ON β-FAVORABILITY OF THE STRONG CHOQUET GAME

BY
LÁSZLÓ ZSILINSZKY (Pembroke, NC)

Abstract

In the main result, partially answering a question of Telgársky, the following is proven: if X is a first countable R_{0}-space, then player β (i.e. the EMPTY player) has a winning strategy in the strong Choquet game on X if and only if X contains a nonempty W_{δ}-subspace which is of the first category in itself.

1. Introduction. Various aspects and applications of the so-called strong Choquet game $\mathrm{Ch}(X)$ have been thoroughly studied in the literature (cf. [BLR], CP , $\mathrm{Ch}, \mathrm{De}]-\mathrm{De} 3], \mathrm{DM}, \mathrm{GT}], \mathrm{Ma},[\mathrm{NZ}, \mathrm{PZ}], \mathrm{PZ2}$, Por , [Te1], Te 2$],[\mathrm{Zs} 1],[\mathrm{Zs} 2])$. In the game, introduced by Choquet [Ch], two players, α and β, take turn in choosing objects in a topological space $X: \beta$ starts, and always chooses an open set V and a point $x \in V$, then α chooses an open set U such that $x \in U \subseteq V$. After countably many rounds α wins the game if the intersection of the chosen open sets is nonempty; otherwise, β wins. Choquet proved that in a metrizable space X, α has a strategy, depending on all the previous moves of the opponent, which wins every run of the game if and only if X is completely metrizable; Choquet actually proved that this is equivalent to α having a tactic in $\mathrm{Ch}(X)$, i.e. a strategy depending on the very last move of the opponent. It turns out that in a nonmetrizable setting, a winning strategy for α does not always guarantee a winning tactic for α ([HZ, Example 2.7] with [De2] shows this; the completely regular example of [De3] is also of this kind). However, winning tactics and strategies for α coincide in T_{3}-spaces with a base of countable order [BLR] (BCO, in short - see Section 2 for definitions), or in second countable T_{1} spaces [DM].

In this paper we will be interested in β 's chances of winning every run of the game, regardless of α 's choices, i.e. when $\operatorname{Ch}(X)$ is β-favorable. We will not have to worry about a winning tactic vs. strategy for β in $\operatorname{Ch}(X)$, since one implies the other [GT, Corollary 3]. The classical result about β favorability of the strong Choquet game - independently obtained by Debs

[^0][De1, Theorem 4.1] and Telgársky [Te1, Theorem 1.2]-states that in a metrizable space $X, \mathrm{Ch}(X)$ is β-favorable if and only if X is not hereditarily Baire (i.e. X has a nonempty closed non-Baire subspace), or equivalently by Hurewicz' theorem, iff X contains the rationals as a closed (resp. G_{δ}) subspace. Since the main goal of Debs' research in De1] was to generalize Hurewicz' theorem to first countable T_{3}-spaces (see vD for an alternative proof), the following was not explicitly stated, but was established in [De1]:

Debs' Theorem. Let X be a T_{3}, first countable, perfect space (i.e. all closed sets are G_{δ}). Then the following are equivalent:
(i) $\operatorname{Ch}(X)$ is β-favorable,
(ii) X is not hereditarily Baire.

It is not hard to extend Debs' Theorem to any R_{0}-space with a BCO, although a new argument is necessary, since without regularity we cannot rely on embedding the rationals as a closed subspace to produce nonhereditary Baireness. As a byproduct, we prove Debs' Theorem in any first countable perfect space, with no additional separation axioms. To achieve these generalizations, we use so-called W_{δ}-subsets [CCN], introduced by Wicke and Worrell (they called them "sets of interior condensation" WW1]). While studying β-favorability of the strong Choquet game in $T \mathrm{~T} 1$, Telgársky noticed that if X contains a nonempty W_{δ}-subset of the first category in itself, then $\operatorname{Ch}(X)$ is β-favorable, and asked whether the converse is also true:

Telgársky's Problem. Is it true that the following are equivalent:
(i) $\operatorname{Ch}(X)$ is β-favorable,
(ii) X contains a nonempty W_{δ}-subset of the first category in itself?

In our main result (Theorem 3.6) we show that this is indeed the case in first countable R_{0}-spaces. Finally, using hyperspaces with the Vietoris topology, we construct examples that demonstrate the limitations of the conditions from our generalizations of Debs' Theorem.
2. Preliminaries. Unless otherwise stated, all spaces are topological. As usual, ω denotes the nonnegative integers, and every $k \geq 1$ will be viewed as the set of predecessors $k=\{0, \ldots, k-1\} ; \omega_{1}$ is the first uncountable ordinal. Let \mathcal{B} be a base for a topological space X, and denote

$$
\mathcal{E}=\mathcal{E}(X)=\mathcal{E}(X, \mathcal{B})=\{(x, U) \in X \times \mathcal{B}: x \in U\}
$$

In the strong Choquet game $\operatorname{Ch}(X)$ players β and α alternate in choosing $\left(x_{n}, V_{n}\right) \in \mathcal{E}$ and $U_{n} \in \mathcal{B}$, respectively, with β choosing first, so that for each $n<\omega, x_{n} \in U_{n} \subseteq V_{n}$, and $V_{n+1} \subseteq U_{n}$. The play

$$
\left(x_{0}, V_{0}\right), U_{0}, \ldots,\left(x_{n}, V_{n}\right), U_{n}, \ldots
$$

is won by α if $\bigcap_{n} U_{n}\left(=\bigcap_{n} V_{n}\right) \neq \emptyset$; otherwise, β wins.

