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LOCAL EXISTENCE OF SOLUTIONS FOR AN AGGREGATION
EQUATION IN BESOV SPACES

BY

QIAN ZHANG (Beijing)

Abstract. We prove the local in time existence of solutions for an aggregation equa-
tion in Besov spaces. The Fourier localization technique and Littlewood–Paley theory are
the main tools used in the proof.

1. Introduction. In this paper, we consider the following aggregation
equation {

ut +∇ · (u(∇K ∗ u)) = 0,

u(x, 0) = u0(x), (x, t) ∈ Rn × R+,
(1.1)

with a given kernel K : Rn → R. The unknown function u is either the pop-
ulation density of a species or the density of particles in a granular medium.
Aggregation equations of the form (1.1) arise in many problems in biology,
chemistry and population dynamics and describe a collective motion and
aggregation phenomena in biology and in mechanics of continuous media.
From the mathematical point of view, equation (1.1) can be considered as a
nonlinear, nonlocal transport equation, and its character depends strongly
on the properties of the kernel K.

Laurent [14] has studied problem (1.1) in detail and proved several local
and global existence results for a class of kernels K with different regularity.
Bertozzi et al. [2–5] have proved finite-time blowup of solutions correspond-
ing to compactly supported radial initial data. Those results can be summa-
rized as follow. Kernels that are smooth (not singular) at the origin x = 0
lead to the global in time existence of solutions (see e.g. [3, 14]). Nonsmooth
kernels (and C1 off the origin, like K(x) = e−|x|) may lead to blowup of
solutions either in finite or infinite time [2–4, 14–16].

Equation (1.1) has also been intensively considered in the viscous case,
i.e. with the dissipative term (−∆)γu. The authors of [6, 7, 8, 15, 16] studied
the problem (1.1) with fractional dissipation (−∆)γ/2u, and proved finite
blowup of solutions or global wellposedness for a certain class of kernels.
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Recently, Karch and Suzuki [13] have classified kernels which lead either
to the blowup or global existence of solutions to (1.1) with the classical
dissipation ∆u.

The goal of this work is to generalize the recent result by Bertozzi et al. [5]
who considered the local well-posedness of problem (1.1) in Lp spaces with
kernels which are less singular at the origin than the Newtonian potential,
i.e., in the form K(x) = |x|α, α > 2 − n, and K(x) = |x| at the origin. In
addition, they also require the initial datum to have a finite second moment.
The Besov framework adopted in this paper allows us to make two significant
advances in the understanding of the aggregation equation. First, it allows
us to consider potentials which are more general than those considered in
previous papers, namely we require ∇K ∈ W 1,1(Rn), which extends to the
endpoint the case ∇K ∈ W 1,p(Rn), 1 < p < ∞, considered in [5]. Second,
Besov spaces are important spaces which contain Lp spaces, Sobolev spaces
and Hölder spaces and are applied to many different models. In this paper,
using the Fourier localization technique and Littlewood–Paley theory, we
prove the local in time existence of solutions for the aggregation equation in
Besov spaces. We follow the ideas introduced in [6, 9, 11, 17, 18]. Our main
result reads as follows.

Theorem 1.1. Let ∇K ∈ W 1,1(Rn), 1 < p < ∞ and s = 1 + n/p.
Assume that u0 ∈ Bs

p,1(Rn). Then there exists T = T (‖u0‖Bsp,1) such that
the initial value problem (1.1) has a unique solution u ∈ C([0, T ];Bs

p,1(Rn))∩
C1([0, T ];Bs−1

p,1 (Rn)).

We recall the definition of the Besov space Bs
p,1(Rn) in the next section.

Here, we only point out the embedding Bs
2,1 ↪→ Bs

2,2 where Bs
2,2(Rn) =

Hs(Rn) is the usual Sobolev space.
Following the reasoning from [5], one can directly complete the result

stated in Theorem 1.1 by showing that if u0 ∈ Bs
p,1(Rn) ∩ L1(Rn), then the

corresponding solution u of (1.1) satisfies u ∈ C([0, T ];Bs
p,1(Rn) ∩ L1(Rn)).

Moreover, if u0 ≥ 0 then u(t, x) ≥ 0 almost everywhere. For proof that
solutions to (1.1) may blowup in finite time, we refer the readers to [2–5, 7].

