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ON THE LEBESGUE-NAGELL EQUATION

ANDRZEJ DABROWSKI (Szczecin)

Abstract. We completely solve the Diophantine equations 2% + 2%¢® = y" (for ¢ =
17,29,41). We also determine all C' = p{' ---p;* and C = 2°p{* --- pi* where p1,. .., pk
are fixed primes satisfying certain conditions. The corresponding Diophantine equations
2? +C = y" may be studied by the method used by Abu Muriefah et al. (2008) and Luca
and Togbé (2009).

1. Introduction. The Diophantine equation 22 +C =y (z > 1,y > 1,
n > 3) has a rich history. Lebesgue [9] proved that this equation has no
solution when C' = 1. Cohn [7] solved the equation for several values of
1 < C <£100. The remaining values of C' in the above range were covered by
Mignotte and de Weger [13] and by Bugeaud, Mignotte and Siksek [5]. Barros
in his recent PhD thesis considered the range —100 < C < —1. Also, several
authors (Abu Muriefah, Arif, Le, Luca, Pink, Togbé,...) became interested
in the case where only the prime factors of C' are specified (see, for instance,
introductions to [2], [II] and [12]). Abu Muriefah, Luca, Siksek and Tengely
[1] studied the more general equation x2 + C' = 2y™.

Consider the Diophantine equation #2+C = y", where C' = p{* - - PRk or
200pTt ... p* and pi,...,pi are fixed primes satisfying the following three
conditions:

(I) pi=1 (mod4) for alli =1,...,k.

Write C = dz? with d squarefree. Let h(—d) denote the class number of
the imaginary quadratic field Q(v/—d). Let rad(n) denote the radical of the
positive integer n (product of all prime divisors of n).

(IT) rad(h(—d)) |6 for any decomposition C' = dz? as above.
(III) rad(p; £1)|2-3-5-Tforalli=1,... k.

In such cases we can apply the method used in [2] and [12]. If we are
able to determine all S-integral points (with S an explicit set of rational
primes) on some associated elliptic curves, then we can completely solve
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such Diophantine equations. Conditions (I)—(III) above were suggested by
Section 5 in [2].

In this paper, we determine all values of C' satisfying conditions (I)—(III)
(Lemma 2). Radicals of C take exactly 41 values. Some of the equations
22 4+ C = y" with C listed in Lemma 2 were studied in the literature; these
include rad(C) € {5,13,17,29,41,97,2-5,2-13,5-13,2-5- 13}.

Consider C listed in Lemma 2, with rad(C) = 2¢. The cases rad(C) =
10,26 were studied in [11] and [12]. We consider the three remaining cases.
We solve completely the Diophantine equations z2 4 2%¢® = y™ for ¢ = 17,
29, and 41. We apply the method used in [2] and [12]. For n = 3 and n = 4,
the problem is reduced to finding all {2, ¢}-integral points on some elliptic
curves. For n > 5 we use the theory of primitive divisors for Lucas sequences
[3] to deduce that, at most, the cases n = 5, n = 7 are possible. In these cases,
we reduce again the problem to computation of all {2, ¢}-integral points on
some elliptic curves. The calculations were done using Magma [4].

THEOREM 1. The only solutions of the equation
(1) 2?2+ 207 =", zoy>1, ged(z,y)=1,n>3,a,b>0,

are:
n=3, (x,y,a,b)€{(53,1,0), (11 5,2,0)};
n=4, (x,y,a,b) € {(47,9,8,1),(8,3,0,1),(1087,33,8,1),(7,3,5,0),
(9,5,5,1),(4785,71,9,3), (15,7,7,1), (495,23,11,1) };
TL:8, (mvyaaab) = (47737871)
THEOREM 2. The only solutions of the equation
(2) 22 +2929° =y zoy>1, ged(z,y)=1,n>3,a,b>0,
are:
n = 37 (:1:7 y7 a’ b) 6 {(57 3’ ]" 0)7 (1]" 5’ 27 0)7 (3’ 5’ 2’ 1)7 (2666]" 9057 20’ 1)7
(14149, 585,8,1),(79,33,10,1), (1465,129,4, 1),
(95,33,5,2), (73052815, 174753,17,2) };
n:47 (xvyaaub) = (7737570)7
n="1 (x,y,a,b) =(278,5,0,2).
THEOREM 3. The only solutions of the equation

