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INDUCED MODULES OF STRONGLY GROUP-GRADED ALGEBRAS

BY

TH. THEOHARI-APOSTOLIDI and H. VAVATSOULAS (Thessaloniki)

Abstract. Various results on the induced representations of group rings are extended
to modules over strongly group-graded rings. In particular, a proof of the graded version
of Mackey’s theorem is given.

1. Introduction. Let G be a group and Λ =
⊕

g∈G Λg a strongly G-
graded ring that is an algebra over an artinian commutative ring R. For a
subgroup H of G we consider the ring

ΛH =
⊕

h∈H

Λh,

which is a strongly H-graded R-algebra. Let V be a left ΛH -module and W
a left Λ-module.

In the first section of this paper we examine the properties of the injec-
tive hulls, projective covers and the functor Hom under the induction and
restriction functors.

In the second section we give the graded version of Mackey’s theorem.
A proof of this theorem was given by Boisen in [3] but the functions defined
there do not have the required properties.

The reader is referred to [1], [4] and [6] for basic facts and notation of
group representation theory, to [2] for background on modules over artinian
algebras, and to [7]–[10] for graded rings theory.

2. Induction and restriction functors. Let G be a group and H a
subgroup of G of finite index. Let R be a commutative artinian ring and

Λ =
⊕

g∈G

Λg

a strongly G-graded R-algebra, that is, ΛgΛh = Λgh for all g, h ∈ G. More-
over, since ΛgΛg−1 = Λ1 for all g in G, where 1 is the unity of G, there exist

elements a
(i)
g ∈ Λg, b

(i)
g−1 ∈ Λg−1 and a positive integer ng depending on g
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such that
ng∑

i=1

a(i)
g b

(i)
g−1 = 1.(2.1)

Consider the strongly H-graded R-algebra ΛH =
⊕

h∈H Λh. If V is a left
ΛH -module and W a left Λ-module we denote by V G = Λ⊗ΛH

V the induced
Λ-module and by WH the restriction of W viewed as a left ΛH-module. We
denote by T a left transversal of H in G. It is clear that

V G =
⊕

t∈T

Λt ⊗ΛH
V.

Moreover we set V g = Λg ⊗ΛH
V for g ∈ G. Note that V g is a left

ΛgHg−1-module.
Finally, for a ring S we denote by modS the category of finitely generated

left S-modules. We recall that a left Λ-module W is H-projective if the exact
sequence of left Λ-modules

0 → X → Y → W → 0

for which the associated sequence of ΛH -modules

0 → XH → YH → WH → 0

splits, is also a splitting sequence of Λ-modules. Equivalently, W is H-
projective if and only if W | (WH)G ([5]), where the notation X |Y means
that the module X is isomorphic to a direct summand of the module Y .

For a module V , we denote by I(V ) and P (V ) the injective hull and
projective cover of V , respectively.

Using the above notation we prove the following result, which is known
for group rings.

Lemma 2.1. Let V be a left ΛH-module, W a left Λ-module and σ ∈ G.

Then the following hold :

(i) I(V G) (resp. P (V G)) is isomorphic to a direct summand of [I(V )]G

(resp. [P (V )]G).
(ii) I(WH) (resp. P (WH)) is isomorphic to a direct summand of

[I(W )]H (resp. [P (W )]H).
(iii) If H � G, then I(V σ) (resp. P (V σ)) is isomorphic to a direct sum-

mand of [I(V )]σ (resp. [P (V )]σ).
(iv) If W is H-projective, then I(W ) is isomorphic to a direct summand

of [I(WH)]G.

(v) P (W ) is isomorphic to a direct summand of [P (WH)]G and P (W )
is isomorphic to a direct summand of {[P (W )]H}G.

