ON A DECOMPOSITION OF BANACH SPACES

BY
JAKUB DUDA (Rehovot and Praha)

Abstract

By using D. Preiss' approach to a construction from a paper by J. Matoušek and E . Matoušková, and some results of E . Matoušková, we prove that we can decompose a separable Banach space with modulus of convexity of power type p as a union of a ball small set (in a rather strong symmetric sense) and a set which is Aronszajn null. This improves an earlier unpublished result of E. Matoušková. As a corollary, in each separable Banach space with modulus of convexity of power type p, there exists a closed nonempty set A and a Borel non-Haar null set Q such that no point from Q has a nearest point in A. Another corollary is that ℓ_{1} and L_{1} can be decomposed as unions of a ball small set and an Aronszajn null set.

1. Introduction. The aim of this paper is to construct decompositions of certain separable Banach spaces into a ball small set and an Aronszajn null set. Let X be a separable Banach space. A set $E \subset X$ is called porous if there is $c \in(0,1)$ such that for every $x \in E$ and every $\delta>0$ there is $z \in X$ such that $0<\|z-x\|<\delta$ and $E \cap B(z, c\|z-x\|)=\emptyset$. D. Preiss and S . Tišer proved in [9] that every infinite-dimensional separable Banach space X may be decomposed into two sets U and V such that U is of linear measure zero on every line, and V is a countable union of closed porous sets. In particular, the set U is negligible in the sense of Aronszajn (see the definition below).
D. Preiss and L. Zajíček introduced in [10] the notion of a ball small set, which is a subclass of σ-porous sets, and is related to Fréchet differentiability in Hilbert spaces. J. Matoušek and E. Matoušková [6] used the notion of ball smallness to construct an equivalent norm on a separable Hilbert space which is Fréchet differentiable almost nowhere in the sense of Aronszajn. This was achieved by decomposing the Hilbert space as a union of a ball small set and an Aronszajn null set. Using an idea of D. Preiss (see [6]) and results of E. Matoušková from [8] we produce such a decomposition for separable superreflexive spaces whose modulus of convexity is of some power type (actually, we can even take a "symmetric ball small set" in the

[^0]decomposition; see Remark 3.3). Application of Proposition 3.2 from [4] yields a counterexample to a conjecture due to J. P. R. Christensen from [2] in such spaces.

After finishing most of this manuscript (which is part of the author's Ph.D. thesis [3]), the author has learned that the following is implicit in E. Matoušková's unpublished manuscript [7]: every separable infinite-dimensional superreflexive space with modulus of convexity of some power type and with a basis allows a decomposition into a ball small set and an Aronszajn null set. Because [7] is not easily available, we include the full proof which also includes Matoušková's result.

Our approach has another interesting corollary: the spaces ℓ_{1} and L_{1} can be decomposed as unions of a ball small set and an Aronszajn null set (see Corollary 3.5). This indicates that such "paradoxical" decompositions are also possible for non-reflexive spaces. Our decomposition results are related to earlier results due to Preiss and Tišer [9] in the following way: we replace the notion of σ-porous sets by a (more restrictive) notion of ball small sets; on the other hand, instead of being null on every line, the complements of our sets in the decomposition are Aronszajn null.
2. Preliminaries. Let X be a real Banach space, $x \in X$, and $r>0$. We denote by $B(x, r)$ the open ball with center x and radius r, and $S(x, r):=$ $\overline{B(x, r)} \backslash B(x, r)$. For $C \subset X$ and $r>0$ we define $B(C, r):=\bigcup_{c \in C} B(c, r)$. If Y is a subspace of X, then X / Y denotes the quotient of X by Y; it is the set of equivalence classes $\hat{x}=x+Y$ for $x \in X$ (the canonical quotient $\operatorname{map} q: X \rightarrow X / Y$ is defined as $q(x)=\hat{x}=x+Y)$, which is a Banach space endowed with the norm $\|\hat{x}\|=\inf \{\|x+y\|: y \in Y\}$.

We will need the modulus of convexity δ_{X} which is defined for $\varepsilon \in(0,2]$ as

$$
\delta_{X}(\varepsilon)=\inf \left\{1-\|x+y\| / 2: x, y \in S_{X},\|x-y\| \geq \varepsilon\right\}
$$

For more information about the modulus of convexity see [1]. We shall say that δ_{X} is of power type p (for some $p \geq 2$) provided there exists $C>0$ such that $\delta_{X}(\varepsilon) \geq C \varepsilon^{p}$ for $\varepsilon \in(0,2]$. Note that if X has modulus of convexity of power type p, then X is superreflexive (and thus reflexive); see for example [1].

Let X be a separable Banach space, and let A be a Borel subset of X. The set A is called Haar null if there is a Borel probability measure μ on X such that $\mu(x+A)=0$ for every $x \in X$. Let $B \subset X$ be Borel. We say that B is Aronszajn null if for every sequence $\left(x_{i}\right)_{i=1}^{\infty}$ in X whose closed linear span is X, there exist Borel sets $B_{i} \subset X$ such that $B=\bigcup_{i} B_{i}$ and for each $i \in \mathbb{N}$ the intersection of B_{i} with any line in direction x_{i} has one-dimensional Lebesgue measure zero. Note that Aronszajn null sets are Haar null, but not conversely. For more details about these notions see [1].