A strategy in $\operatorname{Ch}(X)$ for α (resp. β) is a function $\sigma: \mathcal{E}^{<\omega} \rightarrow \mathcal{B}$ (resp. $\left.\sigma: \mathcal{B}^{<\omega} \rightarrow \mathcal{E}\right)$ such that

$$
x_{n} \in \sigma\left(\left(x_{0}, V_{0}\right), \ldots,\left(x_{n}, V_{n}\right)\right) \subseteq V_{n} \quad \text { for all }\left(\left(x_{0}, V_{0}\right), \ldots,\left(x_{n}, V_{n}\right)\right) \in \mathcal{E}^{<\omega}
$$

(resp. $\sigma(\emptyset)=\left(x_{0}, V_{0}\right)$ and $V_{n} \subseteq U_{n-1}$, where $\sigma\left(U_{0}, \ldots, U_{n-1}\right)=\left(x_{n}, V_{n}\right)$, for all $\left(U_{0}, \ldots, U_{n-1}\right) \in \mathcal{B}^{n}, n \geq 1$). A strategy σ for α (resp. β) is a winning strategy (w.s. for short) if α (resp. β) wins every run of $\mathrm{Ch}(X)$ compatible with σ, i.e. such that $\sigma\left(\left(x_{0}, V_{0}\right), \ldots,\left(x_{n}, V_{n}\right)\right)=U_{n}$ for all $n<\omega$ (resp. $\sigma(\emptyset)=\left(x_{0}, V_{0}\right)$ and $\sigma\left(U_{0}, \ldots, U_{n-1}\right)=\left(x_{n}, V_{n}\right)$ for all $\left.n \geq 1\right)$. We will say that $\operatorname{Ch}(X)$ is α-, β-favorable, respectively, provided α, resp. β has a w.s. in $\operatorname{Ch}(X)$.

The Banach-Mazur game $\operatorname{BM}(X)$ HMC (also called the Choquet game [Ke]) is played similarly to $\operatorname{Ch}(X)$, the only difference is that both β, α choose open sets from a fixed π-base. Winning strategies and α - and β-favorability of $\operatorname{BM}(X)$ can be defined analogously to $\operatorname{Ch}(X)$. We will only need the fact that in an arbitrary topological space $X, \operatorname{BM}(X)$ is β-favorable iff X is not a Baire space, i.e. X has a nonempty open first category subspace Ke].

A topological space X is an R_{0}-space Da (also called essentially T_{1} WW1) provided for any $x, y \in X, \overline{\{x\}}, \overline{\{y\}}$ are either disjoint, or equal; equivalently, if each open subset U of X contains the closure of each point of U. We will say that X has a base of countable order (BCO) provided there is a sequence (\mathcal{B}_{n}) of bases for X such that whenever $x \in B_{n} \in \mathcal{B}_{n}$, and (B_{n}) is decreasing, then $\left\{B_{n}: n \in \omega\right\}$ is a base at x (Gr]. This definition mimics the definition of a development $\left(\mathcal{B}_{n}\right)$, in which we do not require $\left(B_{n}\right)$ to be decreasing; a space with a development is developable, and a developable T_{3}-space is a Moore space. The term "base of countable order" is justified, because in R_{0}-spaces having a BCO is equivalent to the existence of a single base \mathcal{B} for X such that whenever $\left(B_{n}\right)$ is a strictly decreasing sequence of elements of \mathcal{B} containing some $x \in X,\left(B_{n}\right)$ forms a base of neighborhoods at x WW1, Theorem 2]. Developable spaces have a BCO, but these notions are not equivalent: ω_{1} with the order topology is not developable, but has a BCO (see WW1 for more on these properties).

Let $Y \subseteq X$. A sieve of Y (cf. [CCN], [Gr]) in X is a pair (G, T), where $(T,<)$ is a tree of height ω with levels T_{0}, T_{1}, \ldots, and G is a function on T with X-open values such that

- $\left\{G(t): t \in T_{0}\right\}$ is a cover of Y,
- $Y \cap G(t)=\bigcup\left\{Y \cap G\left(t^{\prime}\right): t^{\prime} \in T_{n+1}, t^{\prime}>t\right\}$ for each n, and $t \in T_{n}$,
- $t \leq t^{\prime} \Rightarrow G(t) \supseteq G\left(t^{\prime}\right)$ for each $t, t^{\prime} \in T$.

We will say that Y is a W_{δ}-set in X if Y has a sieve (G, T) in X such that $\bigcap_{n} G\left(t_{n}\right) \subseteq Y$ for each branch $\left(t_{n}\right)$ of T. A G_{δ}-set is also a W_{δ}-set. A Tychonoff space is sieve complete iff it is a W_{δ}-subspace of a compact
space iff it is a continuous open image of a Čech-complete space WW2, Theorem 4]; in particular, sieve complete spaces are of the second category.

Lemma 2.1.
(i) If in a space X all closed sets are W_{δ}, then X is an R_{0}-space.
(ii) If X has a $B C O$, then all closed subsets of X are W_{δ}.