Proof. We prove (iii). The proofs of the remaining statements are anal-
ogous to those in the group ring case (see [6, Ch. 1, Prop. 12.5]).
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Let H be a normal subgroup of G. Since the sequence

0 → V
f
→ I(V )

is exact, so is
0 → V σ fσ

−→ [I(V )]σ,

where fσ is the restriction of 1 ⊗ f to V σ, i.e. fσ(λσ ⊗ v) = λσ ⊗ f(v) for
λσ ∈ Λσ and v ∈ V . Moreover, by [8, Section 3, Prop. 2], the module [I(V )]σ

is also injective. Therefore for the first part of (iii) it remains to prove that
fσ is essential , that is, if X ′ is any nonzero ΛH-submodule of [I(V )]σ, then
fσ(V σ)∩X ′ 6= {0}. For this, let X be the ΛH -submodule of I(V ) generated
by the elements λHσ−1y, where λHσ−1 ∈ ΛHσ−1 and

y =
ν∑

k=1

λ(k)
σ x(k), with

ν∑

k=1

λ(k)
σ ⊗ x(k) ∈ X ′, ν ∈ N.

Since f is essential, it follows from the relation f(V ) ∩ X 6= {0} that there
exists a nonzero element x ∈ X such that x = f(v) for some nonzero v ∈ V .

Since v 6= 0, there exists µ ∈ {1, . . . , nσ} such that b
(µ)
σ ⊗ v 6= 0, because

otherwise
∑nσ

i=1 a
(i)
σ−1b

(i)
σ ⊗ v = 0, where a

(i)
σ−1 , b

(i)
σ are as in (2.1), and so

v = 0. Write

x =

̺,νj∑

j=1,k=1

λ
(j)
Hσ−1λ

(k)(j)
σ x(k)(j)

for some ̺ ∈ N, where λ
(j)
Hσ−1 ∈ ΛHσ−1 and

∑νj

k=1 λ
(k)(j)
σ x(k)(j) ∈ X ′ for

j ∈ {1, . . . , ̺}. Then

0 6= fσ(b(µ)
σ ⊗ v) = b(µ)

σ ⊗ f(v) =

̺,νj∑

j=1,k=1

b(µ)
σ λ

(j)
Hσ−1λ

(k)(j)
σ ⊗ x(k)(j)

and we get
fσ(b(µ)

σ ⊗ v) ∈ X ′ ∩ fσ(V σ) 6= {0}.

This proves that fσ is essential and therefore I(V σ) ∼= [I(V )]σ.
The second part of (iii) is proved analogously.

Theorem 2.2. Let H be a normal subgroup of G. Assume that the

Krull–Schmidt–Azumaya theorem holds in modΛ. Then the following hold

for a left ΛH-module V and a left Λ-module W :

(i) I(V G) ∼= [I(V )]G and P (V G) ∼= [P (V )]G as left Λ-modules.

(ii) I[(V G)H ] ∼= [I(V G)]H and P [(V G)H ] ∼= [P (V G)]H as left ΛH-mod-

ules.

(iii) If W is H-projective then

I(WH) ∼= [I(W )]H and P (WH) ∼= [P (W )]H

as left ΛH-modules.
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Proof. We will prove the injective hull case. The projective cover case is
analogous.

(i), (ii). It follows from Lemma 2.1(i),(ii), that there exist Z and Y in
modΛ such that

I(V G) ⊕ Z ∼= [I(V )]G,(2.2)

I[(V G)H ] ⊕ Y ∼= [I(V G)]H .(2.3)

Moreover, by Lemma 2.1(iii),

([I(V )]G)H
∼=

⊕

t∈T

[I(V )]t ∼=
⊕

t∈T

I(V t) ∼= I
( ⊕

t∈T

V t
)
∼= I[(V G)H ].(2.4)

Now, using (2.2) and (2.3), the relation (2.4) becomes

[I(V G)]H ⊕ ZH
∼= I[(V G)H ]

and so
I[(V G)H ] ⊕ Y ⊕ ZH

∼= I[(V G)H ].

By applying the Krull–Schmidt–Azumaya theorem to the above relation, it
follows that Y = ZH = 0, and parts (i) and (ii) of the theorem follow from
(2.2) and (2.3).

(iii) If W is H-projective, then there exists a Λ-module X such that

W ⊕ X ∼= (WH)G.

Then, by (ii),

(2.5) [I(W )]H ⊕ [I(X)]H
∼= [I(W ) ⊕ I(X)]H ∼= [I(W ⊕ X)]H ∼= [I(WH)G]H ∼= I([(WH)G]H)

∼= I[(W ⊕ X)H ] ∼= I(WH ⊕ XH) ∼= I(WH) ⊕ (XH).

Now, from Lemma 2.1(ii), there exist U and M in modΛ such that

[I(W )]H ∼= I(WH) ⊕ U, [I(X)]H ∼= I(XH) ⊕ M.