The following notion was defined by D. Preiss and L. Zajíček in [10]. Let X be a normed linear space and $A \subset X, r>0$. We say that A is r-ball porous if for each $x \in A$ and $\varepsilon>0$ there exists $y \in X$ such that $\|x-y\|=r$ and $B(y, r-\varepsilon) \cap A=\emptyset$. We say that $B \subset X$ is ball small if $B=\bigcup_{n} A_{n}$ where each A_{n} is r_{n}-ball porous for some $r_{n}>0$. It is a very restrictive porosity-like property. Ball-smallness depends on the equivalent norm (see Example 2.5 in [4]). Note that if for each $x \in A$ and $\varepsilon>0$ there exists $y \in B(x, r+\varepsilon)$ with $B(y, r) \cap A=\emptyset$, then A is r-ball porous.

We shall need the following lemma from [6].
Lemma 2.1 ([6, Lemma 2.2]). Let X be a separable Banach space, let $A \subset X$ be a Borel set, and let Y be a closed subspace of X of finite codimension. Let $n \in \mathbb{N}$ be such that the intersection of A with any n-dimensional affine subspace of X parallel to Y is of n-dimensional measure zero. Then A is Aronszajn null.

The next lemma comes from [8].
Lemma 2.2 ([8, Lemma 2.3]). Let X, Y be separable infinite-dimensional Banach spaces, and $T: X \rightarrow Y$ a continuous linear surjective mapping. Let $A \subset Y$ be Aronszajn null. Then $T^{-1}(A)$ is Aronszajn null.

Proposition 2.3. Let X be a Banach space and Y be a subspace of X.
(i) Let $q: X \rightarrow X / Y$ be the canonical quotient map. Then for each $x \in X$ and $r>0$ we have

$$
q^{-1}\left(B_{X / Y}(q(x), r)\right)=B_{X}(x, r)+Y
$$

Thus, if $A \subset X / Y$ is a ball small subset of X / Y, then $q^{-1}(A)$ is a ball small subset of X.
(ii) If X has modulus of convexity of power type p, then so does X / Y.

Proof. To prove (i), take $z \in q^{-1}\left(B_{X / Y}(q(x), r)\right)$. Then we have $q(z) \in$ $B_{X / Y}(q(x), r)$, and so $\|q(z)-q(x)\|<r$. Thus there exists $y \in Y$ such that $\|z-y-x\|_{X}<r$. Then $z=z-y+y$, where $z-y \in B(x, r)$ and $y \in Y$.

For the other inclusion, consider $z+y$ where $z \in B(x, r)$ and $y \in Y$. Then

$$
\|q(x)-q(z+y)\|=\|q(x)-q(z)\| \leq\|x-z\|<r
$$

and thus $z+y \in q^{-1}\left(B_{X / Y}(q(x), r)\right)$. The rest follows easily.
For (ii), take $\widetilde{x}, \widetilde{z} \in X / Y$ with $\|\widetilde{x}\|_{X / Y}=\|\widetilde{z}\|_{X / Y}=1$ and $\|\widetilde{x}-\widetilde{z}\|_{X / Y} \geq \varepsilon$ for some $\varepsilon \in(0,2]$. Pick $x, z \in X$ with $q(x)=\widetilde{x}, q(z)=\widetilde{z}$. Because X is reflexive, by weak compactness and weak lower semicontinuity of the norm there exist $y_{x}, y_{z} \in Y$ such that $\left\|x+y_{x}\right\|_{X}=1$, and $\left\|z+y_{z}\right\|_{X}=1$. It follows
that $\left\|x+y_{x}-z-y_{z}\right\|_{X} \geq \varepsilon$. Now

$$
1-\left\|\frac{\widetilde{x}+\widetilde{z}}{2}\right\|_{X / Y} \geq 1-\left\|\frac{x+z}{2}+\frac{y_{x}+y_{z}}{2}\right\|_{X} \geq C \varepsilon^{p}
$$

since X has modulus of convexity of power type p. To conclude the proof, we take the infimum over all such $\widetilde{x}, \widetilde{z} \in X / Y$.

The following theorem can be found in e.g. [1, Theorem E.3(ii)].
Theorem 2.4 (Gurarii-Gurarii). Let E be a superreflexive space. Then there are $1<t<q<\infty$ and a constant $\gamma=\gamma_{E}>0$ such that every normalized basic sequence $\left\{x_{n}\right\}$ in E satisfies

$$
\begin{equation*}
\gamma^{-1}\left(\sum\left|a_{n}\right|^{q}\right)^{1 / q} \leq\left\|\sum a_{n} x_{n}\right\| \leq \gamma\left(\sum\left|a_{n}\right|^{t}\right)^{1 / t} \tag{2.1}
\end{equation*}
$$

for every choice of scalars $\left\{a_{n}\right\}$ for which $\sum a_{n} x_{n}$ converges.
REMARK 2.5. Let E be a superreflexive space with a normalized basis $\left(f_{n}\right)_{n}$ and let $\left(e_{n}\right)_{n}$ be its dual basis (see [5]). Let $\gamma=\gamma_{E}>0$ be the constant from the previous theorem. Then it follows easily from (2.1) (applied to $\left.\left(f_{n}\right)_{n}\right)$ that $\gamma^{-1} \leq\left\|e_{n}\right\|_{E^{*}} \leq \gamma$. Set $\widetilde{e}_{n}=e_{n} /\left\|e_{n}\right\|$. Let γ_{1}, t_{1}, q_{1} be the constants from Theorem 2.4 for E^{*}. Then (2.1) also holds for $\left(e_{n}\right)_{n}$ with t_{1}, q_{1}, and $\gamma_{2}=\gamma \cdot \gamma_{1}$.

