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CONSTRUCTING UNIVERSALLY SMALL SUBSETS
OF A GIVEN PACKING INDEX IN POLISH GROUPS

BY

TARAS BANAKH (Kielce and Lviv) and NADYA LYASKOVSKA (Lviv)

Abstract. A subset of a Polish space X is called universally small if it belongs to
each ccc σ-ideal with Borel base on X. Under CH in each uncountable Abelian Polish
group G we construct a universally small subset A0 ⊂ G such that |A0∩ gA0| = c for each
g ∈ G. For each cardinal number κ ∈ [5, c+] the set A0 contains a universally small subset
A of G with sharp packing index pack](Aκ) = sup{|D|+ : D ⊂ {gA}g∈G is disjoint} equal
to κ.

1. Introduction. This paper is motivated by a problem of Dikranjan
and Protasov [4] who asked if the group Z of integers contains a subset A
such that the family of shifts {x + A}x∈Z contains a disjoint subfamily of
arbitrarily large finite cardinality but does not contain an infinite disjoint
subfamily. This problem can be reformulated in the language of packing
indices pack(A) and pack](A), defined for any subset A of a group G by the
formulas

pack(A) = sup{|D| : D ⊂ {gA}g∈G is a disjoint subfamily},
pack](A) = sup{|D|+ : D ⊂ {gA}g∈G is a disjoint subfamily}.

So, actually Dikranjan and Protasov asked about the existence of a subset
A ⊂ Z with pack](A) = ℵ0. This problem was answered affirmatively in [1]
and [2]. Moreover, in [7] the second author proved that for any cardinal κ
with 2 ≤ κ ≤ |G|+ and κ /∈ {3, 4}, in any Abelian group G there is a subset
A ⊂ G with pack](A) = κ. By Theorem 6.3 of [3], such a set A can be found
in any subset A0 ⊂ G with Pack(A0) = 1 where

Pack(A0) = sup{|A| : A ⊂ {gA0}g∈G is |G|-almost disjoint}.
A family A of subsets of G is called |G|-almost disjoint if |A∩A′| < |G| = |A|
for any distinct A,A′ ∈ A.

A subset A ⊂ G with small packing index can be thought of as large
in a geometric sense because in this case the group G does not contain
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many disjoint translation copies of A. It is natural to compare this largeness
with other largeness properties that have topological or measure-theoretic
nature. It turns out that a subset of a group can have small packing in-
dex (so can be large in the geometric sense) and simultaneously be small in
other senses. In [3] it was proved that each uncountable Polish Abelian
group G contains a closed subset A ⊂ G with Pack(A) = 1 which is
nowhere dense and Haar null in G. According to Theorem 16.3 of [9], un-
der CH (the Continuum Hypothesis), each Polish group G contains a sub-
set A with pack(A) = 1, which is universally null in the sense that A
has measure zero with respect to any atomless Borel probability measure
on G.

In this paper we move further in this direction and prove that under CH
each uncountable Abelian Polish group G contains a subset A ⊂ G with
Pack(A) = 1 which is universally small in the sense that it belongs to any
ccc σ-ideal with Borel base on G. This fact, combined with Theorem 6.3
of [3], allows us to construct universally small subsets of a given packing
index in uncountable Polish Abelian groups.

Following Zakrzewski [11] we call a subset A of a Polish space X uni-
versally small if A belongs to each ccc σ-ideal with Borel base on X. By an
ideal on a set X we understand a family I of subsets of X such that

•
⋃
I = X /∈ I;

• A ∪B ∈ I for any A,B ∈ I;
• A ∩B ∈ I for any A ∈ I and B ⊂ X.

An ideal I on a Polish space X is called

• a σ-ideal if
⋃
A ∈ I for any countable subfamily A ⊂ I;

• an ideal with Borel base if each set A ∈ I is contained in a Borel set
B ∈ I;
• a ccc ideal if X contains no uncountable disjoint family of Borel subsets

outside I.

Standard examples of ccc Borel σ-ideals are the ideal M of meager sub-
sets of a Polish space X and the ideal N of null subsets with respect to
an atomless Borel σ-additive measure on X. This implies that a univer-
sally small subset A is universally null and universally meager. Follow-
ing [10] we call a subset A of a Polish space X universally meager if for
any Borel isomorphism f : A → 2ω the image f(A) is meager in the
Cantor cube 2ω. Universally small sets were introduced by P. Zakrzewski
[11] who constructed an uncountable universally small subset in each un-
countable Polish space. It should be mentioned that there are models of
ZFC [8, §5] in which all universally small sets in Polish spaces have car-
dinality ≤ ℵ1 < c. In such models any universally small set A in the
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real line has maximal possible packing index pack(A) = Pack(A) = c.
This fact shows that the following theorem, which is the main result of
this paper, necessarily has consistency nature and cannot be proved in
ZFC.