Combining the above relations with (2.5) and using the Krull–Schmidt–
Azumaya theorem, we deduce that U = M = 0, and (iii) follows.

Theorem 2.3. Let W be a left Λ-module and H a subgroup of G of

finite index. Then there exists an isomorphism

Θ : HomΛ(W, Λ) → HomΛH
(WH , ΛH)

of right ΛH-modules. This isomorphism is natural. In particular , if W is a

Λ-Λ-bimodule, then Θ is a Λ-ΛH-bimodule isomorphism.

Proof. As W is a left Λ-module, HomΛ(W, Λ) becomes a right Λ-module
under the rule (f · λ)(w) = f(w)λ for f ∈ HomΛ(W, Λ), λ ∈ Λ and
w ∈ W . Similarly HomΛH

(WH , ΛH) becomes a right ΛH -module. Let f ∈
HomΛ(W, Λ) and w ∈ W . Then f(w) =

∑
t∈T f(w)tH for f(w) ∈ ΛtH . We
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define

Θ : HomΛ(W, Λ) → HomΛH
(WH , ΛH) by Θ(f)(w) = f(w)H .

It is easy to see that Θ is a right ΛH -homomorphism. To prove that Θ is
onto, for each µ ∈ HomΛH

(WH , ΛH) we define

µ̃ : W → Λ by µ̃(w) =
∑

t∈T

∑

i

a
(i)
t µ(b

(i)
t−1w),

where a
(i)
t ∈ Λt and b

(i)
t−1 ∈ Λt−1 are as in (2.1). It is easy to see that

µ̃ ∈ HomΛ(W, Λ). Moreover, Θ(µ̃)(w) = µ̃(w)H = µ(w) for w ∈ W . To
prove that Θ is a monomorphism, let w ∈ W and f ∈ kerΘ. Since

f(w) =
∑

t∈T

f(w)tH =
∑

t∈T

∑

i

a
(i)
t b

(i)
t−1f(w)tH ,

for any g ∈ T we get 0 = Θ(f)(b
(i)
g−1w) = b

(i)
g−1f(w)gH and hence f(w) = 0,

for all w ∈ W . The fact that Θ is a Λ-ΛH-homomorphism is proved by
straightforward calculations.

Corollary 2.4. Let W be a left Λ-module and H a subgroup of G of

finite index. Then

Extn
Λ(W, Λ) ∼= Extn

ΛH
(WH , ΛH)

as abelian groups, for all n ∈ N.

Theorem 2.5. Let G be a group, H a subgroup of G of finite index and

V a left ΛH-module. Then

[HomΛH
(V, ΛH)]G ∼= HomΛ(V G, Λ)

as right Λ-modules. This isomorphism is natural.

Proof. Since HomΛH
(V, ΛH) is a right ΛH-module, it follows that each

element of [HomΛH
(V, ΛH)]G is of the form

∑
t∈T ft−1 ⊗λt−1 for some ft−1 ∈

HomΛH
(V, ΛH) and λt−1 ∈ Λt−1 . We consider the map

∆ : [HomΛH
(V, ΛH)]G → HomΛ(V G, Λ)

defined by

∆
(∑

t∈T

ft−1 ⊗ λt−1

)
= f, where f

(∑

s∈S

µs ⊗ vs

)
=

∑

s∈S

∑

t∈T

µsft−1(vs)λt−1

for another set S of left transversals of H in G, µs ∈ Λs and vs ∈ V .
Let us prove that ∆ is independent of the choice of T and S. Let T ′ and
S′ be any two sets of left transversals of H in G. For any s′ ∈ S′, there
exists a unique s ∈ S and a unique hs ∈ H such that s′ = shs. Similarly
for any t′ ∈ T ′, there exist unique t ∈ T and ht ∈ H such that t′ = tht.

Let λs′ =
∑

i λ
(i)
s λ

(i)
hs

and λt′−1 =
∑

j λ
(j)

h−1

t

λ
(j)
t−1 for some λs′ ∈ Λs′ and

λt′−1 ∈ Λt′−1 , where λ
(i)
x , λ

(j)
x ∈ Λx for x ∈ G. Then
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f
( ∑

s′∈S′

λs′ ⊗ vs′

)
= f

(∑

i

∑

s∈S

λ(i)
s ⊗ λ

(i)
hs

vs′

)

=
∑

i

∑

s∈S

∑

t∈T

λ(i)
s ft−1(λ

(i)
hs

vs′)λt−1 =
∑

s′∈S′

∑

t∈T

λs′ft−1(vs′)λt−1 .