Let X be a Banach space. For each n-dimensional subspace Y of X fix an isomorphism $M_{Y}: Y \rightarrow \mathbb{R}^{n}\left(\mathbb{R}^{n}\right.$ is taken with the Euclidean norm) with $\left\|M_{Y}\right\| \leq 1$. This isomorphism induces a measure λ_{Y} on Y which is the image of the Lebesgue measure on \mathbb{R}^{n} under M_{Y}^{-1}. For each n-dimensional affine subspace $W \subset X$ parallel to Y, fix a vector $o_{W} \in W$. We define $\lambda_{W}(C)=\lambda_{Y}\left(C-o_{W}\right)$ for any Borel subset C of W.

Lemma 2.6. Suppose $A \subset W$ is Borel. The induced measures have the following properties:
(i) $\lambda_{W}(A)=\lambda_{W}(A+y)$ for any $y \in Y$,
(ii) if Z is an n-dimensional affine subspace of X parallel to W, then

$$
\lambda_{W}(A)=\lambda_{Z}\left(A-o_{W}+o_{Z}\right)
$$

(iii) $\eta^{n} \lambda_{W}(A)=\lambda_{W \eta}(\eta A)$ for any $\eta>0$,
(iv) $\lambda_{W}(B(s, t) \cap W) \leq v t^{n}$ for any $s \in W$ and $t>0$, where

$$
v=\sup _{n} \operatorname{vol}_{n}\left(B_{\mathbb{R}^{n}}(0,1)\right)<\infty
$$

An N-dimensional test cube U will be any set of the form

$$
U=\left\{x+\sum_{i=1}^{N} \alpha_{i} u_{i}: \alpha_{i} \in[0,1]\right\}
$$

where $u_{i} \in \bar{B}_{X}(0,1)$, and u_{i} 's are linearly independent.

The following lemma gives us an estimate of the measure of sections of balls by affine finite-dimensional subspaces; it is an analogue of Claim 4.6 from [6] for spaces with modulus of convexity of power type p.

Lemma 2.7. Suppose that a Banach space X has modulus of convexity of power type p. Then for each $N \in \mathbb{N}$ there exists $\beta=\beta(p, N, X)>0$ such that whenever Z is an N-dimensional affine subspace of X, and $x \in X$ satisfies $\operatorname{dist}(x, Z) \geq 1-\varrho$ for $0<\varrho<1$, then $\lambda_{Z}(B(x, 1) \cap Z) \leq \beta \varrho^{N / p}$.

Proof. Without any loss of generality we can assume that $x=0$. We know that for some $C>0$ we have $\delta_{X}(\varepsilon) \geq C \varepsilon^{p}$ for $\varepsilon \in(0,2]$, where δ_{X} is the modulus of convexity for X. This implies the following:
(*) If $y, z \in B_{X}$ and $C \varepsilon^{p} \geq 1-\|(y+z) / 2\|$ for some $\varepsilon \in(0,2]$, then $\|y-z\|<\varepsilon$.
Suppose that $\varrho<C \cdot 2^{p}$. Take $s, y \in B(x, 1) \cap Z$. Then $(y+s) / 2 \in B(x, 1) \cap Z$ and thus $\|(y+s) / 2\|>1-\varrho$. We have $\varrho=C \varepsilon^{p}$ for some $\varepsilon \in(0,2)$ and by $(*)$ we obtain $\|y-s\|<\varepsilon \leq C_{1} \varrho^{1 / p}$. Write $Z=o_{Z}+Y$, where Y is an N-dimensional linear subspace of X. We get

$$
(B(x, 1) \cap Z)-o_{Z} \subset\left(B\left(s, C_{1} \varrho^{1 / p}\right) \cap Z\right)-o_{Z}
$$

This inclusion together with Lemma 2.6 implies that

$$
\lambda_{Z}(B(x, 1) \cap Z) \leq \lambda_{Z}\left(B\left(s, C_{1} \varrho^{1 / p}\right) \cap Z\right) \leq C_{2} \varrho^{N / p}
$$

where $C_{2}=C_{1}^{N} v, s-o_{Z} \in Y$, and $v=\sup _{n} \operatorname{vol}_{n}\left(B_{\mathbb{R}^{n}}(0,1)\right)$. Set $\beta_{1}=C_{2}$.
When $\varrho \geq C \cdot 2^{p}$, we can estimate $\lambda_{Z}(B(x, 1) \cap Z)$ by $v \cdot 2^{N}$. In this case, set $\beta_{2}=v \cdot 2^{N}\left(\max \left(1, C \cdot 2^{p}\right)\right)^{-N / p}$. To conclude the proof, define $\beta:=\max \left(\beta_{1}, \beta_{2}\right)$.

