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CHEN’S INEQUALITY IN THE LAGRANGIAN CASE

BY

TEODOR OPREA (Bucureşti)

Abstract. In the theory of submanifolds, the following problem is fundamental: es-

tablish simple relationships between the main intrinsic invariants and the main extrinsic

invariants of submanifolds. The basic relationships discovered until now are inequalities.
To analyze such problems, we follow the idea of C. Udrişte that the method of constrained
extremum is a natural way to prove geometric inequalities. We improve Chen’s inequal-
ity which characterizes a totally real submanifold of a complex space form. For that we
suppose that the submanifold is Lagrangian and we formulate and analyze a suitable
constrained extremum problem.

1. Optimization on Riemannian submanifolds. Let (N, g̃) be a
Riemannian manifold of dimension m, M be a Riemannian submanifold of
it, g be the metric induced on M by g̃, and f : N → R be a differentiable
function.

In [6] we considered the constrained extremum problem and proved the
following theorem:

Theorem 1. If x0 ∈ M is such that f(x0) = minx∈M f(x), then

(i) (grad f)(x0) ∈ T⊥
x0

M,

(ii) the bilinear form

α : Tx0
M × Tx0

M → R,

α(X, Y ) = Hessf (X, Y ) + g̃(h(X, Y ), (grad f)(x0))

is positive semidefinite, where h is the second fundamental form of

the submanifold M in N.

We shall use this theorem in order to find an inequality satisfied by the
Chen invariant of a Lagrangian submanifold in a complex space form.

2. An estimation of Chen’s invariant. Let (M, g) be a Riemannian
manifold of dimension n, and x a point in M. We consider an orthonormal
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frame {e1, . . . , en} in TxM. The scalar curvature at x is defined by

τ =
∑

1≤i<j≤n

R(ei, ej , ei, ej),

where R is the Riemann curvature tensor of (M, g). We define δM = τ −
min(k), where k is the sectional curvature at x. The invariant δM is called
the Chen invariant of the Riemannian manifold (M, g).

Let (M̃, g̃, J) be a Kähler manifold of real dimension 2m. A submanifold

M of dimension n of (M̃, g̃, J) is called totally real if J(TxM) ⊂ T⊥
x M for

any x in M .
If, in addition, n = m, then M is called a Lagrangian submanifold. For

a Lagrangian submanifold, the relation J(TxM) = T⊥
x M holds.

A Kähler manifold with constant holomorphic sectional curvature c is

called a complex space form and is denoted by M̃(c). The Riemann curvature

tensor R̃ of M̃(c) is given by

R̃(X, Y )Z =
c

4
{g̃(Y, Z)X − g̃(X, Z)Y

+ g̃(JY, Z)JX − g̃(JX, Z)JY + 2g̃(X, JY )JZ}.

B. Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken showed in [5] that
every totally real submanifold M of real dimension n in a complex space
form M̃(c) of real dimension 2m satisfies Chen’s inequality

δM ≤
n − 2

2

{
n2

n − 1
‖H‖2 + (n + 1)

c

4

}
,

where H is the mean curvature vector of M.

Remarks 1. If M is a totally real submanifold of real dimension n in a
complex space form M̃(c) of real dimension 2m, then

AJY X = −Jh(X, Y ) = AJXY

for any vector fields X and Y on M , where AX is the Weingarten operator.

2. Let m = n (M is Lagrangian in M̃(c)). If we consider a point x ∈ M

and orthonormal frames {e1, . . . , en} in TxM and {Je1, . . . , Jen} in T⊥
x M ,

then
hi

jk = h
j
ik, ∀i, j, k ∈ 1, n,

where hi
jk is the coefficient of Jei in the expansion of the vector h(ej, ek).

With these ingredients we prove the next result, which is an improved
version of Chen’s inequality in the Lagrangian case.

Theorem 2. Let M be a Lagrangian submanifold in a complex space

form M̃(c) of real dimension 2n, n ≥ 3. Then

δM ≤
(n − 2)(n + 1)

2

c

4
+

n2

2

2n − 3

2n + 3
‖H‖2.
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Proof. We consider a point x ∈ M and orthonormal frames {e1, . . . , en}
in TxM and {Je1, . . . , Jen} in T⊥

x M , {e1, e2} being an orthonormal frame
in the 2-plane which minimizes the sectional curvature at x.

