COLLOQUIUM MATHEMATICUM

CHEN'S INEQUALITY IN THE LAGRANGIAN CASE

BY
TEODOR OPREA (Bucureşti)

Abstract

In the theory of submanifolds, the following problem is fundamental: establish simple relationships between the main intrinsic invariants and the main extrinsic invariants of submanifolds. The basic relationships discovered until now are inequalities. To analyze such problems, we follow the idea of C. Udrişte that the method of constrained extremum is a natural way to prove geometric inequalities. We improve Chen's inequality which characterizes a totally real submanifold of a complex space form. For that we suppose that the submanifold is Lagrangian and we formulate and analyze a suitable constrained extremum problem.

1. Optimization on Riemannian submanifolds. Let (N, \widetilde{g}) be a Riemannian manifold of dimension m, M be a Riemannian submanifold of it, g be the metric induced on M by \widetilde{g}, and $f: N \rightarrow \mathbb{R}$ be a differentiable function.

In [6] we considered the constrained extremum problem and proved the following theorem:

Theorem 1. If $x_{0} \in M$ is such that $f\left(x_{0}\right)=\min _{x \in M} f(x)$, then
(i) $(\operatorname{grad} f)\left(x_{0}\right) \in T_{x_{0}}^{\perp} M$,
(ii) the bilinear form

$$
\begin{gathered}
\alpha: T_{x_{0}} M \times T_{x_{0}} M \rightarrow \mathbb{R}, \\
\alpha(X, Y)=\operatorname{Hess}_{f}(X, Y)+\widetilde{g}\left(h(X, Y),(\operatorname{grad} f)\left(x_{0}\right)\right)
\end{gathered}
$$

is positive semidefinite, where h is the second fundamental form of the submanifold M in N.

We shall use this theorem in order to find an inequality satisfied by the Chen invariant of a Lagrangian submanifold in a complex space form.
2. An estimation of Chen's invariant. Let (M, g) be a Riemannian manifold of dimension n, and x a point in M. We consider an orthonormal

[^0]frame $\left\{e_{1}, \ldots, e_{n}\right\}$ in $T_{x} M$. The scalar curvature at x is defined by
$$
\tau=\sum_{1 \leq i<j \leq n} R\left(e_{i}, e_{j}, e_{i}, e_{j}\right)
$$
where R is the Riemann curvature tensor of (M, g). We define $\delta_{M}=\tau-$ $\min (k)$, where k is the sectional curvature at x. The invariant δ_{M} is called the Chen invariant of the Riemannian manifold (M, g).

Let $(\widetilde{M}, \widetilde{g}, J)$ be a Kähler manifold of real dimension $2 m$. A submanifold M of dimension n of $(\widetilde{M}, \widetilde{g}, J)$ is called totally real if $J\left(T_{x} M\right) \subset T_{x}^{\perp} M$ for any x in M.

If, in addition, $n=m$, then M is called a Lagrangian submanifold. For a Lagrangian submanifold, the relation $J\left(T_{x} M\right)=T_{x}^{\perp} M$ holds.

A Kähler manifold with constant holomorphic sectional curvature c is called a complex space form and is denoted by $\widetilde{M}(c)$. The Riemann curvature tensor \widetilde{R} of $\widetilde{M}(c)$ is given by

$$
\begin{aligned}
\widetilde{R}(X, Y) Z= & \frac{c}{4}\{\widetilde{g}(Y, Z) X-\widetilde{g}(X, Z) Y \\
& +\widetilde{g}(J Y, Z) J X-\widetilde{g}(J X, Z) J Y+2 \widetilde{g}(X, J Y) J Z\}
\end{aligned}
$$

B. Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken showed in [5] that every totally real submanifold M of real dimension n in a complex space form $\widetilde{M}(c)$ of real dimension $2 m$ satisfies Chen's inequality

$$
\delta_{M} \leq \frac{n-2}{2}\left\{\frac{n^{2}}{n-1}\|H\|^{2}+(n+1) \frac{c}{4}\right\}
$$

where H is the mean curvature vector of M.
Remarks 1. If M is a totally real submanifold of real dimension n in a complex space form $\widetilde{M}(c)$ of real dimension $2 m$, then