2. Preliminaries. Given f ∈ S(Rn), its Fourier transform is defined
by Ff(ξ) = f̂(ξ) = (2π)−n/2

	
Rn e

−ix·ξf(x) dx. Now let us recall the Little-
wood–Paley decomposition (see e.g. [1]). We choose two nonnegative ra-
dial functions χ, ϕ ∈ S(Rn), supported respectively in the ball {ξ ∈ Rn :
|ξ| ≤ 4/3} and in the shell {ξ ∈ Rn : 3/4 ≤ |ξ| ≤ 8/3} such that χ(ξ) +∑

j≥0 ϕ(2−jξ) = 1 for ξ ∈ Rn, and
∑

j∈Z ϕ(2−jξ) = 1 for ξ ∈ Rn\{0}.
For ϕj(ξ) = ϕ(2−jξ), h = F−1ϕ and h̃ = F−1χ, the frequency localization
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operators are defined by

∆jf = ϕ(2−jD)f = 2nj
�

Rn
h(2jy)f(x− y) dy,

Sjf =
∑

−1≤k≤j−1

∆kf = χ(2−jD)f = 2nj
�

Rn
h̃(2jy)f(x− y) dy.

We now define Besov spaces by means of the Littlewood–Paley projections
∆j and Sj :

Definition 2.1. For s ∈ R, 1 ≤ p, q ≤ ∞, the inhomogeneous Besov
space Bs

p,q(Rn) is defined by

Bs
p,q(Rn) = {f ∈ S ′(Rn) : ‖f‖Bsp,q <∞},

where

‖f‖Bsp,q =


( ∞∑
j=−1

2jsq‖∆jf‖qLp
)1/q

for q <∞,

sup
j≥−1

2js‖∆jf‖Lp for q =∞.

The following lemmas will be used in the proof of the main result.

Lemma 2.1 ([12, Lemma A.2]). Let u be a solution of the transport
equation {

ut + v · ∇u = 0,
u(x, 0) = u0,

define Rq := v · ∇∆qu −∆q(v · ∇u), and let 1 ≤ p ≤ p1 ≤ ∞, 1 ≤ r ≤ ∞
and s ∈ R be such that

s > −nmin
(

1
p1
,

1
p′

) (
or s > −1− nmin

(
1
p1
,

1
p′

)
if div v = 0

)
.

There exists a sequence (cq) ∈ `r(Z) such that ‖(cq)‖`r = 1 and a constant
C depending only on n, r, s, p and p1, which satisfy

∀q ∈ Z, 2qs‖Rq‖Lp ≤ CcqZ ′(t)‖u‖Bsp,r
with

Z ′(t) :=


‖∇v‖n/p1Bp1,∞∩L∞

if s < 1 + n/p1,
‖∇v‖Bs−1

p1,r
if either s > 1 + n/p1,
or s = 1 + n/p1 for r = 1.

(2.1)

Lemma 2.2 ([10, Lemma 2.2]). Let s > 0, q ∈ [1,∞]. There exists a
constant C such that

‖fg‖Ḃsp,q ≤ C(‖f‖Lp1‖g‖Ḃsp2,q + ‖g‖Lr1‖f‖Ḃsr2,q),(2.2)
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where p1, r1 ∈ [1,∞] satisfy 1/p = 1/p1 + 1/p2 = 1/r1 + 1/r2. An analogous
inequality is valid when the homogeneous space Ḃs

p,q(Rn) is replaced by its
inhomogeneous counterpart.

Notice that under the assumptions either s > n/p or s ≥ n/p for q = 1,
the space Bs

p,q(Rn) is a Banach algebra.

3. Local existence of solutions. We now prove Theorem 1.1.

Step 1. A priori estimates. We first derive estimates of solutions to
equation (1.1), which we rewrite as follows:

ut + v · ∇u+ u(∆K ∗ u) = 0,
v = ∇K ∗ u,
u(x, 0) = u0(x), (x, t) ∈ Rn × R+.

(3.1)

Applying the operation∆q with q ≥ −1 on both sides of the first equation
of (3.1), we have

∂t∆qu+ v · ∇∆qu = Rq − fq(3.2)

with Rq := v · ∇∆qu−∆q(v · ∇u) and fq = ∆q(u(∆K ∗ u)).
Multiplying equality (3.2) by |∆qu|p−2∆qu yields

(3.3)
d

dt

�

Rn
|∆qu| |∆qu|p−2∆qu+

�

Rn
v · ∇∆qu|∆qu|p−2∆qu

=
�

Rn
Rq|∆qu|p−2∆qu−

�

Rn
Rq|∆qu|p−2∆qu.