Moreover,

∆
( ∑

t′∈T ′

ft′−1 ⊗ λt′−1

)(∑

s∈S

λs ⊗ vs

)
=

∑

j

∑

s∈S

∑

t∈T

λs(ft′−1 · λ
(j)

h−1

t

)(vs)λ
(j)
t−1

=
∑

j

∑

s∈S

∑

t∈T

λsft′−1(vs)λ
(j)

h−1

t

λ
(j)
t−1 =

∑

s∈S

∑

t∈T

λsft′−1(vs)λt′−1 .

The map f is a Λ-homomorphism. Indeed, let g ∈ G and S′ = {gs : s ∈ S}.
Then

f
(
λg

∑

s∈S

λs ⊗ vs

)
= f

( ∑

gs∈S′

λgλs ⊗ vs

)
=

∑

t∈T

∑

gs∈S′

λgλsft−1(vs)λt−1

= λgf
(∑

s∈S

λs ⊗ vs

)
.

We now prove that ∆ is a Λ-homomorphism of right Λ-modules. Let
g ∈ G, and consider the set {g−1t : t ∈ T} of right transversals of H in G

and elements a
(i)
g−1t

∈ Λg−1t and b
(i)
t−1g

∈ Λt−1g with
∑

i a
(i)
g−1t

b
(i)
t−1g

= 1, as

in (2.1). If

ϕ =
∑

t∈T

ft−1 ⊗ λt−1 ∈ [HomΛH
(V, ΛH)]G,

then
ϕ · λg =

∑

i

∑

t∈T

ft−1(λt−1λga
(i)
g−1t

) ⊗ b
(i)
t−1g

and

∆(ϕ ·λg)
(∑

s∈S

λs⊗vs

)
=

∑

j

∑

t∈T

∑

s∈S

λs[ft−1(λt−1λga
(i)
g−1t

)](vs)b
(i)
t−1g

=
∑

t∈T

∑

s∈S

λsft−1(vs)λt−1λg = [∆(ϕ) ·λg]
(∑

s∈S

λs⊗vs

)
.

We now define the inverse of ∆. Let f ∈ HomΛ(V G, Λ). Then f(1⊗ v) ∈
Λ =

⊕
t∈T ΛHΛt−1 for v ∈ V , and for each t ∈ T there exists a unique

fv
Ht−1 ∈ ΛHΛt−1 such that

f(1 ⊗ v) =
∑

t∈T

fv
Ht−1 .

Let a
(i)
t ∈ Λt and b

(i)
t−1 ∈ Λt−1 be as in (2.1). We define

fi,t−1,a : V → ΛH , v 7→ fv
Ht−1a

(i)
t .
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Since f is a Λ-homomorphism it follows that, for x ∈ ΛH and v ∈ V ,

f(1 ⊗ xv) = xf(1 ⊗ v)

and we get
fxv

Ht−1 = xfv
Ht−1 ,

because of the unique decomposition, and so fi,t−1,a is a ΛH -homomorphism.
Now we define

Ψ : HomΛ(V G, Λ) → [HomΛH
(V, ΛH)]G

by
f 7→

∑

i

∑

t∈T

fi,t−1,a ⊗ b
(i)
t−1 .

We remark that Ψ is independent of the choice of a
(i)
t , b

(i)
t−1 . Indeed, let

c
(j)
t ∈ Λt, d

(j)
t−1 ∈ Λt−1 with

∑

j

c
(j)
t d

(j)
t−1 = 1

as in (2.1). We have to show that
∑

i

∑

t∈T

fi,t−1,a ⊗ b
(i)
t−1 =

∑

j

∑

t∈T

fj,t−1,c ⊗ d
(j)
t−1 .