$$
A_{J Y} X=-J h(X, Y)=A_{J X} Y
$$

for any vector fields X and Y on M, where A_{X} is the Weingarten operator.
2. Let $m=n$ (M is Lagrangian in $\widetilde{M}(c))$. If we consider a point $x \in M$ and orthonormal frames $\left\{e_{1}, \ldots, e_{n}\right\}$ in $T_{x} M$ and $\left\{J e_{1}, \ldots, J e_{n}\right\}$ in $T_{x}^{\perp} M$, then

$$
h_{j k}^{i}=h_{i k}^{j}, \quad \forall i, j, k \in \overline{1, n},
$$

where $h_{j k}^{i}$ is the coefficient of $J e_{i}$ in the expansion of the vector $h\left(e_{j}, e_{k}\right)$.
With these ingredients we prove the next result, which is an improved version of Chen's inequality in the Lagrangian case.

Theorem 2. Let M be a Lagrangian submanifold in a complex space form $\widetilde{M}(c)$ of real dimension $2 n, n \geq 3$. Then

$$
\delta_{M} \leq \frac{(n-2)(n+1)}{2} \frac{c}{4}+\frac{n^{2}}{2} \frac{2 n-3}{2 n+3}\|H\|^{2} .
$$

Proof. We consider a point $x \in M$ and orthonormal frames $\left\{e_{1}, \ldots, e_{n}\right\}$ in $T_{x} M$ and $\left\{J e_{1}, \ldots, J e_{n}\right\}$ in $T_{x}^{\perp} M,\left\{e_{1}, e_{2}\right\}$ being an orthonormal frame in the 2-plane which minimizes the sectional curvature at x.

By using Gauss's equation and the fact that $\widetilde{M}(c)$ is a complex space form, we obtain

$$
\begin{equation*}
\tau=\frac{n(n-1)}{2} \frac{c}{4}+\sum_{r=1}^{n} \sum_{1 \leq i<j \leq n} h_{i i}^{r} h_{j j}^{r}-\sum_{r=1}^{n} \sum_{1 \leq i<j \leq n}\left(h_{i j}^{r}\right)^{2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
R\left(e_{1}, e_{2}, e_{1}, e_{2}\right)=\frac{c}{4}+\sum_{r=1}^{n} h_{11}^{r} h_{22}^{r}-\sum_{r=1}^{n}\left(h_{12}^{r}\right)^{2} \tag{2}
\end{equation*}
$$

By subtracting (1) and (2), we find

$$
\begin{align*}
\delta_{M}= & \frac{(n-2)(n+1)}{2} \frac{c}{4}+\sum_{r=1}^{n}\left(\sum_{3 \leq j \leq n}\left(h_{11}^{r}+h_{22}^{r}\right) h_{j j}^{r}+\sum_{3 \leq i<j \leq n} h_{i i}^{r} h_{j j}^{r}\right. \tag{3}\\
& \left.-\sum_{3 \leq j \leq n}\left(h_{1 j}^{r}\right)^{2}-\sum_{2 \leq i<j \leq n}\left(h_{i j}^{r}\right)^{2}\right)
\end{align*}
$$

By using the symmetry in the three indices of $h_{i j}^{k}$, we can rewrite (3) as

$$
\begin{align*}
\delta_{M} \leq & \frac{(n-2)(n+1)}{2} \frac{c}{4}+\sum_{r=1}^{n}\left(\sum_{3 \leq j \leq n}\left(h_{11}^{r}+h_{22}^{r}\right) h_{j j}^{r}+\sum_{3 \leq i<j \leq n} h_{i i}^{r} h_{j j}^{r}\right) \tag{4}\\
& -\sum_{3 \leq j \leq n}\left(h_{1 j}^{1}\right)^{2}-\sum_{3 \leq j \leq n}\left(h_{1 j}^{j}\right)^{2}-\sum_{2 \leq i<j \leq n}\left(h_{i j}^{i}\right)^{2}-\sum_{2 \leq i<j \leq n}\left(h_{i j}^{j}\right)^{2} \\
= & \frac{(n-2)(n+1)}{2} \frac{c}{4}+\sum_{r=1}^{n}\left(\sum_{3 \leq j \leq n}\left(h_{11}^{r}+h_{22}^{r}\right) h_{j j}^{r}+\sum_{3 \leq i<j \leq n} h_{i i}^{r} h_{j j}^{r}\right) \\
& -\sum_{3 \leq j \leq n}\left(h_{11}^{j}\right)^{2}-\sum_{3 \leq j \leq n}\left(h_{j j}^{1}\right)^{2}-\sum_{2 \leq i<j \leq n}\left(h_{i i}^{j}\right)^{2}-\sum_{2 \leq i<j \leq n}\left(h_{j j}^{i}\right)^{2} \\
= & \frac{(n-2)(n+1)}{2} \frac{c}{4}+\sum_{r=1}^{n}\left(\sum_{3 \leq j \leq n}\left(h_{11}^{r}+h_{22}^{r}\right) h_{j j}^{r}+\sum_{3 \leq i<j \leq n} h_{i i}^{r} h_{j j}^{r}\right) \\
& -\sum_{3 \leq j \leq n}\left(h_{11}^{j}\right)^{2}-\sum_{3 \leq j \leq n}\left(h_{j j}^{1}\right)^{2}-\sum_{\substack{ \\
i, j \in \overline{2, n} \\
i \neq j}}\left(h_{j j}^{i}\right)^{2} .
\end{align*}
$$