Theorem 1. Under CH, each uncountable Abelian Polish group G con-
tains a universally small subset A0 ⊂ G with Pack(A0) = 1.

Combining this theorem with Theorem 6.4 of [3] we get

Corollary 1. Under CH, for any cardinal κ ∈ [2, c+] with κ /∈ {3, 4}
any uncountable Polish Abelian group G contains a universally small subset
A with pack](A) = κ.

2. Universally small sets from coanalytic ranks. In this section
we describe a (known) method of constructing universally small sets, based
on coanalytic ranks. Let us recall that a subset A of a Polish space X is

• analytic if A is a continuous image of a Polish space;
• coanalytic if X \A is analytic.

By Suslin’s Theorem [5, 14.11], a subset of a Polish space is Borel if and
only if it is analytic and coanalytic.

It is known [5, 34.4] that each coanalytic subset K of a Polish space X
admits a rank function rank : K → ω1 that has the following properties:

(1) for every countable ordinal α the set Bα = {x ∈ K : rank(x) ≤ α}
is Borel in X;

(2) each analytic subspace A ⊂ K lies in some set Bα, α < ω1.

The following fact is known and belongs to mathematical folklore (cf. [8,
5.3]). For the convenience of the reader we supply a short proof.

Lemma 1. Let K be a coanalytic non-analytic set in a Polish space X,
rank : K → ω1 be a rank function, and Bα = {x ∈ K : rank(x) ≤ α} for
α < ω1. For any transfinite sequence of points xα ∈ K \Bα, α ∈ ω1, the set
{xα}α∈ω1 is universally small in X.

Proof. Given any ccc Borel σ-ideal I on X, use the classical Szpilrajn-
Marczewski Theorem [6, §11] to conclude that the coanalytic set K belongs
to the completion BI(X) = {A ⊂ X : ∃B ∈ B(X) A 4 B ∈ I} of the
σ-algebra of Borel subsets of X by the ideal I. Consequently, there is a
Borel subset B ⊂ K of X such that K \B ∈ I. By the property of the rank
function, the Borel set B lies in Bβ for some countable ordinal β. Then the
set {xα}α<ω1 belongs to the σ-ideal I, being the union of the countable set
{xα}α≤β and the set {xα}β<α<ω1 ⊂ K \Bα ⊂ K \B from I.
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In order to prove Theorem 1 we shall combine Lemma 1 with the follow-
ing technical lemma that will be proved in Section 4.

Lemma 2. For any uncountable Polish Abelian group G there are a non-
empty open set U ⊂ G and a coanalytic subset K of G such that U ⊂
(K \A)− (K \A) for any analytic subspace A ⊂ K of G.

3. Proof of Theorem 1. Assume the Continuum Hypothesis. Given
an uncountable Polish Abelian group G we need to construct a universally
small subset A ⊂ G with Pack(A) = 1. We shall use the additive notation
for the group operation on G. So, 0 will denote the neutral element of G.
For two subsets A,B ⊂ G we put A + B = {a + b : a ∈ A, b ∈ B} and
A−B = {a− b : a ∈ A, b ∈ B}.

By Lemma 2, there are a non-empty open set U ⊂ G and a coanalytic
subset K such that U ⊂ (K \ B) − (K \ B) for any Borel subset B ⊂ K
of G. This implies that the coanalytic set K is not Borel in G. Let rank :
K → ω1 be a rank function for K. This function induces the decomposition
K =

⋃
α<ω1

Bα into Borel sets Bα = {x ∈ K : rank(x) ≤ α}, α < ω1, such
that each Borel subset B ⊂ K of G lies in some set Bα, α < ω1.

The Continuum Hypothesis allows us to choose an enumeration
U = {uα}α<ω1 of the open set U such that for every u ∈ U the set
Ωu = {α < ω1 : uα = u} is uncountable. The separability of G yields a
countable subset C ⊂ G such that G = C + U .