Integrating by parts, by the Hölder inequality, we have

(3.4)
d

dt
‖∆qu‖pLp ≤ C(‖Rq‖Lp + ‖fq‖Lp + ‖div v‖L∞‖∆qu‖Lp)‖∆qu‖p−1

Lp .

Then we get
d

dt
‖∆qu‖Lp ≤ C(‖Rq‖Lp + ‖fq‖Lp + ‖div v‖L∞‖∆qu‖Lp).(3.5)

Multiplying both sides of the above inequality by 2qs with q ≥ −1 and
computing the `1 norm, we obtain

(3.6)
d

dt

∥∥2qs‖∆qu‖Lp
∥∥
`1
≤ C

(∥∥2qs‖Rq‖Lp
∥∥
`1

+
∥∥2qs‖fq‖Lp

∥∥
`1

+ ‖div v‖L∞
∥∥2qs‖∆qu‖Lp

∥∥
`1

)
.

By Lemma 2.1, we have
d

dt
‖u‖Bsp,1 ≤ C(‖∇v‖

B
n/p1
p1,1

‖u‖Bsp,1 + ‖∆K‖L1‖u2‖Bsp,1(3.7)

+‖∇v‖Bs−1
p,1
‖u‖Bsp,1)
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≤ C(‖∇v‖Bs−1
p,1
‖u‖Bsp,1 + ‖u‖2Bsp,1)

≤ C(‖v‖Bsp,1‖u‖Bsp,1 + ‖u‖2Bsp,1).

Integrating (3.7) with respect to t, we get

‖u‖L∞t (Bsp,1) ≤ ‖u0‖Bsp,1 + C

t�

0

‖v(τ)‖Bsp,1‖u‖L∞τ (Bsp,1) dτ(3.8)

+ C

t�

0

‖u(τ)‖2Bsp,1 dτ.

Let us show that this inequality leads to the estimate

(3.9) ‖u‖L∞t (Bsp,1) ≤ Ce
C

	t
0 ‖v(τ)‖Bsp,1dτ

×
(
‖u0‖Bsp,1 +

t�

0

e
−C

	t
0 ‖v(τ

′)‖Bsp,1dτ
′
‖u(τ)‖2Bsp,1 dτ

)
.

Indeed, if we denote the right-hand side of inequality (3.8) by F (t), we obtain

F ′(t) ≤ ‖u‖2Bsp,1 + ‖v‖Bsp,1‖u‖Bsp,1 ≤ ‖u‖
2
Bsp,1

+ C‖v‖Bsp,1F (t).

Thus, we have the inequality(
e
−C

	t
0 ‖v(τ)‖Bsp,1dτF

)′ ≤ C‖u‖2Bsp,1e−C 	t
0 ‖v(τ)‖Bsp,1dτ ,

which implies (3.9). This completes the derivation of the a priori estimate
for the solutions of equation (1.1).

Step 2. Approximate solutions and uniform estimates. In order to
establish the local in time existence of solution we construct a sequence
{u(m+1)}, defined recursively by solving the linear equations

∂tu
(m+1) + v(m) · ∇u(m+1) + u(m)(∆K ∗ u(m)) = 0,

v(m) = ∇K ∗ u(m),

u(x, 0) = Sm+1u0(x),

(3.10)

where we set u(0) = 0. The existence of solutions of the above system in
C([0, T ];Bs

p,1) is proved in [1, Ch. 3.2]. By the same procedure as in estimates
leading to (3.9), we obtain

(3.11) ‖u(m+1)(t)‖Bsp,1

≤ CeCV (m)(t)
(
‖u0‖Bsp,1 +

t�

0

e−CV
(m)(τ)‖u(m)(τ)‖2Bsp,1 dτ

)
with V (m) =

	t
0 ‖v

(m)(τ)‖Bsp,1dτ .
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Let us fix a T > 0 such that 2C2‖u0‖Bsp,1T < 1 and suppose that

‖u(m)(t)‖Bsp,1 ≤
C‖u0‖Bsp,1

1− 2C2‖u0‖Bsp,1t
for all t ∈ [0, T ].(3.12)

Plugging (3.12) into (3.11) yields

‖u(m+1)(t)‖Bsp,1 ≤
1

(1− 2C2‖u0‖Bsp,1t)1/2

(
‖u0‖Bsp,1(3.13)

+ C2‖u0‖2Bsp,1

t�

0

dτ

(1− 2C2‖u0‖Bsp,1t)3/2

)

≤
C‖u0‖Bsp,1

1− 2C2‖u0‖Bsp,1t
.