Proof. (i) Let U be open, and $x \in U$. Assume there is some $y \in \overline{\{x\}} \backslash U$, and let (G, T) be a sieve for $X \backslash U$ witnessing that $X \backslash U$ is a W_{δ}-set. Then there is a branch $\left(t_{n}\right)$ of T with $y \in \bigcap_{n} G\left(t_{n}\right)$, hence, $x \in \bigcap_{n} G\left(t_{n}\right) \subseteq X \backslash U$, a contradiction.
(ii) Let $\left(\mathcal{B}_{n}\right)$ be a sequence of bases from the definition of a BCO, and Y a nonempty closed subset of X. Define $T_{0}=\left\{t \in \mathcal{B}_{0}: t \cap Y \neq \emptyset\right\}$. Assuming that T_{n} has been defined, let the successors of $t \in T_{n}$ be all those members of \mathcal{B}_{n+1} that are included in t, and hit Y. Let G be the identity mapping on $T=\bigcup_{n} T_{n}$. Then (G, T) is a sieve of Y in X. Now, if we had a branch $\left(t_{n}\right)$ in T such that $\bigcap_{n} G\left(t_{n}\right) \nsubseteq Y$, then there would be an $x \in \bigcap_{n} G\left(t_{n}\right) \backslash Y$, which is impossible, since $\left(G\left(t_{n}\right)\right)$ is a base of neighborhoods at x, and $X \backslash Y$ is an open neighborhood of x.

Proposition 2.2. Let Y be a W_{δ}-subset of X. If $\operatorname{Ch}(Y)$ is β-favorable, then so is $\operatorname{Ch}(X)$.

Proof. Let (G, T) be a sieve of Y in X, and σ_{Y} a w.s. for β in $\operatorname{Ch}(Y)$. Well-order T, and for each Y-open U fix an X-open U^{\prime} such that $U^{\prime} \cap Y=U$.

We will define a strategy σ_{X} for β in $\operatorname{Ch}(X)$: if $\sigma_{Y}(\emptyset)=\left(y_{0}, B_{0}\right) \in \mathcal{E}(Y)$, define $\sigma_{X}(\emptyset)=\left(y_{0}, B_{0}^{\prime}\right)$. Let A_{0} be an X-open set such that $y_{0} \in A_{0} \subseteq B_{0}^{\prime}$. Then $y_{0} \in Y \cap A_{0} \subseteq B_{0}$, so we can get $\sigma_{Y}\left(Y \cap A_{0}\right)=\left(y_{1}, B_{1}\right) \in \mathcal{E}(Y)$, and find the first t_{0} in T_{0} with $y_{1} \in G\left(t_{0}\right)$. Define $\sigma_{X}\left(A_{0}\right)=\left(y_{1}, M_{1}\right)$, where $M_{1}=B_{1}^{\prime} \cap G\left(t_{0}\right) \cap A_{0}$.

Assume that for some $n \geq 1$ and all $1 \leq k \leq n, \sigma_{X}\left(A_{0}, \ldots, A_{k-1}\right)=$ $\left(y_{k}, M_{k}\right) \in \mathcal{E}(X)$ has been defined where $M_{k}=B_{k}^{\prime} \cap G\left(t_{k-1}\right) \cap A_{k-1}$ for some $t_{k-1} \in T_{k-1}$ with $t_{0}<\cdots<t_{k-1}$, and $\sigma_{Y}\left(Y \cap A_{0}, \ldots, Y \cap A_{k-1}\right)=$ $\left(y_{k}, B_{k}\right) \in \mathcal{E}(Y)$.

If A_{n} is an X-open set with $y_{n} \in A_{n} \subseteq M_{n}$, then $y_{n} \in Y \cap A_{n} \subseteq$ $Y \cap B_{n}^{\prime}=B_{n}$, so we can get $\sigma_{Y}\left(Y \cap A_{0}, \ldots, Y \cap A_{n}\right)=\left(y_{n+1}, B_{n+1}\right) \in \mathcal{E}(Y)$ and find the first $t_{n} \in T_{n}$ with $t_{n}>t_{n-1}$ such that $y_{n+1} \in G\left(t_{n}\right)$. Put $M_{n+1}=B_{n+1}^{\prime} \cap G\left(t_{n}\right) \cap A_{n}$, and define $\sigma_{X}\left(A_{0}, \ldots, A_{n}\right)=\left(y_{n+1}, M_{n+1}\right)$.

To show that σ_{X} is a w.s. for β, consider a run $\left(y_{0}, M_{0}\right), A_{0}, \ldots,\left(y_{n}, M_{n}\right)$, A_{n}, \ldots of $\operatorname{Ch}(X)$ compatible with σ_{X}, i.e. $M_{0}=B_{0}^{\prime}$ and $\left(y_{n}, M_{n}\right)=$ $\sigma_{X}\left(A_{0}, \ldots, A_{n-1}\right)$ for all $n \geq 1$. Then

$$
\left(y_{0}, B_{0}\right), Y \cap A_{0}, \ldots,\left(y_{n}, B_{n}\right), Y \cap A_{n}, \ldots
$$

is a run of $\operatorname{Ch}(Y)$ compatible with σ_{Y}, so $\bigcap_{n} B_{n}=\emptyset$. On the other hand,
$M_{n} \subseteq G\left(t_{n-1}\right)$, so $\bigcap_{n \geq 1} M_{n} \subseteq \bigcap_{n \geq 1} G\left(t_{n-1}\right) \subseteq Y$, hence $\bigcap_{n \geq 1} M_{n} \subseteq Y \cap$ $\bigcap_{n \geq 1} B_{n}^{\prime}=\bigcap_{n \geq 1} B_{n}=\emptyset$, and β wins this run of $\operatorname{Ch}(X)$.

