in \Lambda_{t^{-1}}$ with

$$
\sum_{j} c_{t}^{(j)} d_{t^{-1}}^{(j)}=1
$$

as in (2.1). We have to show that

$$
\sum_{i} \sum_{t \in T} f_{i, t^{-1}, a} \otimes b_{t^{-1}}^{(i)}=\sum_{j} \sum_{t \in T} f_{j, t^{-1}, c} \otimes d_{t^{-1}}^{(j)} .
$$

Since the right hand side is equal to

$$
\sum_{i, j} \sum_{t \in T} f_{j, t^{-1}, c} d_{t^{-1}}^{(j)} a_{t}^{(i)} \otimes b_{t^{-1}}^{(i)},
$$

it is enough to note that, for all $v \in V$,

$$
f_{i, t^{-1}, a}(v)=\sum_{j} f_{j, t^{-1}, c} d_{t^{-1}}^{(j)} a_{t}^{(i)}(v) \Leftrightarrow f_{H t^{-1}}^{v} a_{t}^{(i)}=\sum_{j} f_{H t^{-1}}^{v} c_{t}^{(j)} d_{t^{-1}}^{(j)} a_{t}^{(i)}
$$

and the latter holds. Now we prove that Ψ is independent of the choice of T. Let S be another set of left transversals of H in G. Then, for every $s \in S$, there exist unique elements $t \in T$ and $h \in H$ such that $s=t h$, so $\Lambda_{H} \Lambda_{t^{-1}}=\Lambda_{H} \Lambda_{s^{-1}}$. Moreover, for $v \in V$,

$$
f(1 \otimes v)=\sum_{t \in T} f_{H t^{-1}}^{v}=\sum_{t \in T} f_{H s^{-1}}^{v} \quad \text { and } \quad f_{H t^{-1}}^{v}=f_{H s^{-1}}^{v} .
$$

Let $\sum_{i} \gamma_{s}^{(i)} \delta_{s^{-1}}^{(i)}=1$, as in (2.1). We remark that, for $f \in \operatorname{Hom}_{\Lambda}\left(V^{G}, \Lambda\right)$ and $v \in V$,

$$
\begin{aligned}
\Psi(f)(v) & =\sum_{i} \sum_{s \in S} f_{i, s^{-1}, \gamma}(v) \otimes \delta_{s^{-1}}^{(i)} \\
& =\sum_{j} \sum_{i} \sum_{s \in S} f_{i, s^{-1}, \gamma}(v) \delta_{s^{-1}}^{(i)} a_{t}^{(i)} \otimes b_{t^{-1}}^{(i)}=\sum_{i} \sum_{t \in T} f_{H t^{-1}}^{v} a_{t}^{(i)} \otimes b_{t^{-1}}^{(i)} .
\end{aligned}
$$

It follows that Ψ is independent of the choice of T.

Finally, to prove that $\Psi \circ \Delta$ and $\Delta \circ \Psi$ are identity maps, let

$$
x=\sum_{t \in T} f_{t^{-1}} \otimes \lambda_{t^{-1}} \in\left[\operatorname{Hom}_{\Lambda_{H}}\left(V, \Lambda_{H}\right)\right]^{G}
$$

with $f_{t^{-1}} \in \operatorname{Hom}_{\Lambda_{H}}\left(V, \Lambda_{H}\right)$ and $\lambda_{t^{-1}} \in \Lambda_{t^{-1}}$, and let $\Delta(x)=f$ $\in \operatorname{Hom}_{\Lambda}\left(V^{G}, \Lambda\right)$. Then

$$
\Psi \circ \Delta(x)=\Psi(f)=\sum_{i} \sum_{t \in T} f_{i, t^{-1}, a} \otimes b_{t^{-1}}^{(i)}
$$

Since

$$
x=\sum_{i} \sum_{t \in T} f_{t^{-1}} \cdot\left(\lambda_{t^{-1}} a_{t}^{(i)}\right) \otimes b_{t^{-1}}^{(i)},
$$

it is enough to note that

$$
\begin{array}{r}
\sum_{t \in T} f_{i, t^{-1}, a}(v)=\sum_{t \in T} f_{t^{-1}} \cdot\left(\lambda_{t^{-1}} a_{t}^{(i)}\right)(v) \\
\Leftrightarrow \sum_{t \in T} f_{H t^{-1}}^{v} a_{t}^{(i)}=\sum_{t \in T} f_{t^{-1}}(v) \lambda_{t^{-1}} a_{t}^{(i)} \\
\Leftrightarrow \sum_{t \in T}\left(f_{H t^{-1}}^{v}-f_{t^{-1}}(v) \lambda_{t^{-1}}\right) a_{t}^{(i)}=0 \Leftrightarrow \sum_{t \in T} f_{H t^{-1}}^{v}=\sum_{t \in T} f_{t^{-1}}(v) \lambda_{t^{-1}}
\end{array}
$$