By induction, for every α < ω1 find two points xα, yα ∈ K \ (Bα ∪
{xβ : β < α}) such that xα − yα = uα. Such a choice is always possible as
U ⊂ (K\B)−(K\B) for any Borel subset B ⊂ K of G. Lemma 1 guarantees
that the sets {xα}α<ω1 and {yα}α<ω1 are universally small in G and so is the
set A = {c+ xα, yα : c ∈ C, α < ω1}. It remains to prove that Pack(A) = 1.
This will follow as soon as we check that A ∩ (z + A) has cardinality of
continuum for every z ∈ G. Since C +U = G, we can find c ∈ C and u ∈ U
such that z = c+u. The choice of the enumeration {uα}α<ω1 guarantees that
the set Ωu = {α < ω1 : uα = u} has cardinality continuum. Now observe
that for every α ∈ Ωu we get z = c + u = c + uα = c + xα − yα and hence
c+xα = z+yα ∈ A∩(z+A), which implies that A∩(z+A) ⊃ {c+xα}α∈Ωu
has cardinality continuum.

4. Proof of Lemma 2. Fix an invariant metric d ≤ 1 generating the
topology of G. This metric is complete because the group G is Polish. The
metric d induces a norm ‖ · ‖ : G → [0, 1] on G defined by ‖x‖ = d(x, 0).
For an ε > 0 we denote by B(ε) = {x ∈ G : ‖x‖ < ε} and B̄(ε) = {x ∈ G :
‖x‖ ≤ ε} the open and closed ε-balls centered at zero.
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We define a subset D of G to be ε-separated if d(x, y) ≥ ε for any distinct
x, y ∈ D. By Zorn’s Lemma, each ε-separated subset S of any subset A ⊂ G
can be enlarged to a maximal ε-separated subset S̃ of A. This set S̃ is an
ε-net for A in the sense that for each a ∈ A there is an s ∈ S̃ with d(a, s) < ε.

Fix any non-zero element a−1 ∈ G and let ε−1 = 1
12‖a−1‖. By induction

we can define a sequence (εn)n∈ω of positive real numbers and a sequence
(an)n∈ω of points of G such that

• 16εn ≤ ‖an‖ < εn−1 for every n ∈ ω.

For every n ∈ ω, fix a maximal 2εn-separated subset Xn 3 0 in B(2εn−1).
The choice of (εn) guarantees that the series

∑
n∈ω εn is convergent and

thus for any (xn)n∈ω ∈
∏
n∈ωXn the series

∑
n∈ω xn is convergent in G

(because ‖xn‖ < 2εn−1 for all n ∈ N). Therefore the following subsets of G
are well-defined:

Σ0 =
{∑
n∈ω

x2n : (x2n)n∈ω ∈
∏
n∈ω

X2n

}
,

Σ1 =
{∑
n∈ω

x2n+1 : (x2n+1)n∈ω ∈
∏
n∈ω

X2n+1

}
.

These sets have the following properties:

Claim 1.

(1) Σ0 ∪Σ1 ⊂ B(4ε−1).
(2) B(2ε−1) ⊂ Σ1 +Σ0.
(3) For every i ∈ {0, 1} the closure Σi −Σi of Σi − Σi in G is not a

neighborhood of zero.

Proof. (1) For every x ∈ Σ0 ∪Σ1 we can find (xn)n∈ω ∈
∏
n∈ωXn with

x =
∑∞

n=0 xn and observe that

‖x‖ ≤
∞∑
n=0

‖xn‖ ≤
∞∑
n=0

2εn−1 <
∑
n∈ω

2ε−1

16n
< 4ε−1.

(2) Given any x ∈ B(2ε−1), find x0 ∈ X0 such that ‖x− x0‖ < 2ε0 (use
the fact that X0 is a 2ε0-net in B(2ε−1)). Continuing by induction, for every
n ∈ ω find xn ∈ Xn such that ‖x −

∑n
i=0 xi‖ < 2εn. After completing the

inductive construction, we obtain a sequence (xn)n∈ω ∈
∏
n∈ωXn such that

x =
∑
n∈ω

xn =
∑
n∈ω

x2n +
∑
n∈ω

x2n+1 ∈ Σ0 +Σ1.

(3) We shall give a detailed proof of the third statement for i = 0 (for
i = 1 the proof is analogous). Since the sequence (a2k+1)k∈ω converges to
zero, it suffices to show that d(a2k+1, Σ0 −Σ0) > 0 for all k ∈ ω.

Given x, y ∈ Σ0, we shall prove that d(a2k+1, x − y) ≥ ε2k+1. If x = y,
then d(a2k+1, x−y) = d(a2k+1, 0) = ‖a2k+1‖ > ε2k+1 by the choice of a2k+1.
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So, assume that x 6= y and find infinite sequences (x2n)n∈ω, (y2n)n∈ω ∈∏
n∈ωX2n with x =

∑
n∈ω x2n and y =

∑
n∈ω y2n.