Corollary 2.3. Let X be a topological space where all closed sets are W_{δ}. If X is not hereditarily Baire, then $\operatorname{Ch}(X)$ is β-favorable.

Denote by $\mathrm{CL}(X)$ the set of all nonempty closed subsets of a T_{1}-space X, and for any $S \subseteq X$ put

$$
S^{-}=\{A \in \mathrm{CL}(X): A \cap S \neq \emptyset\} \quad \text { and } \quad S^{+}=\{A \in \mathrm{CL}(X): A \subseteq S\} .
$$

The Vietoris topology [Mi] τ_{V} on CL (X) has subbase elements of the form U^{-}and U^{+}, where $\emptyset \neq U \subseteq X$ is open. The space $\left(\mathrm{CL}(X), \tau_{V}\right)$ is T_{2} iff X is T_{3}, and ($\left.\mathrm{CL}(X), \tau_{V}\right)$ is compact iff X is compact Mi]. If A is an open (resp. closed) subspace of X, then $\mathrm{CL}(A)$ is an open (resp. closed) subspace of $\mathrm{CL}(X) ; X$ embeds as a subspace in $\mathrm{CL}(X)$ (it embeds as a closed subspace iff X is T_{2}). We will use the fact that $\left(\mathrm{CL}(\omega), \tau_{V}\right)$ is first countable, and zerodimensional, since for each $A \in \operatorname{CL}(\omega),\left\{A^{+} \cap \bigcap_{n \in F}\{n\}^{-}: F \subseteq A\right.$ finite $\}$ forms a countable clopen base of neighborhoods at A.
3. β-favorability of the strong Choquet game. The following is a consequence of a result of Debs [De1, Proposition 2.7]:

Theorem 3.1. Let X be a first countable T_{3}-space. If $\operatorname{Ch}(X)$ is β-favorable, then X contains a closed copy of the rationals.

Theorem 3.2. The following are equivalent:
(i) $\operatorname{Ch}(X)$ is β-favorable,
(ii) X is not hereditarily Baire.
(iii) X contains a closed copy of the rationals,
(iv) X contains a W_{δ} copy of the rationals,
in any of the following cases:
(1) X is a first countable T_{3}-space, where the closed sets are W_{δ},
(2) X is a T_{3}-space with a BCO.

Proof. By Lemma 2.1(ii), (2) implies (1), so we only consider (1): (ii) \Leftrightarrow (iii) holds in any first countable, T_{3}-space (cf. vD or [De1, Corollary 3.7]), $(\mathrm{i}) \Rightarrow($ iii $)$ is Theorem 3.1, $($ iii $) \Rightarrow($ iv $)$ is trivial. To see $($ iv $) \Rightarrow(\mathrm{i})$, let $Y \subset X$ be a nonempty W_{δ} copy of the rationals. Then $\operatorname{BM}(Y)$ is β-favorable, and so is $\operatorname{Ch}(Y)$; thus, $\operatorname{Ch}(X)$ is β-favorable by Proposition 2.2 .

Corollary 3.3. The following are equivalent:
(i) $\operatorname{Ch}(X)$ is β-favorable,
(ii) X is not hereditarily Baire.
(iii) X contains a closed copy of the rationals,
(iv) X contains a G_{δ} copy of the rationals,
(v) X contains $a W_{\delta}$ copy of the rationals, in any of the following cases:
(1) X is a first countable, perfect T_{3}-space,
(2) X is a Moore space.

The following example shows that in the previous two theorems we cannot use regularity and first countability alone (contrary to what Theorem 3.1 would suggest):

Example 3.4. The space $\left(\mathrm{CL}(\omega), \tau_{V}\right)$ is first countable, zero-dimensional, and contains a closed copy of the rationals, but $\operatorname{Ch}(\mathrm{CL}(\omega))$ is α-favorable.

Proof. Observe that $\{\omega \backslash F: F \subset \omega$ finite $\}$ is a countable, dense-initself, regular, and closed subspace of $\left(\mathrm{CL}(\omega), \tau_{V}\right)$, so the rationals embed in (CL $\left.(\omega), \tau_{V}\right)$ as a closed subspace (see also [Pop, Example 6]); α-favorability of $\mathrm{Ch}\left(\mathrm{CL}(\omega), \tau_{V}\right)$ follows from [PZ2, Theorem 4.1] (see also [Zs2]), and the rest is well-known Mi].

Proposition 3.5. If X is not countably compact, then $\left(\mathrm{CL}(X), \tau_{V}\right)$ contains a closed copy of the rationals.

Proof. If X contains a closed copy of ω, then CL (ω) embeds as a closed subspace of ($\left.\mathrm{CL}(X), \tau_{V}\right)$, and Example 3.4 applies.

Our main theorem reads as follows:
Theorem 3.6. Let X be a first countable R_{0}-space. Then the following are equivalent:
(i) $\operatorname{Ch}(X)$ is β-favorable,
(ii) X contains a nonempty G_{δ}-subset of the first category in itself,
(iii) X contains a nonempty W_{δ}-subset of the first category in itself.