(3) 22 +241° =y zoy>1, ged(z,y) =1,n >3, a,b>0,

n=3, (z,y,a,b)€{(5,3,1,0),(11,5,2,0)};
n = 47 (1:7 y7 a’ b) 6 {(8407 297 07 2)7 (77 37 57 0)7 (877 137 97 1)’ (337 77 57 1)};
n=>5, (x,y,a,b)=(38,5,0,2).
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2. Some useful results. First, let us determine all the primes p =
1 (mod4) satisfying condition (III).

LEMMA 1. There are exactly eight primes p =1 (mod4) satisfying con-
dition (II1): 5, 13, 17, 29, 41, 97, 449, 4801.

Proof We have to find all primes p = 1 (mod 4) satisfying p+1 = 2-3°5¢7¢
and p — 1 = 2%3°%577%. We consider two cases.

CASE (i): b+ 3> 0,c+~ > 0and d+ 0 > 0. Using [§] (or |10, Theorem
4]), we find that the equation p? — 1 = 20H130405¢+779+0 hag exactly six
solutions:

52-1=2%.3, 17?-1=2°.3%2, 292-1=2%.3.5.7, 412-1=2%.3.5.7,
4492 —1=127.3%.52.7, 4801°—-1=2"-3.5%.7%

CASE (ii): b+ =0o0rc+~v=0o0r d+ 6 = 0. In this case, we obtain
two additional primes 13 and 97. To check this statement, one can use, for
instance, [6, Theorems 1 and 2|. We omit the details. m

Now we are ready to determine all values of C' satisfying (I)—(III).
LEMMA 2.

(i) The prime power p® satisfies conditions (1)—(III) iff p € {5, 13,17, 29,
41,97}

(ii) The number C = 2%p* satisfies (I)—(I11) iff p € {5,13,17,29,41}.

(iii) The odd number C = pq® (p, q different odd primes) satisfies
(D)-(I10) iff pq € {5-13,5-17,5-29,5-41,13-17,13-29, 1341, 17 - 29,
17-41,17-97,29 - 41},

(iv) The number C = 2%p%¢® (p, q different odd primes) satisfies
(I)~(I11) iff pg € {5-13,5-17,5-41,13 - 17,17 - 41}.

(v) The odd number C = pi*p3*ps® (p1, p2, p3 different odd primes)
satisfies (I)—(III) iff pipaps € {5 -13 - 17,513 -29,5 - 13 - 41,
5-17-29,5-17-41,5-29-41,13-17-29,13-17-41,13-29 - 41}.

(vi) The number C = 2% p{*p52ps® (p1, p2, ps different odd primes) sat-
isfies (I)~(I11) iff pipaps € {5-13-29,5-17-29,13-17-29,13-29-41}.

(vii) The number C with > 4 different odd prime factors satisfies (1)—(I1I)
iff C = 5%13°17¢414.

Proof. Class number calculations, using Pari. For instance, (i) and (ii)

follow from the following data:

h(=5) = h(=10) =2, h(—13) =2, h(—26) =6,

h(—17) = h(—34) =4, h(—29) =6, h(—58) =2,

h(—41) =8, h(—82)=4, h(=97)=4, h(—194) =20,

h(—449) = 20, h(—898) =12, h(—4801) =56, h(—9602) = 3. =
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3. The case n =3
LEMMA 3. Letn = 3.
(i) The only solutions to equation are
(x,y,a,b) € {(5,3,1,0), (11,5,2,0)}.
(ii) The only solutions to equation are
(z,y,a,b) € {(5,3,1,0), (11,5,2,0), (26661, 905, 20, 1),
(14149, 585, 8, 1), (79, 33,10, 1), (1465, 129, 4, 1),
(95,33,5,2), (73052815, 174753, 17,2)}.
(iii) The only solutions to equation are
(z,y,a,b) € {(5,3,1,0),(11,5,2,0)}.