By using Gauss’s equation and the fact that M̃(c) is a complex space
form, we obtain

τ =
n(n − 1)

2

c

4
+

n∑

r=1

∑

1≤i<j≤n

hr
iih

r
jj −

n∑

r=1

∑

1≤i<j≤n

(hr
ij)

2(1)

and

R(e1, e2, e1, e2) =
c

4
+

n∑

r=1

hr
11h

r
22 −

n∑

r=1

(hr
12)

2.(2)

By subtracting (1) and (2), we find

δM =
(n − 2)(n + 1)

2

c

4
+

n∑

r=1

( ∑

3≤j≤n

(hr
11 + hr

22)h
r
jj +

∑

3≤i<j≤n

hr
iih

r
jj(3)

−
∑

3≤j≤n

(hr
1j)

2 −
∑

2≤i<j≤n

(hr
ij)

2
)
.

By using the symmetry in the three indices of hk
ij , we can rewrite (3) as

δM ≤
(n − 2)(n + 1)

2

c

4
+

n∑

r=1

( ∑

3≤j≤n

(hr
11 + hr

22)h
r
jj +

∑

3≤i<j≤n

hr
iih

r
jj

)
(4)

−
∑

3≤j≤n

(h1
1j)

2 −
∑

3≤j≤n

(hj
1j)

2 −
∑

2≤i<j≤n

(hi
ij)

2 −
∑

2≤i<j≤n

(hj
ij)

2

=
(n − 2)(n + 1)

2

c

4
+

n∑

r=1

( ∑

3≤j≤n

(hr
11 + hr

22)h
r
jj +

∑

3≤i<j≤n

hr
iih

r
jj

)

−
∑

3≤j≤n

(hj
11

)2 −
∑

3≤j≤n

(h1
jj)

2 −
∑

2≤i<j≤n

(hj
ii)

2 −
∑

2≤i<j≤n

(hi
jj)

2

=
(n − 2)(n + 1)

2

c

4
+

n∑

r=1

( ∑

3≤j≤n

(hr
11 + hr

22)h
r
jj +

∑

3≤i<j≤n

hr
iih

r
jj

)

−
∑

3≤j≤n

(hj
11

)2 −
∑

3≤j≤n

(h1
jj)

2 −
∑

i,j∈2,n
i6=j

(hi
jj)

2.

Let us consider the quadratic forms f1, f2, fr : R
n → R, r ∈ 3, n, defined

by

f1(h
1
11, h

1
22, . . . , h

1
nn) =

∑

3≤j≤n

(h1
11 + h1

22)h
1
jj +

∑

3≤i<j≤n

h1
iih

1
jj −

∑

3≤j≤n

(h1
jj)

2,
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f2(h
2
11, h

2
22, . . . , h

2
nn) =

∑

3≤j≤n

(h2
11 + h2

22)h
2
jj +

∑

3≤i<j≤n

h2
iih

2
jj −

∑

3≤j≤n

(h2
jj)

2,

fr(h
r
11, h

r
22, . . . , h

r
nn) =

∑

3≤j≤n

(hr
11 + hr

22)h
r
jj +

∑

3≤i<j≤n

hr
iih

r
jj

− (hr
11)

2 −
∑

j∈2,n
j 6=r

(hr
jj)

2.

First, we find an upper bound for f1, subject to P : h1
11 +h1

22 + · · ·+h1
nn

= k1, where k1 is a real constant.

The first three partial derivatives of the function f1 are

∂f1

∂h1
11

=
∑

3≤j≤n

h1
jj ,(5)

∂f1

∂h1
22

=
∑

3≤j≤n

h1
jj ,(6)

∂f1

∂h1
33

= h1
11 + h1

22 +
∑

4≤j≤n

h1
jj − 2h1

33.(7)

Since for a solution (h1
11, h

1
22, . . . , h

1
nn) of the problem in question, the vector

grad f1 is normal to P , from (5)–(7) we obtain

h1
11 + h1

22 = 3h1
jj = 3a1, ∀j ∈ 3, n.(8)

By using the relation h1
11 + h1

22 + h1
33 + · · · + h1

nn = k1, from (8) we obtain
3a1 + (n − 2)a1 = k1. Consequently,

a1 =
k1

n + 1
.(9)