Proof. (i) \Rightarrow (ii): Fix a decreasing neighborhood base $\left\{N_{n}(x): n \in \omega\right\}$ at each $x \in X$. Let σ be a w.s. for β in $\operatorname{Ch}(X)$. If $\left(x_{0}, V_{0}\right), U_{0}, \ldots,\left(x_{n}, V_{n}\right), U_{n}, \ldots$ is a run compatible with σ, we can assume that

$$
\begin{equation*}
\overline{\left\{x_{k}\right\}} \neq \overline{\left\{x_{n+1}\right\}} \quad \text { for all } k \leq n ; \tag{1}
\end{equation*}
$$

otherwise, just take the first $m>n+1$ for which $x_{m} \notin \overline{\left\{x_{n}: k \leq n\right\}}$ and redefine $\sigma\left(U_{0}, \ldots, U_{n}\right)=\left(x_{m}, V_{m}\right)$ (such an m exists, since σ is a w.s. for β). For each $s \in \omega^{<\omega}$ define, by induction on the length of s, open sets U_{s}, V_{s}, and $x_{s} \in V_{s}$, as follows. Put $U_{\emptyset}=X,\left(x_{\emptyset}, V_{\emptyset}\right)=\sigma\left(U_{\emptyset}\right)$, and $U_{(0)}=V_{\emptyset}$.

Assume that we have constructed x_{s}, U_{s}, V_{s} for each $s \in \omega^{k}(k<\omega)$ with $\left(x_{s}, V_{s}\right)=\sigma\left(U_{s \mid 0}, \ldots, U_{s \mid k-1}, U_{s}\right)$, where $s \mid i$ is the restriction of s to $i<k$; moreover, $U_{r}{ }^{-0}=V_{r}$ whenever $r \in \omega^{k-1}(k \geq 1)$, and for all $n<\omega$,

$$
U_{r \smile(n+1)} \subseteq N_{n}\left(x_{r}\right) .
$$

Put $U_{s \frown 0}=V_{s}$, and for $n \geq 1$, define $U_{s \frown n}=U_{s \frown(n-1)} \cap N_{n}\left(x_{s}\right)$, and denote
 for each $s \in \omega^{<\omega}$,

$$
\begin{equation*}
\left(U_{s}{ }_{n}\right)_{n} \text { is a decreasing base of neighborhoods at } x_{s} \text {. } \tag{2}
\end{equation*}
$$

Claim 1. The set $Q=\left\{\overline{\left\{x_{s}\right\}}: s \in \omega^{<\omega}\right\}$ is of the first category in itself.
We just need to show that each $\overline{\left\{x_{s}\right\}}$ is nowhere dense in Q : if $x \in U \cap \overline{\left\{x_{s}\right\}}$ for some X-open U, then by R_{0}-ness, $\overline{\left\{x_{s}\right\}}=\overline{\{x\}} \subseteq U$, and by (1) and (2), we can find an $x_{s^{\prime}} \in U$ with $\overline{\left\{x_{s}\right\}} \cap \overline{\left\{x_{s^{\prime}}\right\}}=\emptyset$; thus, $Q \cap\left(U \backslash \overline{\left\{x_{s}\right\}}\right) \subseteq Q \cap U$ is a nonempty Q-open neighborhood of x missing $\overline{\left\{x_{s}\right\}}$.

Claim 2. Q is a G_{δ}-subspace of X.
Indeed, for each $n<\omega$, denote

$$
G_{n}=\bigcup\left\{U_{s \frown n}: s \in \omega^{<\omega}\right\} .
$$

Since, by R_{0}-ness, $\overline{\left\{x_{s}\right\}} \in U_{s{ }^{\wedge} n}$ for every $s \in \omega^{<\omega}$, and $n<\omega$, we have $Q \subseteq \bigcap_{n} G_{n}$. On the other hand, assume $x \in \bigcap_{n} G_{n} \backslash Q$. We will define a finite-splitting subtree $T=\bigcup_{k<\omega} T_{k}$ of $\omega^{<\omega}$ with levels T_{k}, and a function $m: T \rightarrow \omega$ so that for all $k \geq 1$,

$$
\begin{align*}
& T_{k}=\left\{t \in \omega^{k}: \exists s \in \omega^{<\omega}\left(s|k=t, s|(k-1) \in T_{k-1} \text { and } x \in\right.\right. \tag{3}\\
& \left.\left.U_{s \smile\left(n_{k-1}+1\right)}\right)\right\} \text { is nonempty and finite, } \\
& n_{k-1}=\max \left\{m(t): t \in \bigcup_{i<k} T_{i}\right\}, \tag{4}\\
& x \notin \bigcup\left\{U_{t \prec(m(t)+1)}: t \in \bigcup_{i<k} T_{i}\right\} . \tag{5}
\end{align*}
$$

First, put $T_{0}=\{\emptyset\}$. Since $x \notin Q$, there is some $n_{0}=m(\emptyset)<\omega$ with $x \in U_{\left(n_{0}\right)}$ and $x \notin U_{\left(n_{0}+1\right)}$ (otherwise by (2), $\overline{\{x\}}=\overline{\left\{x_{\emptyset}\right\}}$). Then, as $x \in G_{n_{0}+1}$, there must be some $s \in \omega^{<\omega}$ with $|s| \geq 1$ so that $x \in U_{s \smile\left(n_{0}+1\right)} \subseteq V_{s} \subseteq V_{(s(0))}$. Note that for such $s, s \mid 1=s(0) \leq n_{0}$, otherwise $x \in V_{(s(0))} \subseteq U_{(s(0))} \subseteq$ $U_{\left(n_{0}+1\right)}$. It follows that the set

$$
T_{1}=\left\{t \in \omega^{1}: \exists s \in \omega^{<\omega}\left(s \mid 1=t \text { and } x \in U_{s} \smile\left(n_{0}+1\right)\right)\right\}
$$

is nonempty and finite, and (3)-(5) are satisfied for $k=1$.
By induction, assume that (3)-(5) have been demonstrated for some $k=$ $j \geq 1$. Then for each $t \in T_{j}$, we can find $m(t)<\omega$ such that $x \notin U_{t \sim(m(t)+1)}$ and $x \in U_{t-m(t)}$ (otherwise by (2), $\overline{\{x\}}=\overline{\left\{x_{t}\right\}}$), which implies (5) for $k=j+1$.