and the latter holds, since both sides are equal to $f(1 \otimes v)$.
Let now $f \in \operatorname{Hom}_{\Lambda}\left(V^{G}, \Lambda\right)$ be such that $f(1 \otimes v)=\sum_{t \in T} f_{H t^{-1}}^{v}$ for $v \in V$. Then

$$
\begin{aligned}
\Delta \circ \Psi(f) & \left(\sum_{s \in S} \lambda_{s} \otimes v_{s}\right)=\Delta\left(\sum_{i} \sum_{t \in T} f_{i, t^{-1}, a} \otimes b_{t^{-1}}^{(i)}\right)\left(\sum_{s \in S} \lambda_{s} \otimes v_{s}\right) \\
& =\sum_{i} \sum_{s \in S} \sum_{t \in T} \lambda_{s} f_{i, t^{-1}, a}\left(v_{s}\right) b_{t^{-1}}^{(i)}=\sum_{i} \sum_{s \in S} \sum_{t \in T} \lambda_{s} f_{H t^{-1}}^{v_{s}} a_{t}^{(i)} b_{t^{-1}}^{(i)} \\
& =\sum_{s \in S} \sum_{t \in T} \lambda_{s} f_{H t^{-1}}^{v_{s}}=\sum_{s \in S} \lambda_{s} f\left(1 \otimes v_{s}\right)=f\left(\sum_{s \in S} \lambda_{s} \otimes v_{s}\right) .
\end{aligned}
$$

Finally, it is a routine matter to prove that Δ is a natural homomorphism.
Corollary 2.6. Let V be a left Λ_{H}-module and H a subgroup of G of finite index. Then

$$
\left[\operatorname{Ext}_{\Lambda_{H}}^{n}\left(V, \Lambda_{H}\right)\right]^{G} \cong \operatorname{Ext}_{\Lambda}^{n}\left(V^{G}, \Lambda\right)
$$

as additive groups, for $n=1,2, \ldots$.
Theorem 2.7. Let G be a group, Λ a strongly G-graded ring, H a subgroup of G of finite index and V a left Λ_{H}-module. Then there is an isomorphism

$$
\operatorname{Hom}_{\Lambda_{H}}(\Lambda, V) \cong V^{G}
$$

of left Λ-modules, which is functorial with respect to homomorphisms $V \rightarrow V^{\prime}$.

Proof. We remark that $\operatorname{Hom}_{\Lambda_{H}}(\Lambda, V)$ is a left Λ-module, by the rule $\lambda \cdot f(x)=f(x \lambda)$ for $x, \lambda \in \Lambda$ and $f \in \operatorname{Hom}_{\Lambda_{H}}(\Lambda, V)$. Moreover, we can write

$$
\Lambda=\bigoplus_{t \in T} \Lambda_{H} \Lambda_{t^{-1}}
$$

so an element λ of Λ can be written as $\lambda=\sum_{t \in T} y_{t^{-1}}$ with $y_{t^{-1}} \in \Lambda_{H} \Lambda_{t^{-1}}$. Hence

$$
y_{t^{-1}}=\sum_{i} \mu_{h_{t}}^{(i)} l_{t^{-1}}^{(i)}
$$

with $\mu_{h_{t}}^{(i)} \in \Lambda_{H}, l_{t^{-1}}^{(i)} \in \Lambda_{t^{-1}}$ and i running over a finite index set depending on t. Using the above notation, we consider the map

$$
\Theta: V^{G} \rightarrow \operatorname{Hom}_{\Lambda_{H}}(\Lambda, V), \quad v \mapsto \Theta(v)
$$

for $v=\sum_{t \in T} \lambda_{t} \otimes v_{t}$ and $\lambda_{t} \in \Lambda_{t}, v_{t} \in V$, with $\Theta(v): \Lambda \rightarrow V$ defined by

$$
\Theta(v)\left(\sum_{t \in T} \sum_{i} \mu_{h_{t}}^{(i)} l_{t^{-1}}^{(i)}\right)=\sum_{t \in T} \sum_{i} \mu_{h_{t}}^{(i)} l_{t^{-1}}^{(i)} \lambda_{t} v_{t}
$$

It is easy to see that the definition of Θ is independent of the decomposition of $y_{t^{-1}}$.