Let us consider the quadratic forms $f_{1}, f_{2}, f_{r}: \mathbb{R}^{n} \rightarrow \mathbb{R}, r \in \overline{3, n}$, defined by

$$
f_{1}\left(h_{11}^{1}, h_{22}^{1}, \ldots, h_{n n}^{1}\right)=\sum_{3 \leq j \leq n}\left(h_{11}^{1}+h_{22}^{1}\right) h_{j j}^{1}+\sum_{3 \leq i<j \leq n} h_{i i}^{1} h_{j j}^{1}-\sum_{3 \leq j \leq n}\left(h_{j j}^{1}\right)^{2}
$$

$$
\begin{aligned}
f_{2}\left(h_{11}^{2}, h_{22}^{2}, \ldots, h_{n n}^{2}\right)= & \sum_{3 \leq j \leq n}\left(h_{11}^{2}+h_{22}^{2}\right) h_{j j}^{2}+\sum_{3 \leq i<j \leq n} h_{i i}^{2} h_{j j}^{2}-\sum_{3 \leq j \leq n}\left(h_{j j}^{2}\right)^{2} \\
f_{r}\left(h_{11}^{r}, h_{22}^{r}, \ldots, h_{n n}^{r}\right)= & \sum_{3 \leq j \leq n}\left(h_{11}^{r}+h_{22}^{r}\right) h_{j j}^{r}+\sum_{3 \leq i<j \leq n} h_{i i}^{r} h_{j j}^{r} \\
& -\left(h_{11}^{r}\right)^{2}-\sum_{\substack{j \in \overline{2, n} \\
j \neq r}}\left(h_{j j}^{r}\right)^{2} .
\end{aligned}
$$

First, we find an upper bound for f_{1}, subject to $P: h_{11}^{1}+h_{22}^{1}+\cdots+h_{n n}^{1}$ $=k^{1}$, where k^{1} is a real constant.

The first three partial derivatives of the function f_{1} are

$$
\begin{align*}
\frac{\partial f_{1}}{\partial h_{11}^{1}} & =\sum_{3 \leq j \leq n} h_{j j}^{1} \tag{5}\\
\frac{\partial f_{1}}{\partial h_{22}^{1}} & =\sum_{3 \leq j \leq n} h_{j j}^{1} \tag{6}\\
\frac{\partial f_{1}}{\partial h_{33}^{1}} & =h_{11}^{1}+h_{22}^{1}+\sum_{4 \leq j \leq n} h_{j j}^{1}-2 h_{33}^{1} \tag{7}
\end{align*}
$$

Since for a solution $\left(h_{11}^{1}, h_{22}^{1}, \ldots, h_{n n}^{1}\right)$ of the problem in question, the vector $\operatorname{grad} f_{1}$ is normal to P, from (5)-(7) we obtain

$$
\begin{equation*}
h_{11}^{1}+h_{22}^{1}=3 h_{j j}^{1}=3 a^{1}, \quad \forall j \in \overline{3, n} . \tag{8}
\end{equation*}
$$