The following is an analogue of Proposition 3.2 from [6] for spaces with modulus of convexity of power type p.

Proposition 2.8. Let X be an infinite-dimensional separable Banach space with a basis and with modulus of convexity of power type p. Then there exists an $N \in \mathbb{N}$ such that for each $\varepsilon>0$ we can find $r>0$, and a countable $C \subset X$, such that
(A) for each $x \in X$ and $\psi, \xi>0$ there exist infinitely many $c_{n}, \widetilde{c}_{n} \in C$ with
(i) $\left\|\widetilde{c}_{n}-\left(2 x-c_{n}\right)\right\|<\xi$,
(ii) $\left\|c_{n}-c_{m}\right\| \geq r-\psi,\left\|\widetilde{c}_{n}-c_{m}\right\| \geq r-\psi$ for $n \neq m$,
(iii) $\left\|\widetilde{c}_{n}-c_{n}\right\|=2 r$,
(iv) $\left\|x-c_{n}\right\| \leq r+\xi,\left\|x-\widetilde{c}_{n}\right\| \leq r+\xi$ (and thus $B(C, r+\delta)=X$ for any $\delta>0$),
(B) $\lambda_{\operatorname{aff}(U)}(U \cap B(C, r))<\varepsilon$ for any N-dimensional test cube U.

Remark 2.9. For $X=\ell_{s}$ with $1<s<\infty$, we can strengthen condition (ii) of Proposition 2.8(A) as follows:
(ii) $\left\|c_{n}-c_{m}\right\| \geq 2^{1 / s} r,\left\|\widetilde{c}_{n}-c_{m}\right\| \geq 2^{1 / s} r$ for $n \neq m$.

Proof of Proposition 2.8. Let $\left(e_{k}\right)_{k}$ be the basis of X and let $\left(f_{k}\right)_{k}$ be the dual basis. For $X=\ell_{s}$, take $\left(e_{k}\right)_{k}$ to be the standard basis of ℓ_{s} and $\left(f_{k}\right)_{k}$ the standard basis of $\ell_{s^{\prime}}$, where $1 / s+1 / s^{\prime}=1$. We can suppose that $\left\|f_{k}\right\|=1$. Let $\left(x_{k}\right)_{k}$ be a dense finitely-supported sequence in X with each point repeated infinitely many times. Construct sequences $n_{k} \in \mathbb{N}$ and $s_{k} \in S_{X}$ so that

- $\max \left\{\max \left(\operatorname{supp} x_{k}\right), n_{k-1}\right\}<n_{k}$,
- $\left\|s_{k}\right\|=\left\langle f_{n_{k}}, s_{k}\right\rangle=1$,
- $\left|f_{n_{k}}\left(s_{l}\right)\right| \leq 1 / k$ for $l<k$.

This can be achieved using Remark 2.5, because for any $x \in X$ we see that $f_{j}(x) \rightarrow 0$ as $j \rightarrow \infty$. For $X=\ell_{s}$, just choose $s_{k}=e_{n_{k}}$. Define $c_{k}=x_{k}+s_{k}, \widetilde{c}_{k}=x_{k}-s_{k}$. Note that $\left\langle f_{n_{k}}, c_{k}\right\rangle=1$, and put $C_{1}=\left\{c_{k}: k \in \mathbb{N}\right\}$, $\widetilde{C}_{1}=\left\{c_{k}: k \in \mathbb{N}\right\}$, and finally $C=C_{1} \cup \widetilde{C}_{1}$.

We will show that for $K>0$ large enough the following holds:
(A^{\prime}) for each $x \in X$ and $\psi, \xi>0$ there exist infinitely many $c_{n}, \widetilde{c}_{n} \in C$ with
(i) $\left\|\widetilde{c}_{n}-\left(2 x-c_{n}\right)\right\|<\xi$,
(ii) $\left\|c_{n}-c_{m}\right\| \geq 1-\psi,\left\|\widetilde{c_{n}}-c_{m}\right\| \geq 1-\psi$ for $m \neq n$,
(iii) $\left\|\widetilde{c_{n}}-c_{n}\right\|=2$ for $n \in \mathbb{N}$,
(iv) $\left\|x-c_{n}\right\| \leq 1+\xi,\left\|x-\widetilde{c}_{n}\right\| \leq 1+\xi$ (and thus $B(C, 1+\delta)=X$ for any $\delta>0$),
($\left.\mathrm{B}^{\prime}\right) K^{-N} \lambda_{\text {aff }\{T\}}(T \cap B(C, r))<\varepsilon$ for any T which is a K times enlarged test cube U.