Therefore, {u(m)}m∈N is bounded in L∞([0, T ];Bs
p,1). This clearly entails

that v(m)∇u(m) is bounded in L∞([0, T ];Bs−1
p,1 ). As the third term of the

first equation of (3.10) is bounded in L∞([0, T ];Bs
p,1), we can conclude that

the sequence {u(m)}m∈N is bounded in C([0, T ];Bs
p,1) ∩ C1([0, T ];Bs−1

p,1 ).

Step 3. Existence of solutions. We will show that {u(m)}m∈N is a Cauchy
sequence in C([0, T ];Bs−1

p,1 ). For all (m, k) ∈ N2, using (3.10), it is easy to
verify that the difference u(m+k+1) − u(m+1) satisfies

(3.14) ∂t(u(m+k+1) − u(m+1)) + v(m+k) · ∇(u(m+k+1) − u(m+1))

+ (v(m+k) − v(m)) · ∇u(m+1) + u(m+k)(∆K ∗ (u(m+k) − u(m)))

+ (u(m+k) − u(m))(∆K ∗ u(m)) = 0.

Let ωq = ∆q(u(m+k+1)− u(m+1)), Uq = ∆q((v(m+k)− v(m)) · ∇u(m+1)), Vq =
∆q(u(m+k)(∆K∗(u(m+k)−u(m)))) andWq = ∆q((u(m+k)−u(m))(∆K∗u(m))).
Applying the operation ∆q on both sides of equation (3.14), we have

∂tωq + v(m+k) · ∇ωq = Tq − Uq − Vq −Wq(3.15)

with Tq := v(m+k) ·∇ωq−∆q(v(m+k) ·∇ωq). In the same way as in the proof
of (3.9), we get

(3.16) ‖(u(m+k+1) − u(m+1))(t)‖Bs−1
p,1

≤ CeCV (m+k)(t)

(
‖u(m+k+1)

0 − u(m+1)
0 ‖Bs−1

p,1

+
t�

0

e−CV
(m+k)(τ)(‖Uq‖Bs−1

p,1
+ ‖Vq‖Bs−1

p,1
+ ‖Wq‖Bs−1

p,1
) dτ

)
.
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We now estimate the right-hand side terms of the above inequality. Since

u
(m+k+1)
0 − u(m+1)

0 =
m+k+1∑
q=m+2

∆qu0,

we have

(3.17) ‖u(m+k+1)
0 − u(m+1)

0 ‖Bs−1
p,1
≤ C2−m‖∇∆qu0‖Bs−1

p,1
≤ C2−m‖u0‖Bsp,1 .

Using the fact that Bs−1
p,1 is a Banach algebra, we get

‖Uq‖Bs−1
p,1
≤ C‖v(m+k) − v(m)‖Bs−1

p,1
‖∇u(m+1)‖Bs−1

p,1
(3.18)

≤ C‖∇K‖L1‖u(m+1)‖Bsp,1‖u
(m+k) − u(m)‖Bs−1

p,1

≤ C‖u(m+1)‖Bsp,1‖u
(m+k) − u(m)‖Bs−1

p,1
.

Similarly, we obtain

‖Vq‖Bs−1
p,1
≤ C‖u(m+k)‖Bs−1

p,1
‖∆K ∗ (u(m+k) − u(m))‖Bs−1

p,1
(3.19)

≤ C‖u(m+k)‖Bs−1
p,1
‖∆K‖L1‖u(m+k) − u(m)‖Bs−1

p,1

≤ C‖u(m+k)‖Bsp,1‖u
(m+k) − u(m)‖Bs−1

p,1
,

and

‖Wq‖Bs−1
p,1
≤ C‖u(m+k) − u(m)‖Bs−1

p,1
‖∆K ∗ u(m)‖Bs−1

p,1
(3.20)

≤ C‖u(m)‖Bsp,1‖u
(m+k) − u(m)‖Bs−1

p,1
.

Plugging (3.17)–(3.20) into (3.16) and using the uniform estimates (3.13), we
finally get a constant CT independent of m, k and such that for all t ∈ [0, T ],

(3.21) ‖(u(m+k+1) − u(m+1))(t)‖Bs−1
p,1

≤ CT
(

2−m +
t�

0

‖(u(m+k) − u(m))(τ)‖Bs−1
p,1

dτ
)
.