We prove that Θ is independent of the choice of T. Let S be another set of left transversals of H in G. Then for each $t \in T$ there exist unique elements $s \in S$ and $h \in H$ such that $t=s h$. Hence

$$
y_{t^{-1}} \in \Lambda_{H} \Lambda_{t^{-1}}=\Lambda_{H} \Lambda_{s^{-1}}, \text { and } y_{t^{-1}}=\sum_{j} \mu_{h_{s}}^{(j)} l_{s^{-1}}^{(j)} \text { and } \lambda=\sum_{s \in S} \sum_{j} \mu_{h_{s}}^{(j)} l_{s^{-1}}^{(j)},
$$

where j runs over a finite index set depending on S. We now consider the element $v=\sum_{t \in T} \lambda_{t} \otimes v_{t}$ of V^{G}. We remark that $\lambda_{t}=\sum_{i} \lambda_{s}^{(i)} \lambda_{h}^{(i)}$, since $\lambda_{t} \in \Lambda_{t}=\Lambda_{s} \Lambda_{h}$, where $\lambda_{s}^{(i)} \in \Lambda_{s}, \lambda_{h}^{(i)} \in \Lambda_{H}$ and i runs over a finite index set depending on s. So

$$
v=\sum_{s \in S} \sum_{i} \lambda_{s}^{(i)} \otimes \lambda_{h}^{(i)} v_{t}
$$

and

$$
\Theta(v)(\lambda)=\sum_{s \in S} \sum_{j} \sum_{i} \mu_{h_{s}}^{(j)} l_{s^{-1}}^{(j)} \lambda_{s}^{(i)} \lambda_{h}^{(i)} v_{t}=\sum_{t \in T} y_{t^{-1}} \lambda_{t} v_{t}
$$

It is easy to see that $\Theta(v)$ is a Λ_{H}-homomorphism.
Now we prove that Θ is a Λ-homomorphism. For $g \in G, \lambda_{g} \in \Lambda_{g}$ and $v \in V^{G}$, it is enough to prove that

$$
\Theta\left(\lambda_{g} v\right)=\lambda_{g} \Theta(v), \quad \text { i.e. } \quad \Theta\left(\lambda_{g} v\right)(\lambda)=\Theta(v)\left(\lambda \lambda_{g}\right)
$$

Since $g T$ is another set of left transversals of H in G, let $\lambda=\sum_{t \in T} \omega_{(g t)^{-1}}$
with $\omega_{(g t)^{-1}} \in \Lambda_{H} \Lambda_{t^{-1}} \Lambda_{g^{-1}}$. Then

$$
\lambda_{g} v=\sum_{t \in T} \lambda_{g} \lambda_{t} \otimes v_{t}=\sum_{t \in T} \lambda_{g t} \otimes v_{g t}
$$

where $\lambda_{g t}=\lambda_{g} \lambda_{t}$ and $v_{g t}=v_{t}$. So

$$
\Theta\left(\lambda_{g} v\right)(\lambda)=\sum_{t \in T} \omega_{(g t)^{-1}} \lambda_{g t} v_{g t}=\sum_{t \in T} \omega_{(g t)^{-1}} \lambda_{g} \lambda_{t} v_{t}=\Theta(v)\left(\lambda \lambda_{g}\right)
$$

We now define the map

$$
\Phi: \operatorname{Hom}_{\Lambda_{H}}(\Lambda, V) \rightarrow V^{G}, \quad f \mapsto \sum_{t \in T} \sum_{i} a_{t}^{(i)} \otimes f\left(b_{t^{-1}}^{(i)}\right)
$$

where $a_{t}^{(i)}$ and $b_{t^{-1}}^{(i)}$ are as (2.1). It is a routine matter to prove that Φ is the inverse of Θ.
3. Mackeys's theorem for strongly graded rings. In this section we prove Mackey's theorem for strongly group-graded rings. In [3, Theorem 2.2], Boisen has given a proof of the graded version of Mackey's theorem, but the map

$$
\Psi: V \otimes_{R_{H}} R_{\sigma K} \rightarrow V \otimes_{R_{H}} R_{\sigma} \otimes_{R_{H}{ }^{\sigma} \cap K} R_{K}, \quad v \otimes x \mapsto \sum v \otimes a_{i} \otimes b_{i} x
$$

he has constructed there does not have the required properties, because the second tensor product is over $R_{H^{\sigma} \cap K}$ and not over $R_{H^{\sigma}}$. For another proof of the graded version of Mackey's theorem see [7, 3.7.3].