For $X=\ell_{s}$, just modify (A) in an obvious way. Once this is established, our proposition follows by taking $r=1 / K$ and renaming $(1 / K) C$ as C. Condition (A) follows easily from (A^{\prime}): just apply (A^{\prime}) to $x / r, \psi / r$, and ξ / r. Condition (B) can be obtained from (B^{\prime}). To see this, choose a test cube $U=\left\{x+\sum_{i=1}^{N} \alpha_{i} u_{i}: \alpha_{i} \in[0,1]\right\}$ and define $Y=\operatorname{span}\left\{u_{i}\right\}$ and $V=x+Y$. Take

$$
T=K U=\left\{K x+\sum_{i=1}^{N} \alpha_{i} u_{i}: \alpha_{i} \in[0, K]\right\}
$$

to be our enlarged test cube and define $W=\operatorname{aff}\{T\}=K x+Y$ (thus $(1 / K) W=V)$. Then by Lemma 2.6(iii) we obtain

$$
K^{-N} \lambda_{W}(T \cap B(C, 1))=\lambda_{V}(U \cap B(C / K, 1 / K))
$$

Pick $N>p q$, where $q=q_{1}$ comes from Remark 2.5. We now prove (B^{\prime}). First, we only work with C_{1}. Consider $K>1 / N$. Let U be a test cube and let T be the K times enlarged copy of U (i.e. $T=\left\{x+\sum_{i=1}^{N} \alpha_{i} u_{i}: \alpha_{i} \in[0, K]\right\}$). For $j=0,1, \ldots$ let

$$
I_{j}=\left\{k \in \mathbb{N}: 1-2^{-j} \leq \operatorname{dist}\left(T, c_{k}\right)<1-2^{-j-1}\right\}
$$

Take $w_{k} \in T$ such that $\left\|w_{k}-c_{k}\right\|=\operatorname{dist}\left(T, c_{k}\right)$. If $\operatorname{dist}\left(c_{k}, T\right)<1$, then $k \in I_{j}$ for some j and we have

$$
\lambda_{\operatorname{aff}(T)}\left(T \cap B\left(c_{k}, 1\right)\right) \leq \beta 2^{-N j / p}
$$

Hence

$$
K^{-N} \lambda_{\mathrm{aff}\{T\}}\left(B\left(C_{1}, 1\right) \cap T\right) \leq \frac{\beta}{K^{N}} \sum_{j=0}^{\infty} 2^{-N j / p}\left|I_{j}\right|
$$

To estimate $\left|I_{j}\right|$ note that for almost all $k \in I_{j}$ the vector $f_{n_{k}}$ is "almost orthogonal" to span u_{j}. Indeed, take $\eta=1 /\left(N K 2^{j+2}\right)$ and define

$$
I_{j}^{\prime}=\left\{k \in I_{j}:\left|\left\langle u_{i}, f_{n_{k}}\right\rangle\right|<\eta \text { for all } i=1, \ldots, N\right\} .
$$

Because u_{i} 's are unit vectors, by Remark 2.5 we obtain

$$
\left|\left\{k:\left|\left\langle u_{i}, f_{n_{k}}\right\rangle\right| \geq \eta\right\}\right| \leq \sum_{k:\left|\left\langle u_{i}, f_{n_{k}}\right\rangle\right| \geq \eta}\left|\left\langle u_{i}, f_{n_{k}}\right\rangle\right|^{q} / \eta^{q} \leq \gamma^{q}\left\|u_{i}\right\|^{q} / \eta^{q} \leq \gamma^{q} \eta^{-q}
$$

Hence

$$
\left|I_{j} \backslash I_{j}^{\prime}\right| \leq N \gamma^{q} \eta^{-q}=\gamma^{q} N^{q+1} K^{q} 2^{q(j+2)}
$$

We need to bound $\left|I_{j}^{\prime}\right|$ so suppose that $k \in I_{j}^{\prime}$. Then obviously

$$
\left\|w_{k}-c_{k}\right\| \geq\left|\left\langle f_{n_{k}}, w_{k}\right\rangle-\left\langle f_{n_{k}}, c_{k}\right\rangle\right|=\left|\left\langle f_{n_{k}}, w_{k}\right\rangle-1\right|
$$

and from $\left\|w_{k}-c_{k}\right\|<1-2^{-j-1}$ it follows that $\left\langle f_{n_{k}}, w_{k}\right\rangle>2^{-j-1}$. Write w_{k} as $x+\sum_{i=1}^{N} \alpha_{i} u_{i}$ where $0 \leq \alpha_{i} \leq K$. We obtain

$$
\left\langle f_{n_{k}}, x\right\rangle \geq\left\langle f_{n_{k}}, w_{k}\right\rangle-N K \eta \geq 2^{-j-2}
$$

For $k \in I_{j}^{\prime}$ we have

$$
\begin{aligned}
& \gamma^{-1}\left(\sum_{i=n_{k}}^{\infty}\left|\left\langle f_{i}, x\right\rangle\right|^{q}\right)^{1 / q} \leq \gamma^{-1}\left(\sum_{i=1}^{\infty}\left|\left\langle f_{i}, x-x_{k}\right\rangle\right|^{q}\right)^{1 / q} \\
& \quad \leq\left\|x-x_{k}\right\| \leq\left\|x-c_{k}\right\|+\left\|s_{k}\right\| \leq\left\|x-w_{k}\right\|+\left\|w_{k}-c_{k}\right\|+1<4 N K
\end{aligned}
$$

because $\operatorname{supp} x_{k} \subset\left[0, n_{k}\right)$. Take the first $l \in \mathbb{N}$ so that $\left(\sum_{i=l}^{\infty}\left|\left\langle f_{i}, x\right\rangle\right|^{q}\right)^{1 / q} \leq$ $4 \gamma N K$, and then observe that

$$
(4 \gamma N K)^{q} \geq \sum_{i=l}^{\infty}\left|\left\langle f_{i}, x\right\rangle\right|^{q} \geq \sum_{k \in I_{j}^{\prime}: n_{k}>l}\left\langle f_{n_{k}}, x\right\rangle^{q} \geq\left(\left|I_{j}^{\prime}\right|-1\right) 2^{-q(j+2)}
$$