By using the relation $h_{11}^{1}+h_{22}^{1}+h_{33}^{1}+\cdots+h_{n n}^{1}=k^{1}$, from (8) we obtain $3 a^{1}+(n-2) a^{1}=k^{1}$. Consequently,

$$
\begin{equation*}
a^{1}=\frac{k^{1}}{n+1} \tag{9}
\end{equation*}
$$

As f_{1} is obtained from the function involved in Chen's inequality (see [6]) by subtracting some square terms, the Hessian of $f_{1} \mid P$ is negative definite. Consequently, the point $\left(h_{11}^{1}, h_{22}^{1}, \ldots, h_{n n}^{1}\right)$ given by the relations (8) and (9) is a maximum point, and hence

$$
\begin{equation*}
f_{1} \leq 3 a^{1}(n-2) a^{1}+C_{n-2}^{2}\left(a^{1}\right)^{2}-(n-2)\left(a^{1}\right)^{2}=\frac{\left(a^{1}\right)^{2}}{2}(n+1)(n-2) \tag{10}
\end{equation*}
$$

From (9) and (10), it follows that

$$
\begin{equation*}
f_{1} \leq \frac{\left(k^{1}\right)^{2}}{2} \frac{n-2}{n+1}=\frac{n^{2}}{2} \frac{n-2}{n+1}\left(H^{1}\right)^{2} \tag{11}
\end{equation*}
$$

In a similar manner, we show that

$$
\begin{equation*}
f_{2} \leq \frac{n^{2}}{2} \frac{n-2}{n+1}\left(H^{2}\right)^{2} \tag{12}
\end{equation*}
$$

Next, we find an upper bound for f_{3}, subject to $P: h_{11}^{3}+h_{22}^{3}+\cdots+h_{n n}^{3}$ $=k^{3}$, where k^{3} is a real constant.

The first four partial derivatives of the function f_{3} are

$$
\begin{align*}
\frac{\partial f_{3}}{\partial h_{11}^{3}} & =\sum_{3 \leq j \leq n} h_{j j}^{3}-2 h_{11}^{3} \tag{13}\\
\frac{\partial f_{3}}{\partial h_{22}^{3}} & =\sum_{3 \leq j \leq n} h_{j j}^{3}-2 h_{22}^{3} \tag{14}\\
\frac{\partial f_{3}}{\partial h_{33}^{3}} & =h_{11}^{3}+h_{22}^{3}+\sum_{4 \leq j \leq n} h_{j j}^{3} \tag{15}\\
\frac{\partial f_{3}}{\partial h_{44}^{3}} & =h_{11}^{3}+h_{22}^{3}+\sum_{\substack{3 \leq j \leq n \\
j \neq 4}} h_{j j}^{3}-2 h_{44}^{3} \tag{16}
\end{align*}
$$

For a solution $\left(h_{11}^{1}, h_{22}^{1}, \ldots, h_{n n}^{1}\right)$ of the problem in question, the vector $\operatorname{grad} f_{3}$ is colinear to $(1,1, \ldots, 1)$. By using (13)-(16) we obtain

$$
\begin{align*}
h_{11}^{3} & =h_{22}^{3}=3 a^{3} \tag{17}\\
h_{33}^{3} & =12 a^{3}, \tag{18}\\
h_{j j}^{3} & =4 a^{3}, \quad \forall j \in \overline{4, n} . \tag{19}
\end{align*}
$$

As $h_{11}^{3}+h_{22}^{3}+h_{33}^{3}+\cdots+h_{n n}^{3}=k^{3}$, from (17)-(19), one gets

$$
\begin{equation*}
a^{3}=\frac{k^{3}}{4 n+6} \tag{20}
\end{equation*}
$$

By an argument similar to that above, the point $\left(h_{11}^{3}, h_{22}^{3}, \ldots, h_{n n}^{3}\right)$ given by (17)-(20) is a maximum point. Therefore

$$
\begin{align*}
f_{3} \leq & 6 a^{3} 12 a^{3}+6 a^{3}(n-3) 4 a^{3}+12 b(n-3) 4 a^{3} \tag{21}\\
& +C_{n-3}^{2} 16\left(a^{3}\right)^{2}-18\left(a^{3}\right)^{2}-(n-3) 16\left(a^{3}\right)^{2} \\
= & 2\left(a^{3}\right)^{2}(2 n-3)(2 n+3)
\end{align*}
$$

From (20) and (21) we obtain

$$
f_{3} \leq \frac{\left(k^{3}\right)^{2}}{2} \frac{2 n-3}{2 n+3}=\frac{n^{2}}{2} \frac{2 n-3}{2 n+3}\left(H^{3}\right)^{2}
$$