Since the right hand side is equal to
∑

i,j

∑

t∈T

fj,t−1,cd
(j)
t−1a

(i)
t ⊗ b

(i)
t−1 ,

it is enough to note that, for all v ∈ V ,

fi,t−1,a(v) =
∑

j

fj,t−1,cd
(j)
t−1a

(i)
t (v) ⇔ fv

Ht−1a
(i)
t =

∑

j

fv
Ht−1c

(j)
t d

(j)
t−1a

(i)
t ,

and the latter holds. Now we prove that Ψ is independent of the choice
of T . Let S be another set of left transversals of H in G. Then, for every
s ∈ S, there exist unique elements t ∈ T and h ∈ H such that s = th, so
ΛHΛt−1 = ΛHΛs−1 . Moreover, for v ∈ V ,

f(1 ⊗ v) =
∑

t∈T

fv
Ht−1 =

∑

t∈T

fv
Hs−1 and fv

Ht−1 = fv
Hs−1 .

Let
∑

i γ
(i)
s δ

(i)
s−1 = 1, as in (2.1). We remark that, for f ∈ HomΛ(V G, Λ) and

v ∈ V ,

Ψ(f)(v) =
∑

i

∑

s∈S

fi,s−1,γ(v) ⊗ δ
(i)
s−1

=
∑

j

∑

i

∑

s∈S

fi,s−1,γ(v)δ
(i)
s−1a

(i)
t ⊗ b

(i)
t−1 =

∑

i

∑

t∈T

fv
Ht−1a

(i)
t ⊗ b

(i)
t−1 .

It follows that Ψ is independent of the choice of T .



100 TH. THEOHARI-APOSTOLIDI AND H. VAVATSOULAS

Finally, to prove that Ψ ◦ ∆ and ∆ ◦ Ψ are identity maps, let

x =
∑

t∈T

ft−1 ⊗ λt−1 ∈ [HomΛH
(V, ΛH)]G

with ft−1 ∈ HomΛH
(V, ΛH) and λt−1 ∈ Λt−1 , and let ∆(x) = f

∈ HomΛ(V G, Λ). Then

Ψ ◦ ∆(x) = Ψ(f) =
∑

i

∑

t∈T

fi,t−1,a ⊗ b
(i)
t−1 .

Since

x =
∑

i

∑

t∈T

ft−1 · (λt−1a
(i)
t ) ⊗ b

(i)
t−1 ,

it is enough to note that
∑

t∈T

fi,t−1,a(v) =
∑

t∈T

ft−1 ·(λt−1a
(i)
t )(v) ⇔

∑

t∈T

fv
Ht−1a

(i)
t =

∑

t∈T

ft−1(v)λt−1a
(i)
t

⇔
∑

t∈T

(fv
Ht−1 − ft−1(v)λt−1)a

(i)
t = 0 ⇔

∑

t∈T

fv
Ht−1 =

∑

t∈T

ft−1(v)λt−1,

and the latter holds, since both sides are equal to f(1 ⊗ v).

Let now f ∈ HomΛ(V G, Λ) be such that f(1 ⊗ v) =
∑

t∈T fv
Ht−1 for

v ∈ V . Then

∆ ◦ Ψ(f)
(∑

s∈S

λs ⊗ vs

)
= ∆

(∑

i

∑

t∈T

fi,t−1,a ⊗ b
(i)
t−1

)(∑

s∈S

λs ⊗ vs

)

=
∑

i

∑

s∈S

∑

t∈T

λsfi,t−1,a(vs)b
(i)
t−1 =

∑

i

∑

s∈S

∑

t∈T

λsf
vs

Ht−1a
(i)
t b

(i)
t−1

=
∑

s∈S

∑

t∈T

λsf
vs

Ht−1 =
∑

s∈S

λsf(1 ⊗ vs) = f
(∑

s∈S

λs ⊗ vs

)
.

Finally, it is a routine matter to prove that ∆ is a natural homomorphism.

Corollary 2.6. Let V be a left ΛH-module and H a subgroup of G of

finite index. Then

[ExtnΛH
(V, ΛH)]G ∼= Extn

Λ(V G, Λ)

as additive groups, for n = 1, 2, . . . .