From this we obtain $\left|I_{j}^{\prime}\right| \leq \gamma^{q} N^{q} K^{q} 2^{q(j+4)+1}$ for sufficiently large K. The final estimate is

$$
\begin{aligned}
& K^{-N} \lambda_{\mathrm{aff}\{T\}}\left(B\left(C_{1}, 1\right) \cap T\right) \leq \frac{\beta}{K^{N}} \sum_{j=0}^{\infty} 2^{-N j / p}\left|I_{j}\right| \\
& \quad \leq \frac{\beta}{K^{N}}\left(\sum_{j=0}^{\infty} 2^{-N j / p}\left|I_{j}^{\prime}\right|+\sum_{j=0}^{\infty} 2^{-N j / p}\left|I_{j} \backslash I_{j}^{\prime}\right|\right) \leq \frac{C(N, p, q, X)}{K^{N-q}}
\end{aligned}
$$

Now take K large enough to make the last quantity less than $\varepsilon / 2$.
The same argument as above works also for \widetilde{C}_{1}, provided we replace $f_{n_{k}}$ by $-f_{n_{k}}, c_{k}$ by \widetilde{c}_{k}, and C_{1} by \widetilde{C}_{1}. Thus, altogether we obtain

$$
K^{-N} \lambda_{\text {aff }\{T\}}(B(C, 1) \cap T)<\varepsilon
$$

To see that (A^{\prime}) holds, fix $\psi, \xi>0$ and $x \in X$. Select $k \in \mathbb{N}$ such that $2\left\|x_{k}-x\right\|<\xi$ and $1 / k<\psi$. By the choice of $\left(x_{k}\right)_{k}$ there exists a sequence $\left(m_{j}\right)_{j} \subset \mathbb{N}$ such that $m_{j}>k$ and $x_{k}=x_{m_{j}}$ for each $j \in \mathbb{N}$. We shall see that the sequences $\left(c_{m_{j}}\right)_{j}$ and $\left(\widetilde{c}_{m_{j}}\right)_{j}$ satisfy the conclusion of $\left(\mathrm{A}^{\prime}\right)$. To see that (iv) holds, note that $\left\|x-c_{m_{j}}\right\| \leq\left\|x-x_{m_{j}}\right\|+\left\|s_{m_{j}}\right\| \leq 1+\xi$, and similarly for $\widetilde{c}_{m_{j}}$. Notice that $\left\|\widetilde{c}_{m_{j}}-\left(2 x-c_{m_{j}}\right)\right\|=2\left\|x_{m_{j}}-x\right\|<\xi$, and this implies (i). To prove (ii), for $i>j$ we get

$$
\left\|c_{m_{i}}-c_{m_{j}}\right\| \geq\left\|s_{m_{i}}-s_{m_{j}}\right\| \geq f_{n_{m_{i}}}\left(s_{m_{i}}-s_{m_{j}}\right) \geq 1-1 / m_{i} \geq 1-\psi
$$

where the penultimate inequality follows from the construction of n_{k}. Again for $i>j$ we get

$$
\left\|\widetilde{c}_{m_{i}}-c_{m_{j}}\right\| \geq\left\|s_{m_{i}}+s_{m_{j}}\right\| \geq f_{n_{m_{i}}}\left(s_{m_{i}}+s_{m_{j}}\right) \geq 1-1 / m_{i} \geq 1-\psi
$$

and an analogous argument works in the case $i<j$. Finally, (iii) follows from $\left\|\widetilde{c}_{m_{i}}-c_{m_{i}}\right\|=2\left\|s_{m_{i}}\right\|$. If $X=\ell_{p}$, we get $\left\|c_{m_{i}}-c_{m_{j}}\right\| \geq\left\|e_{m_{i}}-e_{m_{j}}\right\| \geq 2^{1 / p}$, and $\left\|\widetilde{c}_{m_{i}}-c_{m_{j}}\right\| \geq\left\|e_{m_{i}}+e_{m_{j}}\right\| \geq 2^{1 / p}$ for $i \neq j$.
3. Spaces with power type modulus of convexity. We are now ready to prove the main theorem:

Theorem 3.1. Let X be an infinite-dimensional separable Banach space with modulus of convexity of power type p. Then there exists a Borel set $A \subset X$ which is ball small and whose complement is Aronszajn null.

REmark 3.2. It follows from results of Hanner (see e.g. [1]) that spaces L_{p} and ℓ_{p} for $1<p<\infty$ have modulus of convexity of power type $\max (2, p)$, and thus they satisfy the assumptions of the above theorem.