In a similar manner, we prove that

$$
\begin{equation*}
f_{r} \leq \frac{n^{2}}{2} \frac{2 n-3}{2 n+3}\left(H^{r}\right)^{2}, \quad \forall r \in \overline{3, n} \tag{22}
\end{equation*}
$$

As $\frac{n-2}{n+1}<\frac{2 n-3}{2 n+3}$, from (11), (12) and (22) it follows that

$$
\begin{equation*}
f_{r} \leq \frac{n^{2}}{2} \frac{2 n-3}{2 n+3}\left(H^{r}\right)^{2}, \quad \forall r \in \overline{1, n} \tag{23}
\end{equation*}
$$

By using (4) and (23), we have

$$
\begin{align*}
\delta_{M} & \leq \frac{(n-2)(n+1)}{2} \frac{c}{4}+\frac{n^{2}}{2} \frac{2 n-3}{2 n+3} \sum_{r=1}^{n}\left(H^{r}\right)^{2} \tag{24}\\
& =\frac{(n-2)(n+1)}{2} \frac{c}{4}+\frac{n^{2}}{2} \frac{2 n-3}{2 n+3}\|H\|^{2},
\end{align*}
$$

wich completes the proof.
Remarks. 1. B. Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken showed in [5] that every Lagrangian submanifold, of real dimension $2 n$, $n \geq 3$, of a complex space form $\widetilde{M}(c)$, satisfying the equality

$$
\delta_{M}=\frac{n-2}{2}\left\{\frac{n^{2}}{n-1}\|H\|^{2}+(n+1) \frac{c}{4}\right\}
$$

is minimal. Now, this result is an immediate consequence of our Theorem 2.
2. If $n=3$, in Theorem 2 equality occurs if and only if there is an orthonormal frame $\left\{e_{1}, e_{2}, e_{3}\right\}$ in $T_{x} M$ in which the Weingarten operators take the following form:

$$
A_{J e_{1}}=\left(\begin{array}{lll}
a & b & c \\
b & -a & 0 \\
c & 0 & 0
\end{array}\right), \quad A_{J e_{2}}=\left(\begin{array}{lll}
b & -a & 0 \\
-a & -b & c \\
0 & c & 0
\end{array}\right), \quad A_{J e_{3}}=\left(\begin{array}{lll}
c & 0 & 0 \\
0 & c & 0 \\
0 & 0 & 4 c
\end{array}\right),
$$

where a, b and c are real numbers.
3. In [1] J. Bolton and L. Vrancken showed how to construct all 3dimensional non-minimal submanifolds in $\mathbb{C P}^{3}(4)$ attaining equality in Theorem 2 at all points. The classification in the minimal case can be found in [5].

Acknowledgments. I would like to thank Professor C. Udrişte, who has always been generous with his time and advice.

REFERENCES

[1] J. Bolton and L. Vrancken, Lagrangian submanifolds attaining equality in the improved Chen's inequality, arXiv:math.DG/0604543 v1 (2006).
[2] B. Y. Chen, Some pinching classification theorems for minimal submanifolds, Arch. Math. (Basel) 60 (1993), 568-578.
[3] -, Some new obstructions to minimal Lagrangian isometric immersions, Japan. J. Math. 26 (2000), 105-127.
[4] -, Ideal Lagrangian immersions in complex space forms, Math. Proc. Cambridge Philos. Soc. 128 (2000), 511-533.
[5] B. Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken, Totally real submanifolds of $C P^{n}$ satisfying a basic equality, Arch. Math. (Basel) 63 (1994), 553-564.
[6] T. Oprea, Optimization methods on Riemannian submanifolds, An. Univ. Bucureşti Mat. 54 (2005), 127-136.
[7] -, On a Riemannian invariant of Chen type, Rocky Mountain J. Math., to appear.
[8] C. Udrişte, Convex Functions and Optimization Methods on Riemannian Manifolds, Kluwer, Dordrecht, 1994.
[9] C. Udrişte, O. Dogaru and I. Ţevy, Extrema with Nonholonomic Constraints, Geometry Balkan Press, Bucharest, 2002.

Faculty of Mathematics and Informatics
University of Bucharest
Str. Academiei 14
010014 Bucureşti, Romania
E-mail: teodoroprea@yahoo.com

Received 15 September 2005;
revised 15 October 2006

[^0]: 2000 Mathematics Subject Classification: 53C21, 53C24, 53C25, 49K35.
 Key words and phrases: constrained maximum, Chen's inequality, Lagrangian submanifold.