Theorem 2.7. Let G be a group, Λ a strongly G-graded ring , H a sub-

group of G of finite index and V a left ΛH-module. Then there is an iso-

morphism

HomΛH
(Λ, V ) ∼= V G

of left Λ-modules, which is functorial with respect to homomorphisms

V → V ′.
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Proof. We remark that HomΛH
(Λ, V ) is a left Λ-module, by the rule

λ ·f(x) = f(xλ) for x, λ ∈ Λ and f ∈ HomΛH
(Λ, V ). Moreover, we can write

Λ =
⊕

t∈T

ΛHΛt−1 ,

so an element λ of Λ can be written as λ =
∑

t∈T yt−1 with yt−1 ∈ ΛHΛt−1 .
Hence

yt−1 =
∑

i

µ
(i)
ht

l
(i)
t−1

with µ
(i)
ht

∈ ΛH , l
(i)
t−1 ∈ Λt−1 and i running over a finite index set depending

on t. Using the above notation, we consider the map

Θ : V G → HomΛH
(Λ, V ), v 7→ Θ(v),

for v =
∑

t∈T λt ⊗ vt and λt ∈ Λt, vt ∈ V , with Θ(v) : Λ → V defined by

Θ(v)
(∑

t∈T

∑

i

µ
(i)
ht

l
(i)
t−1

)
=

∑

t∈T

∑

i

µ
(i)
ht

l
(i)
t−1λtvt.

It is easy to see that the definition of Θ is independent of the decomposition
of yt−1 .

We prove that Θ is independent of the choice of T . Let S be another
set of left transversals of H in G. Then for each t ∈ T there exist unique
elements s ∈ S and h ∈ H such that t = sh. Hence

yt−1 ∈ΛHΛt−1 = ΛHΛs−1 , and yt−1 =
∑

j

µ
(j)
hs

l
(j)
s−1 and λ =

∑

s∈S

∑

j

µ
(j)
hs

l
(j)
s−1 ,

where j runs over a finite index set depending on S. We now consider the

element v =
∑

t∈T λt ⊗ vt of V G. We remark that λt =
∑

i λ
(i)
s λ

(i)
h , since

λt ∈ Λt = ΛsΛh, where λ
(i)
s ∈ Λs, λ

(i)
h ∈ ΛH and i runs over a finite index

set depending on s. So

v =
∑

s∈S

∑

i

λ(i)
s ⊗ λ

(i)
h vt

and

Θ(v)(λ) =
∑

s∈S

∑

j

∑

i

µ
(j)
hs

l
(j)
s−1λ

(i)
s λ

(i)
h vt =

∑

t∈T

yt−1λtvt.

It is easy to see that Θ(v) is a ΛH-homomorphism.

Now we prove that Θ is a Λ-homomorphism. For g ∈ G, λg ∈ Λg and
v ∈ V G, it is enough to prove that

Θ(λgv) = λgΘ(v), i.e. Θ(λgv)(λ) = Θ(v)(λλg).

Since gT is another set of left transversals of H in G, let λ =
∑

t∈T ω(gt)−1
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with ω(gt)−1 ∈ ΛHΛt−1Λg−1 . Then

λgv =
∑

t∈T

λgλt ⊗ vt =
∑

t∈T

λgt ⊗ vgt,

where λgt = λgλt and vgt = vt. So

Θ(λgv)(λ) =
∑

t∈T

ω(gt)−1λgtvgt =
∑

t∈T

ω(gt)−1λgλtvt = Θ(v)(λλg).

We now define the map

Φ : HomΛH
(Λ, V ) → V G, f 7→

∑

t∈T

∑

i

a
(i)
t ⊗ f(b

(i)
t−1),

where a
(i)
t and b

(i)
t−1 are as (2.1). It is a routine matter to prove that Φ is the

inverse of Θ.

3. Mackeys’s theorem for strongly graded rings. In this section we
prove Mackey’s theorem for strongly group-graded rings. In [3, Theorem 2.2],
Boisen has given a proof of the graded version of Mackey’s theorem, but the
map

Ψ : V ⊗RH
RσK → V ⊗RH

Rσ ⊗RHσ∩K
RK , v ⊗ x 7→

∑
v ⊗ ai ⊗ bix,

he has constructed there does not have the required properties, because the
second tensor product is over RHσ∩K and not over RHσ . For another proof
of the graded version of Mackey’s theorem see [7, 3.7.3].