Proof. Choose a subspace $Y \subset X^{*}$ with a basis; such a subspace exists according to Theorem 1.a. 5 from [5]. Then by reflexivity $W=X / Y^{*}$ also has a basis (see [5]). Proposition 2.3(ii) implies that X / Y^{*} has modulus of convexity of power type p. Let $D \subset W$ be an Aronszajn null set whose
complement is ball small. It follows from Lemma 2.2 that $q^{-1}(D)$ is an Aronszajn null subset of X, and Proposition 2.3(i) that $q^{-1}(W \backslash D)=$ $X \backslash q^{-1}(D)$ is a ball small subset of X. Thus if we can construct a set D which satisfies the conclusion of the theorem for W, then $q^{-1}(D)$ is the desired set for X. These observations imply that we can suppose that our space has a basis.

For each $m \in \mathbb{N}$ apply Proposition 2.8 with $\varepsilon=1 / m$ obtaining $r_{m}>0$ and a set C_{m}. Define $E=\bigcap_{m} B\left(C_{m}, r_{m}\right)$. To see that E is Aronszajn null, it is enough to see that $U \cap E$ has Lebesgue measure zero for any test cube U, as any N-dimensional affine subspace $Z \subset X$ can be written as a countable union of such cubes. If U is such a test cube, then $\lambda_{U}\left(U \cap B\left(C_{m}, r_{m}\right)\right) \leq 1 / m$ and thus $\lambda_{U}(U \cap E)=0$. Now application of Lemma 2.1 shows that E is Aronszajn null.

We have to establish that $A=X \backslash E=\bigcup_{m}\left(X \backslash B\left(C_{m}, r_{m}\right)\right)$ is ball small. It suffices to observe that condition (A) of Proposition 2.8 implies that $X \backslash B\left(C_{m}, r_{m}\right)$ is r_{m}-ball porous.

Remark 3.3. In fact, the set A from the previous theorem is ball small in a very strong symmetric sense. It can be decomposed as $A=\bigcup_{n} A_{n}$, where $A_{n}=X \backslash B\left(C_{n}, r_{n}\right)$ and for each A_{n} we have (take $r:=r_{n}$):
(\dagger) for each $x \in A_{n}$ and $\alpha, \beta>0$ there exist countably many c_{j} with
(i) $\left\|\left(2 x-c_{j}\right)-x\right\|=\left\|x-c_{j}\right\| \leq r+\alpha$,
(ii) $B\left(c_{j}, r\right) \cap A_{n}=\emptyset, B\left(2 x-c_{j}, r-\alpha\right) \cap A_{n}=\emptyset$,
(iii) $\left\|c_{j}-c_{k}\right\| \geq r-\beta,\left\|\left(2 x-c_{j}\right)-c_{k}\right\| \geq r-\beta$ for $j \neq k$,
(iv) $\left\|\left(2 x-c_{j}\right)-c_{j}\right\| \geq 2 r-\beta$.

To see this, choose $\psi, \xi>0$ such that $\max (\psi, \psi+\xi)<\beta$ and $\xi<\alpha$. Then condition (A) of Proposition 2.8 yields countably many c_{j}, \widetilde{c}_{j}. Condition (i) follows from condition (iv) of Proposition 2.8. To prove (ii), note that it follows immediately from the definition of A_{n} that $B\left(c_{j}, r\right) \cap A_{n}=\emptyset$ for all $j \in \mathbb{N}$. Since $\left\|\widetilde{c}_{j}-\left(2 x-c_{j}\right)\right\|<\xi<\alpha$ it follows that $B\left(2 x-c_{j}, r-\alpha\right) \subset$ $B\left(\widetilde{c}_{j}, r\right)$, and thus $B\left(2 x-c_{j}, r-\alpha\right) \cap A_{n}=\emptyset$. Now estimate (for any $j, k \in \mathbb{N}$)

$$
\left\|\left(2 x-c_{j}\right)-c_{k}\right\| \geq\left\|\left(2 x-c_{j}\right)-\widetilde{c}_{j}+\widetilde{c}_{j}-c_{k}\right\| \geq r-\psi-\xi \geq r-\beta,
$$ and so conditions (iii) and (iv) hold. That concludes the proof of (\dagger).

Note that (\dagger) also implies that A_{n} is r-ball porous. To see this, take $x \in A_{n}$ and $\varepsilon>0$. We can assume by shifting and rescaling that $x=0$ and $r=1$. Take $\alpha:=\varepsilon / 2$ and $y:=c_{k} /\left\|c_{k}\right\|$, where $\left(c_{j}\right)_{j}$ is the sequence from (\dagger) and $k \in \mathbb{N}$ is arbitrary. Assume that $\|z-y\|<1-\varepsilon$ for some $z \in X$. Then

$$
\left\|z-c_{j}\right\| \leq\left\|z-c_{j} /\right\| c_{j}\| \|+\left\|c_{j}-c_{j} /\right\| c_{j}\| \|<1-\varepsilon+\varepsilon / 2=1-\alpha .
$$

Thus $B(y, 1-\varepsilon) \subset B\left(c_{j}, r\right)$ and so $B(y, 1-\varepsilon) \cap A_{n}=\emptyset$. We have established that A_{n} is r-ball porous.

For $X=\ell_{p}$ with $1<p<\infty$, by Remark 2.9 it is easy to see that condition (iii) from (\dagger) can be replaced with
(iii) $\left\|c_{j}-c_{k}\right\| \geq 2^{1 / p} r-\beta,\left\|\left(2 x-c_{j}\right)-c_{k}\right\| \geq 2^{1 / p} r-\beta$ for $j \neq k$.