We use the notation of the previous sections. Let G be a group and let X, Y be a pair of subgroups of G, both of finite index in G. We denote by $X \backslash G / Y$ the (X, Y) cosets $X g Y$ relative to the pair of subgroups X, Y. If $D=X \alpha Y$ is such a double coset, X^{α} is the conjugate subgroup $\alpha X \alpha^{-1}$. Let

$$
Y=\bigcup_{s \in S_{\alpha}} s\left(X^{\alpha} \cap Y\right)
$$

for a finite subset S_{α} of G. Then it is easy to see that

$$
\begin{equation*}
Y \alpha X=\bigcup_{s \in S_{\alpha}} s \alpha X, \quad \text { for } \quad G=\bigcup_{\alpha \in A} Y \alpha X \tag{3.6}
\end{equation*}
$$

where A is a complete set of representatives of double (X, Y) cosets in G $([4,10.13])$. If $\alpha \in G$ and V is a left Λ_{X}-module, it is clear that $\Lambda_{\alpha} \otimes_{\Lambda_{X}} V$ is a left $\Lambda_{X^{\alpha}}$-module and so a left $\Lambda_{X^{\alpha} \cap Y \text {-module. }}$

In the following we write \otimes instead of $\otimes_{\Lambda_{X}}$.
Theorem 3.1 (Mackey's theorem—graded version). Let G be a group, Λ a strongly G-graded ring, X, Y a pair of subgroups of G of finite index in G, and V a left Λ_{X}-module. Then there is an isomorphism of left $\Lambda_{Y^{-}}$
modules

$$
\left(V^{G}\right)_{Y} \cong \bigoplus_{\alpha \in A}\left[\left(\Lambda_{\alpha} \otimes V\right)_{\Lambda_{X^{\alpha} \cap Y}}\right]^{Y}
$$

where the sum is taken over $X \backslash G / Y$. The summands are independent of the choice of the double coset representatives, in the sense that

$$
\left[\left(\Lambda_{\alpha} \otimes V\right)_{\Lambda_{X^{\alpha} \cap Y}}\right]^{Y} \cong\left[\left(\Lambda_{\beta} \otimes V\right)_{\Lambda_{X^{\beta} \cap Y}}\right]^{Y}
$$

as left $\Lambda_{Y \text {-modules }}$ whenever $Y \alpha X=Y \beta X$.
Proof. Let $G=\bigcup_{\alpha \in A} Y \alpha X D=Y \alpha X$ for some $\alpha \in A$, and let

$$
V(\alpha)=\bigoplus_{s \in S_{\alpha}} \Lambda_{s \alpha} \otimes V
$$

It is easy to see that $V(\alpha)$ is a left Λ_{Y}-module, and

$$
\left(V^{G}\right)_{Y}=\bigoplus_{\alpha \in A} V(\alpha)
$$

as left $\Lambda_{Y \text {-modules. It }}$ is enough to prove that

$$
\left[\left(\Lambda_{\alpha} \otimes V\right)_{\Lambda_{X^{\alpha} \cap Y}}\right]^{Y} \cong V(\alpha)
$$

as left Λ_{Y}-modules. Given $y \in Y$, by (3.6), there exist $x \in X$ and $s \in S_{\alpha}$ such that

$$
\begin{equation*}
y \alpha=s \alpha x \tag{3.7}
\end{equation*}
$$

We define the Λ_{Y}-homomorphism

$$
F:\left[\left(\Lambda_{\alpha} \otimes V\right)_{\Lambda_{X^{\alpha} \cap Y}}\right]^{Y} \rightarrow V(\alpha)
$$

by the rule

$$
F\left(\lambda_{y} \lambda \otimes_{\Lambda_{X^{\alpha} \cap Y}} \lambda_{\alpha} \lambda_{X} \otimes v\right)=\lambda_{y} \lambda_{\alpha} \lambda_{X} \otimes v
$$

for $\lambda_{y} \in \Lambda_{y}, y \in Y, \lambda \in \Lambda_{X^{\alpha} \cap Y}, \lambda_{\alpha} \in \Lambda_{\alpha}, \lambda_{X} \in \Lambda_{X}$ and $v \in V$, and the Λ_{Y}-homomorphism

$$
\Phi: V(\alpha) \rightarrow\left[\left(\Lambda_{\alpha} \otimes V\right)_{\Lambda_{X^{\alpha} \cap Y}}\right]^{Y}
$$

by the rule

$$
\Phi\left(\lambda_{s \alpha} \lambda_{X} \otimes v\right)=\sum_{i, j} a_{s}^{(i)} \otimes_{\Lambda_{X^{\alpha} \cap Y}} a_{\alpha}^{(j)} \otimes b_{\alpha^{-1}}^{(j)} b_{s^{-1}}^{(i)} \lambda_{s \alpha} \lambda_{X} v
$$