Proceeding by induction, one can easily prove that

(3.22) ‖u(m+k+1) − u(m+1)‖L∞([0,T ];Bs−1
p,1 )

≤ (TCT )m+1

(m+ 1)!
‖u(k)‖L∞([0,T ];Bsp,1) + CT

m∑
l=0

2−(m−l) (TCT )l

l!
.

As ‖u(k)‖L∞([0,T ];Bsp,1) can be bounded independently of k, we conclude that
there exists a new constant C ′T such that

‖u(m+k+1) − u(m+1)‖L∞([0,T ];Bs−1
p,1 ) ≤ C

′
T 2−m.(3.23)

Consequently, the sequence {u(m)} converges to a function u∈C([0, T ];Bs−1
p,1 ).
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Step 4. Passage to the limit. Now using the definition of weak solutions
to problem (1.1), we find that the limit u ∈ C([0, T ];Bs−1

p,1 ) is a solution
of (1.1) with the initial datum u0 ∈ Bs

p,1. Indeed, for every test function
ϕ ∈ C∞c (Rn × [0,∞)), we have

t�

0

�

Rn
u(m+1)ϕt dx dt−

�

Rn
u(m+1)(x, 0)ϕ(x, 0) dx

= −
t�

0

�

Rn
v(m) · ∇u(m+1)ϕdx dt−

t�

0

�

Rn
u(m)(∆K ∗ u(m))ϕdx dt.

The passage to the limit in the linear terms on the left-hand side is com-
pletely standard. To treat the right-hand side, we have to use the Sobolev
embedding Bs−1

p,1 ↪→ Lp for every p ∈ [1,∞] and the estimates (3.13) of the
sequence {u(m)} in the following way:

∣∣∣ t�
0

�

Rn
v(m) · ∇u(m+1)ϕdx dt−

t�

0

�

Rn
v · ∇uϕdx dt

∣∣∣
≤ C

( t�
0

(‖div v(m)‖L∞‖u(m+1) − u‖Lp‖ϕ‖Lp′

+ ‖v(m)‖L∞‖u(m+1) − u‖Lp‖∇ϕ‖Lp′ ) dt

+
t�

0

‖∇u‖L∞‖v(m) − v‖Lp‖ϕ‖Lp′dt
)

≤ C
(
‖∆K‖L1

t�

0

‖u(m)‖L∞‖u(m+1) − u‖Bs−1
p,1
‖ϕ‖Lp′ dt

+ ‖∇K‖L1

t�

0

‖u(m)‖L∞‖u(m+1) − u‖Bs−1
p,1
‖∇ϕ‖Lp′ dt

+ ‖∇K‖L1

t�

0

‖∇u‖L∞‖u(m) − u‖Bs−1
p,1
‖ϕ‖Lp′ dt

)
≤ C

t�

0

(‖u(m+1) − u‖Bs−1
p,1

+ ‖u(m) − u‖Bs−1
p,1

) dt,

and, similarly,∣∣∣∣ t�
0

�

Rn
u(m)(∆K ∗ u(m))ϕdx dt−

t�

0

�

Rn
u(∆K ∗ u)ϕdx dt

∣∣∣∣
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≤ C
( t�

0

‖u(m) − u‖Lp‖∆K ∗ u‖L∞‖ϕ‖Lp′ dt

+
t�

0

‖u(m)‖L∞‖∆K ∗ (u(m) − u)‖Lp‖ϕ‖Lp′ dt

)

≤ C
t�

0

‖u(m) − u‖Bs−1
p,1

dt.

Step 5. Uniqueness. Consider two solutions u1, u2 ∈ C([0, T ];Bs
p,1) with

the same initial data. Let ω = u1 − u2. Then ω satisfies the equation

(3.24) ∂tω + v1 · ∇ω + (v1 − v2) · ∇u2 + u1(∆K ∗ ω) + ω(∆K ∗ u2) = 0.

In the same way as in deriving (3.21), we obtain the estimate

(3.25) ‖ω‖C([0,T ];Bs−1
p,1 ) ≤ C2T‖ω‖C([0,T ];Bs−1

p,1 ).

Thus, for sufficiently small T , we have ω ≡ 0, i.e., u1 = u2. This completes
the proof of Theorem 1.1.
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