Define $n_{j}=\max \left\{m(t): t \in \bigcup_{i<j+1} T_{i}\right\}$. Since $x \in G_{n_{j}+1}$, it follows from (5) for $k=j+1$ that there is some $s \in \omega^{<\omega}$ with $|s| \geq j+1$ such that $x \in U_{s\urcorner\left(n_{j}+1\right)} \subseteq V_{s} \subseteq V_{s \mid(j+1)}$. Note that $t=s \mid j \in T_{j}$, since $x \in U_{s \smile\left(n_{j}+1\right)} \subseteq$ $U_{s} \frown\left(n_{j-1}+1\right)$. Moreover, $s(j) \leq n_{j}$, since otherwise

$$
x \in V_{s \mid(j+1)} \subseteq U_{s \mid(j+1)} \subseteq U_{t \sim\left(n_{j}+1\right)} \subseteq U_{t \prec(m(t)+1)} .
$$

It follows that the set

$$
T_{j+1}=\left\{t \in \omega^{j+1}: \exists s \in \omega^{<\omega}\left(s|(j+1)=t, s| j \in T_{j} \text { and } x \in U_{s \frown\left(n_{j}+1\right)}\right)\right\}
$$

is nonempty and finite. This completes the induction.
Since T is finite-splitting, by König's lemma, T has an infinite branch, so we have some $z \in \omega^{\omega}$ with $z \mid k \in T_{k}$ for all $k<\omega$. It follows that, given a k, there is some $s \in \omega^{<\omega}$ with $z|k=s| k$ and $x \in U_{s} \frown\left(n_{k-1}+1\right) \subseteq V_{s} \subseteq V_{s \mid k}$ $=V_{z \mid k}$. This is impossible however, since

$$
\left(x_{z \mid 0}, V_{z \mid 0}\right), U_{z \mid 1},\left(x_{z \mid 1}, V_{z \mid 1}\right), \ldots, U_{z \mid k},\left(x_{z \mid k}, V_{z \mid k}\right), \ldots
$$

is a run of $\mathrm{Ch}(X)$ compatible with σ; thus, $\bigcap_{k} V_{z \mid k}=\emptyset$. This contradiction implies that $\bigcap_{n} G_{n} \backslash Q=\emptyset$, and as a consequence, Q is a G_{δ}-subset of X.
(ii) \Rightarrow (iii) and (iii) \Rightarrow (i) are clear.

Corollary 3.7. Let X be a first countable T_{1}-space. Then the following are equivalent:
(i) $\operatorname{Ch}(X)$ is β-favorable,
(ii) X contains a countable first category G_{δ}-subspace,
(iii) X contains a countable first category W_{δ}-subspace.

Corollary 3.8. Let X be a first countable R_{0}-space. If X is hereditarily Baire, then $\operatorname{Ch}(X)$ is not β-favorable.

Corollary 3.9. The following are equivalent:
(i) $\operatorname{Ch}(X)$ is β-favorable,
(ii) X is not hereditarily Baire,
in any of the following cases:
(1) X is a first countable space where all closed sets are W_{δ},
(2) X is a space with a BCO,
(3) X is a first countable perfect space,
(4) X is a developable space.

Our last example shows that Corollary 3.7 may fail for non-first countable spaces:

Example 3.10. There exists a Hausdorff non-first countable space X such that $\mathrm{Ch}(X)$ is β-favorable, but all nonempty countable W_{δ}-subsets of X are of the second category in themselves.

Proof. Let $P=\left(\omega_{1}+1\right) \times(\omega+1) \backslash\left\{\left(\omega_{1}, \omega\right)\right\}$ be the Tychonoff plank, and $X=\mathrm{CL}(P)$ with the Vietoris topology. Then X is Hausdorff, since P is regular; moreover, X is not first countable, since neither is P. It was shown in [PZ2, Example 4.4] that $\operatorname{Ch}(X)$ is β-favorable (a different proof follows from Remark 3.11).

Claim. All nonempty countable W_{δ}-subsets of X are of the second category in themselves.

Let \mathcal{M} be a countable W_{δ}-subset of X, and (G, T) a sieve for \mathcal{M} in X witnessing that \mathcal{M} is a W_{δ}-set. Denote by π the projection map from P onto $\omega_{1}+1$. There are two cases:

Case 1: $s_{M}=\sup \pi(M)<\omega_{1}$ for each $M \in \mathcal{M}$. Then $\lambda=\sup \left\{s_{M}\right.$: $M \in \mathcal{M}\}<\omega_{1}$, and $P_{0}=(\lambda+1) \times(\omega+1)$ is a clopen subspace of P. Moreover, $X_{0}=\mathrm{CL}\left(P_{0}\right)$ is a clopen subspace of X, and \mathcal{M} is a W_{δ}-subset of X_{0}. Since P_{0} is compact, so is X_{0}, thus \mathcal{M} is sieve complete, and consequently, of the second category in itself.