We use the notation of the previous sections. Let G be a group and let
X, Y be a pair of subgroups of G, both of finite index in G. We denote by
X\G/Y the (X, Y ) cosets XgY relative to the pair of subgroups X, Y . If
D = XαY is such a double coset, Xα is the conjugate subgroup αXα−1.
Let

Y =
⋃

s∈Sα

s(Xα ∩ Y )

for a finite subset Sα of G. Then it is easy to see that

Y αX =
⋃

s∈Sα

sαX, for G =
⋃

α∈A

Y αX,(3.6)

where A is a complete set of representatives of double (X, Y ) cosets in G
([4, 10.13]). If α ∈ G and V is a left ΛX -module, it is clear that Λα ⊗ΛX

V
is a left ΛXα-module and so a left ΛXα∩Y -module.

In the following we write ⊗ instead of ⊗ΛX
.

Theorem 3.1 (Mackey’s theorem—graded version). Let G be a group,
Λ a strongly G-graded ring , X, Y a pair of subgroups of G of finite index

in G, and V a left ΛX-module. Then there is an isomorphism of left ΛY -
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modules
(V G)Y

∼=
⊕

α∈A

[(Λα ⊗ V )ΛXα∩Y
]Y ,

where the sum is taken over X\G/Y . The summands are independent of the

choice of the double coset representatives, in the sense that

[(Λα ⊗ V )ΛXα∩Y
]Y ∼= [(Λβ ⊗ V )Λ

Xβ∩Y
]Y

as left ΛY -modules whenever Y αX = Y βX.

Proof. Let G =
⋃

α∈A Y αX D = Y αX for some α ∈ A, and let

V (α) =
⊕

s∈Sα

Λsα ⊗ V.

It is easy to see that V (α) is a left ΛY -module, and

(V G)Y =
⊕

α∈A

V (α)

as left ΛY -modules. It is enough to prove that

[(Λα ⊗ V )ΛXα∩Y
]Y ∼= V (α)

as left ΛY -modules. Given y ∈ Y , by (3.6), there exist x ∈ X and s ∈ Sα

such that

yα = sαx.(3.7)

We define the ΛY -homomorphism

F : [(Λα ⊗ V )ΛXα∩Y
]Y → V (α)

by the rule
F (λyλ ⊗ΛXα∩Y

λαλX ⊗ v) = λyλλαλX ⊗ v

for λy ∈ Λy, y ∈ Y , λ ∈ ΛXα∩Y , λα ∈ Λα, λX ∈ ΛX and v ∈ V , and the
ΛY -homomorphism

Φ : V (α) → [(Λα ⊗ V )ΛXα∩Y
]Y

by the rule

Φ(λsαλX ⊗ v) =
∑

i,j

a(i)
s ⊗ΛXα∩Y

a(j)
α ⊗ b

(j)
α−1b

(i)
s−1λsαλXv

for y ∈ Y , s ∈ S defined by (3.7), a
(i)
s ∈ Λs, b

(i)
s−1 ∈ Λs−1 , a

(j)
α ∈ Λα,

b
(i)
α−1 ∈ Λα−1 as in (2.1), λsα ∈ Λsα, λX ∈ ΛX and v ∈ V . It is easy to see

that F is a ΛY -homomorphism.
Now we prove that the definition of Φ is independent of the choice of

a
(i)
s , b

(i)
s−1 , a

(j)
α and b

(i)
α−1 . Let

∑

k

a′(k)
s b

′(k)
s−1 = 1 and

∑

ν

a′(ν)
α b

′(ν)
α−1 = 1,
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as in (2.1). Then
∑

i,j

a(i)
s ⊗ a(j)

α ⊗ b
(j)
α−1b

(i)
s−1λsαλXv

=
∑

i,j,k

a′(k)
s ⊗ b

′(k)
s−1a

(i)
s a(j)

α ⊗ b
(j)
α−1b

(i)
s−1λsαλXv

=
∑

i,j,k,ν

a′(k)
s ⊗ a′(ν)

α ⊗ b
′(ν)
α−1b

′(k)
s−1a

(i)
s a(j)

α b
(j)
α−1b

(i)
s−1λsαλXv

=
∑

k,ν

a′(k)
s ⊗ a′(ν)

α ⊗ b
′(ν)
α−1b

′(k)
s−1λsαλXv.

Finally, it is easy to see that the ΛY -homomorphisms F and Φ are inverse
to each other.
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