Corollary 3.4. Let X be an infinite-dimensional separable superreflexive space. Then there exists an equivalent norm $|\cdot|$ on X such that $(X,|\cdot|)$ has modulus of convexity of power type p for some $p \geq 2$ and there exists a ball small set A whose complement is Aronszajn null.

Proof. It is well known that for superreflexive spaces, there exists an equivalent norm $|\cdot|$ such that $(X,|\cdot|)$ has modulus of convexity of power type p for some $p \geq 2$ (see e.g. [1, Theorem A.6]). Apply Theorem 3.1 to $(X,|\cdot|)$.

We get the following decomposition for the spaces ℓ_{1} and L_{1} :
Corollary 3.5. There exist Borel ball small subsets $A \subset \ell_{1}$ and $B \subset L_{1}$ whose complements are Aronszajn null.

Proof. Let $q: \ell_{1} \rightarrow \ell_{2}$ be a linear quotient map (it exists by e.g. [5, p. 108]). Let $\ell_{2}=B \cup D$, where B is ball small and D is Aronszajn null, and let $A:=q^{-1}(B)$. Then A is ball small by Proposition 2.3(i), and $\ell_{1} \backslash A$ is Aronszajn null by Lemma 2.2.

Let $Y \subset L_{1}$ be a closed complemented subspace of L_{1} isometric to ℓ_{1} (call the isometry $T: Y \rightarrow \ell_{1}$); existence of such a space Y is well known. Let $P: L_{1} \rightarrow Y$ be the projection onto Y. Then Proposition 2.3(i) and Lemma 2.2 imply that $B:=P^{-1}\left(T^{-1}(A)\right) \subset L_{1}$ (where $A \subset \ell_{1}$ is as in the previous paragraph) is a Borel ball small set with an Aronszajn null complement.

The following proposition was proved in [4].
Proposition 3.6 ([4, Proposition 3.2]). Let X be a separable Banach space and $D \subset X$ be a Borel ball small set. Suppose that $X \backslash D$ is Aronszajn null. Then there exists a nonempty closed set A and a Borel set Q which is not Haar null such that the metric projection $P_{A}(x)$ is empty for each $x \in Q$.

By combining Theorem 3.1 with Proposition 3.6, we obtain the following corollary, which shows that Christensen's conjecture [2] concerning almosteverywhere existence of nearest points fails also in separable spaces with modulus of convexity of power type p (for some $p \geq 2$).

Corollary 3.7. Let X be an infinite-dimensional separable superreflexive space such that X has modulus of convexity of power type p for some $p \geq 2$. Then there exists a nonempty closed set A and a Borel set Q which is not Haar null such that $P_{A}(x)=\emptyset$ for all $x \in Q$.

Acknowledgments. I would like to thank Eva Matoušková for sending me her unpublished manuscript.

REFERENCES

[1] Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Vol. 1, Colloq. Publ. 48, Amer. Math. Soc., Providence, 2000.
[2] J. P. R. Christensen, Measure theoretic zero sets in infinite dimensional spaces and applications to differentiability of Lipschitz mappings, in: Actes du Deuxième Colloque d'Analyse Fonctionnelle de Bordeaux (Univ. Bordeaux, 1973), Publ. Dép. Math. (Lyon) 10 (1973), no. 2, 29-39.
[3] J. Duda, Delta-convexity, metric projection and negligible sets, Ph.D. thesis, Charles Univ., Prague, 2004.
[4] -, On the size of the set of points where the metric projection exists, Israel J. Math. 140 (2004), 271-283.
[5] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Vol. I: Sequence Spaces, Ergeb. Math. Grenzgeb. 92, Springer, 1977.
[6] J. Matoušek and E. Matoušková, A highly non-smooth norm on Hilbert space, Israel J. Math. 112 (1999), 1-27.
[7] E. Matoušková, An almost nowhere Fréchet smooth norm on superreflexive spaces, preprint, Institutsbericht Nr. 534, Univ. Linz, 1997.
[8] -, Almost nowhere Fréchet smooth norms, Studia Math. 133 (1999), 93-99.
[9] D. Preiss and S. Tišer, Two unexpected examples concerning differentiability of Lipschitz functions on Banach spaces, in: Geometric Aspects of Functional Analysis (Israel, 1992-1994), Birkhäuser, 1995, 219-238.
[10] D. Preiss and L. Zajíček, Stronger estimates of smallness of sets of Fréchet nondifferentiability of convex functions, Rend. Circ. Mat. Palermo 1984, Suppl. no. 3, 219-223.

Department of Mathematics
Weizmann Institute of Science
Rehovot 76100, Israel
Current address:
Faculty of Mathematics and Physics
Charles University
Sokolovská 83
18675 Praha 8, Czech Republic
E-mail: duda@karlin.mff.cuni.cz

[^0]: 2000 Mathematics Subject Classification: Primary 28A05; Secondary 46B04.
 Key words and phrases: ball small sets, Aronszajn null sets, superreflexive spaces.
 The author was partially supported by the grant GAČR 201/03/0931 and by the NSF grant DMS-0244515. This work was also partially supported by the grant MSM 0021620839 of the Czech Ministry of Education.