CASE 2: $s_{M}=\omega_{1}$ for some $M \in \mathcal{M}$. Let $\left(t_{n}\right)$ be a branch in T such that $M \in G\left(t_{n}\right)$ for each n, and without loss of generality, assume that each $G\left(t_{n}\right)$ is a τ_{V}-basic element, i.e. $G\left(t_{n}\right)=G_{n}^{+} \cap \bigcap_{i<m_{n}} U\left(x_{n, i}\right)^{-}$, where $m_{n} \geq 1, G_{n}$ is open in P, and $U\left(x_{n, i}\right) \subseteq G_{n}$ is a basic (compact) neighborhood of $x_{n, i} \in P$. Since $\left(G\left(t_{n}\right)\right)_{n}$ is decreasing, given n and $i<m_{n}$, there is $j<m_{n+1}$ such that $U\left(x_{n+1, j}\right) \subseteq U\left(x_{n, i}\right)$, so we can assume that $m_{n+1}>m_{n}$, and for all $i<m_{n}, U\left(x_{n+1, i}\right) \subseteq U\left(x_{n, i}\right)$. Fix $n<\omega$ and $i<m_{n}$. Then $\bigcap_{p \geq n} U\left(x_{p, i}\right)$ is a nonempty compact set; moreover, we can choose $z_{n, i} \in \bigcap_{p \geq n} \bar{U}\left(x_{p, i}\right)$ with $\pi\left(z_{n, j}\right)<\omega_{1}$. Define $Z=\overline{\left\{z_{n, i}: n<\omega, i<m_{n}\right\}}$; then $\nu_{0}=\sup \pi(Z)<\omega_{1}$. We have two subcases:

- M is uncountable: then $S=M \backslash\left[0, \nu_{0}\right] \times[0, \omega]$ is uncountable, and for all $s \in S$ we have $Z \cup\{s\} \in \bigcap_{n} G\left(t_{n}\right) \subseteq \mathcal{M}$, a contradiction;
- M is countable: then there is $k \in \omega$ with $\left(\omega_{1}, k\right) \in M \subset \bigcap_{n} G_{n}$, so there is $\nu_{0}<c_{n}<\omega_{1}$ with $\left(c_{n}, \omega_{1}\right] \times\{k\} \subset G_{n}$ for all n; denote $c=\sup \left\{c_{n}\right.$: $n<\omega\}$. Then for all $c<r<\omega_{1}$ we have $Z \cup\{(r, k)\} \in \bigcap_{n} G\left(t_{n}\right) \subseteq \mathcal{M}$, a contradiction.

REmARK 3.11. In the above space X, all nonempty countable W_{δ} 's are of the second category in themselves, but there exists an uncountable first category in itself G_{δ}-subset in X, indicating that Telgársky's question might still have a positive answer. To see this, let

$$
\mathcal{Z}_{n}=\left\{A \in X:\left|A \cap\left(\left\{\omega_{1}\right\} \times \omega\right)\right|=\omega \text { and } A \cap\left(\omega_{1} \times[n, \omega]\right)=\emptyset\right\}
$$

and put $\mathcal{Z}=\bigcup_{n} \mathcal{Z}_{n}$. Then

- \mathcal{Z}_{n} is nowhere dense in \mathcal{Z} for each n : indeed, let $A \in \mathcal{Z}_{n}$, and $\mathcal{U}=$ $U^{+} \cap \bigcap_{i \leq k}\left(\left[w_{i}, y_{i}\right] \times\{i\}\right)^{-}$be a τ_{V}-open neighborhood of A, where $U \subseteq P$ open, $w_{i} \leq y_{i} \leq \omega_{1}$. Choose some $\left(\omega_{1}, j\right) \in A$ with $j>n$. Then $\left(\omega_{1}, j\right) \in U$, so there is $w<\omega_{1}$ with $\left[w, \omega_{1}\right] \times\{j\} \subset U$; pick a successor $e>w$ and put $A_{0}=A \cup\{(e, j)\}$. It follows that $A_{0} \in \mathcal{Z}_{j+1} \cap \mathcal{U} \cap\left(\left[w, \omega_{1}\right] \times\{j\}\right)^{-}$and $\mathcal{Z} \cap\left(\mathcal{U} \cap\left[w, \omega_{1}\right] \times\{j\}^{-}\right) \subset \mathcal{U} \backslash \mathcal{Z}_{n}$.
- \mathcal{Z} is a G_{δ}-subset of X : let

$$
\mathcal{G}_{m}=\bigcup_{F \in[\omega]^{m}}\left(\left(\omega_{1}+1\right) \times \omega\right)^{+} \cap \bigcap_{f \in F}\left(\left(\omega_{1}+1\right) \times\{f\}\right)^{-} .
$$

Fix m and $A \in \mathcal{Z}$. Let $F_{0}=\left\{k \in \omega: A \cap \omega_{1} \times\{k\} \neq \emptyset\right\}$ and $n=\left|F_{0}\right|$. If $n<m$, pick $F_{1} \subset \omega \backslash F_{0}$ of size $m-n$ so that $\left(\omega_{1}, j\right) \in A$ for all $j \in F_{1}$. Then $F=F_{0} \cup F_{1} \in[\omega]^{m}$. If $n \geq m$, take a subset $F \subseteq F_{0}$ of size m. Then in both cases, $A \in\left(\left(\omega_{1}+1\right) \times \omega\right)^{+} \cap \bigcap_{f \in F}\left(\left(\omega_{1}+1\right) \times\{f\}\right)^{-}$, so $A \in \mathcal{G}_{m}$. Conversely, let $A \in \bigcap_{m} \mathcal{G}_{m}$. Then there is an infinite set $I \subseteq \omega$ such that $A \cap\left(\omega_{1}+1\right) \times\{i\} \neq \emptyset$ for each $i \in I$. Notice that $\left\{i: A \cap \omega_{1} \times\{i\} \neq \emptyset\right\}$ is finite, as otherwise A has a cluster point in $\omega_{1} \times\{\omega\}$, which is impossible, since $A \subset\left(\omega_{1}+1\right) \times \omega$. It follows that $A \in \mathcal{Z}$.