for $y \in Y, s \in S$ defined by (3.7), $a_{s}^{(i)} \in \Lambda_{s}, b_{s^{-1}}^{(i)} \in \Lambda_{s^{-1}}, a_{\alpha}^{(j)} \in \Lambda_{\alpha}$, $b_{\alpha^{-1}}^{(i)} \in \Lambda_{\alpha^{-1}}$ as in (2.1), $\lambda_{s \alpha} \in \Lambda_{s \alpha}, \lambda_{X} \in \Lambda_{X}$ and $v \in V$. It is easy to see that F is a Λ_{Y}-homomorphism.

Now we prove that the definition of Φ is independent of the choice of $a_{s}^{(i)}, b_{s^{-1}}^{(i)}, a_{\alpha}^{(j)}$ and $b_{\alpha^{-1}}^{(i)}$. Let

$$
\sum_{k} a_{s}^{\prime(k)} b_{s^{-1}}^{(k)}=1 \quad \text { and } \quad \sum_{\nu} a_{\alpha}^{\prime(\nu)} b_{\alpha^{-1}}^{(\nu)}=1
$$

as in (2.1). Then

$$
\begin{aligned}
\sum_{i, j} a_{s}^{(i)} \otimes a_{\alpha}^{(j)} & \otimes b_{\alpha^{-1}}^{(j)} b_{s^{-1}}^{(i)} \lambda_{s \alpha} \lambda_{X} v \\
& =\sum_{i, j, k} a_{s}^{\prime(k)} \otimes b_{s^{-1}}^{(k)} a_{s}^{(i)} a_{\alpha}^{(j)} \otimes b_{\alpha^{-1}}^{(j)} b_{s^{-1}}^{(i)} \lambda_{s \alpha} \lambda_{X} v \\
& =\sum_{i, j, k, \nu} a_{s}^{\prime(k)} \otimes a_{\alpha}^{\prime(\nu)} \otimes b_{\alpha^{-1}}^{\prime(\nu)} b_{s^{-1}}^{\prime(k)} a_{s}^{(i)} a_{\alpha}^{(j)} b_{\alpha^{-1}}^{(j)} b_{s^{-1}}^{(i)} \lambda_{s \alpha} \lambda_{X} v \\
& =\sum_{k, \nu} a_{s}^{\prime(k)} \otimes a_{\alpha}^{\prime(\nu)} \otimes b_{\alpha^{-1}}^{(\nu)} b_{s^{-1}}^{(k)} \lambda_{s \alpha} \lambda_{X} v
\end{aligned}
$$

Finally, it is easy to see that the Λ_{Y}-homomorphisms F and Φ are inverse to each other.

Acknowledgments. The second author wishes to thank the Greek National Scholarship Foundation for the financial support of this work.

REFERENCES

[1] I. Assem, D. Simson and A. Skowroński, Elements of Representation Theory of Associative Algebras, I: Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, 2006.
[2] M. Auslander, I. Reiten and S. Smalø, Representation Theory of Artin Algebras, Cambridge Univ. Press, 1995.
[3] P. R. Boisen, The representation theory of fully group-graded algebras, J. Algebra 151 (1992), 160-179.
[4] C. Curtis and I. Reiner, Methods of Representation Theory with Applications to Finite Groups and Orders, Vol. I, Wiley, New York, 1981.
[5] E. C. Dade, The equivalence of various generalizations of group rings and modules, Math. Z. 181 (1982), 335-344.
[6] G. Karpilovsky, Induced Modules over Group Algebras, North-Holland Math. Stud. 161, North-Holland, 1990.
[7] C. Nastasescu and F. Van Oystaeyen, Methods of Graded Rings, Lecture Notes in Math. 1836, Springer, 2004.
[8] Th. Theohari-Apostolidi and H. Vavatsoulas, Induction and Auslander-Reiten sequences over crossed products, in: Formal Power Series and Algebraic Combinatorics (Moscow, 2000), D. Krob et al. (eds.), Springer, 2000, 765-774.
[9] —, 一, On the separability of the restriction functor, Algebra Discrete Math. 3 (2003), 95-101.
[10] -, —, On strongly graded Gorenstein orders, ibid. 2 (2005), 80-89.
Department of Mathematics
Aristotle University of Thessaloniki
Thessaloniki 54124, Greece
E-mail: theohari@math.auth.gr
vava@math.auth.gr