As f1 is obtained from the function involved in Chen’s inequality (see [6])
by subtracting some square terms, the Hessian of f1|P is negative definite.
Consequently, the point (h1

11, h
1
22, . . . , h

1
nn) given by the relations (8) and (9)

is a maximum point, and hence

f1 ≤ 3a1(n−2)a1+C2
n−2(a

1)2−(n−2)(a1)2 =
(a1)2

2
(n+1)(n−2).(10)

From (9) and (10), it follows that

f1 ≤
(k1)2

2

n − 2

n + 1
=

n2

2

n − 2

n + 1
(H1)2.(11)

In a similar manner, we show that

f2 ≤
n2

2

n − 2

n + 1
(H2)2.(12)
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Next, we find an upper bound for f3, subject to P : h3
11 +h3

22 + · · ·+h3
nn

= k3, where k3 is a real constant.

The first four partial derivatives of the function f3 are

∂f3

∂h3
11

=
∑

3≤j≤n

h3
jj − 2h3

11,(13)

∂f3

∂h3
22

=
∑

3≤j≤n

h3
jj − 2h3

22,(14)

∂f3

∂h3
33

= h3
11 + h3

22 +
∑

4≤j≤n

h3
jj ,(15)

∂f3

∂h3
44

= h3
11 + h3

22 +
∑

3≤j≤n
j 6=4

h3
jj − 2h3

44.(16)

For a solution (h1
11, h

1
22, . . . , h

1
nn) of the problem in question, the vector

grad f3 is colinear to (1, 1, . . . , 1). By using (13)–(16) we obtain

h3
11 = h3

22 = 3a3,(17)

h3
33 = 12a3,(18)

h3
jj = 4a3, ∀j ∈ 4, n.(19)

As h3
11 + h3

22 + h3
33 + · · · + h3

nn = k3, from (17)–(19), one gets

a3 =
k3

4n + 6
.(20)

By an argument similar to that above, the point (h3
11, h

3
22, . . . , h

3
nn) given

by (17)–(20) is a maximum point. Therefore

f3 ≤ 6a312a3 + 6a3(n − 3)4a3 + 12b(n − 3)4a3(21)

+C2
n−316(a3)2 − 18(a3)2 − (n − 3)16(a3)2

= 2(a3)2(2n − 3)(2n + 3).

From (20) and (21) we obtain

f3 ≤
(k3)2

2

2n − 3

2n + 3
=

n2

2

2n − 3

2n + 3
(H3)2.

In a similar manner, we prove that

fr ≤
n2

2

2n − 3

2n + 3
(Hr)2, ∀r ∈ 3, n.(22)

As n−2

n+1
< 2n−3

2n+3
, from (11), (12) and (22) it follows that

fr ≤
n2

2

2n − 3

2n + 3
(Hr)2, ∀r ∈ 1, n.(23)



168 T. OPREA

By using (4) and (23), we have

δM ≤
(n − 2)(n + 1)

2

c

4
+

n2

2

2n − 3

2n + 3

n∑

r=1

(Hr)2(24)

=
(n − 2)(n + 1)

2

c

4
+

n2

2

2n − 3

2n + 3
‖H‖2,

wich completes the proof.

Remarks. 1. B. Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken
showed in [5] that every Lagrangian submanifold, of real dimension 2n,

n ≥ 3, of a complex space form M̃(c), satisfying the equality

δM =
n − 2

2

{
n2

n − 1
‖H‖2 + (n + 1)

c

4

}
,

is minimal. Now, this result is an immediate consequence of our Theorem 2.

2. If n = 3, in Theorem 2 equality occurs if and only if there is an
orthonormal frame {e1, e2, e3} in TxM in which the Weingarten operators
take the following form:

AJe1
=




a b c

b −a 0

c 0 0


 , AJe2

=




b −a 0

−a −b c

0 c 0


 , AJe3

=




c 0 0

0 c 0

0 0 4c


 ,

where a, b and c are real numbers.

3. In [1] J. Bolton and L. Vrancken showed how to construct all 3-
dimensional non-minimal submanifolds in CP

3(4) attaining equality in The-
orem 2 at all points. The classification in the minimal case can be found
in [5].
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E-mail: teodoroprea@yahoo.com

Received 15 September 2005;

revised 15 October 2006 (4667)