Let m = min{n ∈ ω : x2n 6= y2n}. If m ≥ k + 1, then

‖x− y‖ =
∥∥∥∑
n≥m

x2n − y2n

∥∥∥ ≤ ∑
n≥m

(‖x2n‖+ ‖y2n‖)

≤ 2
∑
n≥m

2ε2n−1 ≤ 8 ε2m−1 ≤ 8 ε2k+1 < ‖a2k+1‖ − ε2k+1

and hence d(x− y, a2k+1) ≥ ε2k+1.
If m ≤ k, then

‖x− y‖ =
∥∥∥(x2m − y2m) +

∑
n>m

(x2n − y2n)
∥∥∥

≥ ‖x2m − y2m‖ −
∑
n>m

(‖x2n‖+ ‖y2n‖)

≥ 2ε2m − 2
∑
n>m

2ε2n−1 ≥ 2ε2m − 8ε2m+1

≥ 3
2
ε2m ≥

3
2
ε2k > ‖a2k+1‖+

1
2
ε2k

according to the choice of the point a2k+1. Consequently,

d(x− y, a2k+1) ≥ 1
2
ε2k ≥ ε2k+1.

A subset C of G will be called a Cantor set in G if C is homeomorphic
to the Cantor cube {0, 1}ω. By the classical Brouwer Theorem [5, 7.4], this
happens if and only if C is compact, zero-dimensional and has no isolated
points.

Claim 2. For every i ∈ {0, 1} there is a Cantor set Ci ⊂ B(ε0) such that
the map hi : Ci×Σi → G, (x, y) 7→ x+ y, is a closed topological embedding.

Proof. Taking into account that Σi −Σi = Σi −Σi is not a neigh-
borhood of zero in G, and repeating the proof of Lemma 2.1 of [3], we
can construct a Cantor set Ci ⊂ B(ε0) such that for any distinct points
x, y ∈ Ci the shifts x + Σi and y + Σi are disjoint. This implies that the
map hi : Ci × Σi → G, (x, y) 7→ x + y, is injective. Since Ci is compact
and Σi is closed in G, the map hi is closed and hence a closed topological
embedding.

Observe that for every i ∈ {0, 1}, hi(Ci × Σi) = Ci + Σi ⊂ B(ε0) +
B̄(4ε−1) ⊂ B(5ε−1). Now we modify the closed embeddings h0 and h1 to
closed embeddings

h̃0 : C0 ×Σ0 → G, (x, y) 7→ a−1 + x+ y,
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and
h̃1 : C1 ×Σ1 → G, (x, y) 7→ −x− y.

These have images h̃0(C0 × Σ0) ⊂ a−1 + B(5ε−1) and h̃1(C1 × Σ1) ⊂
−B(5ε−1) = B(5ε−1). Since ‖a−1‖ = 12ε−1, we conclude that the closed
subsets h̃i(Ci ×Σi), i ∈ {0, 1}, of G are disjoint.

For every i ∈ {0, 1} fix a coanalytic non-analytic subset Ki in the Cantor
set Ci. It follows that the disjoint union K = h̃0(K0 +Σ0)∪ h̃1(K1 +Σ1) is
a coanalytic subset of G.

The following claim completes the proof of the lemma and shows that
the coanalytic set K and the open set U = a−1 +B(ε−1) have the required
property.

Claim 3. U ⊂ (K \A)− (K \A) for any analytic subspace A ⊂ K.

Proof. Given an analytic subspace A ⊂ K, for every i ∈ {0, 1}, consider
its preimage Ai = h̃−1

1 (A) ⊂ Ci × Σi and its projection pri(Ai) onto Ci.
It follows from A ⊂ K and h̃0(C0 × Σ0) ∩ h̃1(C1 × Σ1) = ∅ that each Ai
is an analytic subspace of the coanalytic set Ki. Since the space Ki is not
analytic, there is a point ci ∈ Ki \ pri(Ai). It follows that

h̃0({c0} ×Σ0) ∪ h̃1({c1} ×Σ1) = (a−1 + c0 +Σ0) ∪ (−c1 −Σ1) ⊂ K \A
and hence

(K \A)− (K \A) ⊃ a−1 + c0 +Σ0 + c1 +Σ1

⊃ a−1 + c0 + c1 +B(2ε−1) ⊃ a−1 +B(ε−1) = U

according to Claim 1(2). The inclusion B(ε−1) ⊂ c0 + c1 +B(2ε−1) follows
from c0 + c1 ∈ C0 + C1 ⊂ B(ε0) +B(ε0) ⊂ B(2ε0) ⊂ B(ε−1).
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