REMARK 3.12. The previous remark implies that X is not hereditarily Baire, since $\overline{\mathcal{Z}}$ is of the first category in itself; moreover, since P is not countably compact, X contains a closed copy of the rationals by Proposition 3.5 , but no W_{δ} copy of the rationals by Example 3.10. This further shows how Theorem 3.2 breaks down in general.

REFERENCES

[BLR] H. R. Bennett, D. J. Lutzer and G. M. Reed, Domain representability and the Choquet game in Moore and BCO-spaces, Topology Appl. 155 (2008), 445-458.
[CP] J. Cao and Z. Piotrowski, Two variations of the Choquet game, Kyungpook Math. J. 44 (2004), 495-504.
[CCN] J. Chaber, M. M. Coban and K. Nagami, On monotonic generalizations of Moore spaces, Čech complete spaces and p-spaces, Fund. Math. 84 (1974), 107-119.
[Ch] G. Choquet, Lectures on Analysis I, Benjamin, New York, 1969.
[Da] A. Davis, Indexed systems of neighborhoods for general topological spaces, Amer. Math. Monthly 68 (1961), 886-893.
[De1] G. Debs, Espaces héréditairement de Baire, Fund. Math. 129 (1988), 199-206.
[De2] -, Stratégies et tactiques dans le jeu de Choquet, Publ. Math. Univ. Pierre Marie Curie 66 (1984).
[De3] -, Stratégies gagnantes dans certains jeux topologiques, Fund. Math. 126 (1985), 93-105.
[DM] F. G. Dorais and C. Mummert, Stationary and convergent strategies in Choquet games, ibid. 209 (2010), 59-79.
[GT] F. Galvin and R. Telgársky, Stationary strategies in topological games, Topology Appl. 22 (1986), 51-69.
[Gr] G. Gruenhage, Generalized metric spaces, in: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 423-501.
[HMC] R. C. Haworth and R. A. McCoy, Baire spaces, Dissertationes Math. 141 (1977), 77 pp .
[HZ] L. Holá and L. Zsilinszky, Vietoris topology on partial maps with compact domains, Topology Appl. 157 (2010), 1439-1447.
[Ke] A. S. Kechris, Classical Descriptive Set Theory, Springer, New York, 1994.
[Ma] K. Martin, Topological games in domain theory, Topology Appl. 129 (2003), 177-186.
[Mi] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182.
[NZ] P. J. Nyikos and L. Zsilinszky, Strong α-favorability of the (generalized) compactopen topology, Atti Sem. Mat. Fis. Univ. Modena 51 (2003), 1-8.
[PZ1] L. Piątkiewicz and L. Zsilinszky, On (strong) α-favorability of the Wijsman hyperspace, Topology Appl. 157 (2010), 2555-2561.
[PZ2] —, 一, On (strong) α-favorability of the Vietoris hyperspace, Math. Slovaca, to appear.
[Pop] V. Popov, On the subspaces of $\exp X$, in: Topology, Vol. II, Colloq. Math. Soc. J. Bolyai 23, North-Holland, 1978, 977-984.
[Por] E. Porada, Jeu de Choquet, Colloq. Math. 42 (1979), 345-353.
[Te1] R. Telgársky, Remarks on a game of Choquet, ibid. 51 (1987), 365-372.
[Te2] -, Topological games: On the 50th anniversary of the Banach-Mazur game, Rocky Mountain J. Math. 17 (1987), 227-276.
[vD] E. K. van Douwen, Closed copies of the rationals, Comment. Math. Univ. Carolin. 28 (1987), 137-139.
[WW1] H. H. Wicke and J. M. Worrell, Characterizations of developable topological spaces, Canad. J. Math. 17 (1965), 820-830.
[WW2] —, 一, On the open continuous images of paracompact Čech complete spaces, Pacific J. Math. 37 (1971), 265-275.
[Zs1] L. Zsilinszky, Polishness of the Wijsman topology revisited, Proc. Amer. Math. Soc. 126 (1998), 3763-3765.
[Zs2] -, Topological games and hyperspace topologies, Set-Valued Anal. 6 (1998), 187207.

László Zsilinszky
Department of Mathematics and Computer Science
The University of North Carolina at Pembroke
Pembroke, NC 28372, U.S.A.
E-mail: laszlo@uncp.edu

Received 4 May 2011;
revised 1 December 2011

[^0]: 2010 Mathematics Subject Classification: Primary 91A44; Secondary 54E52, 54B20.
 Key words and phrases: strong Choquet game, Banach-Mazur game, (hereditarily) Baire space, sieve, W_{δ}-set, Vietoris topology, Tychonoff plank, R_{0}-space.