Proof. Let q € {17,29,41}. Write the equation 2% +2%" = ¢> as (z/23)?
+A = (y/2%)3, where A is a 6th power free positive integer, defined by 2%¢” =
A28 with some integer z. Of course, A = 2%¢® with o, 8 € {0,1,2,3,4,5},
and we obtain the equations

V2=U3-2%"
with U = y/2%, V = 2/23. We have to determine {2, ¢}-integral points on

these 36 elliptic curves; this can be done using Magma. Note that we only
need to consider “admissible” points (U, V') (see [12] p. 141]), i.e.

e we discard the solutions with U < 0 or V = 0;

e we do not consider the solutions having the numerators of U and V
not coprime;

o if UV € Z, then z = 1;

e if U and V are rationals which are not integers, then their numerators
give z and y, and z is determined by their denominators. Therefore, a
and b are determined from the formula 2%¢" = Az5.

Here are the results of our Magma calculations.

(i) The only “admissible” {2, 17}-integral points on V2 = U3 —2%175 are
(U,V,a,B) € {(3,5,1,0),(5,11,2,0) }.

(ii) The only “admissible” {2, 29}-integral points on V2 = U3 — 29295 are

(U, V,a,5) € {(3,5,1,0),(5,11,2,0), (5, 3,2, 1), (905, 26661, 20, 1),

(585,14149, 8, 1), (33,79, 10, 1), (129, 1465, 4, 1),
(33,95, 5,2), (174753, 73052815, 17, 2) }.

(iii) The only “admissible” {2, 41}-integral points on V2 = U3 — 22418

are
(U,V,a,3) € {(3,5,1,0), (5,11,2,0)}.
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4. The case n =4
LEMMA 4. Let n = 4.

(i) The only solutions to equation are
(z,y,a,b) € {(47,9,8,1),(8,3,0,1), (1087, 33,8,1), (7,3,5,0),
(9,5,5,1),(4785,71,9,3), (15,7,7,1), (495,23,11,1)}.
(ii) The only solution to equation is (z,y,a,b) = (7,3,5,0).
(iii) The only solutions to equation are
(z,y,a,b) € {(840,29,0,2), (7,3,5,0), (87,13,9,1), (33,7,5,1)}.

Proof. Let q € {17,29,41}. Write the equation 2% +2%¢® = y* as (x/22)?
+ A = (y/2)*, where A is a 4th power free positive integer, defined by
20qb = Az* with some integer z. Of course, A = 2%¢% with o, 8 € {0,1,2,3},
and we obtain the equations
V2 — U4 _ 20cqﬁ

with U = y/z, V = x/2% We have to determine {2, q}-integral points on
these 16 elliptic curves. As in the case n = 3, we only need to consider
“admissible” points (U, V).

Here are the results of our Magma calculations.

(i) The only “admissible” {2, 17}-integral points on V2 = U% — 217 are

(U, V,a, B) € {(9,47,8,1),(3,8,0,1), (33,1087,8,1), (3,7, 5,0),
(5,9,5,1),(71,4785,9,3), (7,15,7,1), (23,495, 11, 1)}

(ii) The only “admissible” {2, 29}-integral point on V2 = U* — 22290 is
(U, V,a, 8) = (3,7,5,0).

(iii) The only “admissible” {2,41}-integral points on V2 = U4 — 274178
are

(U, V,a, B) € {(29,840,0,2), (3,7,5,0), (13,87,9,1), (7,33,5,1)}. =

5. The case n > 5. Let ¢ € {17,29,41}. We rewrite the Diophantine
equation z2 4 2%¢® = y" as 2% + dz? = y", where d = 1,2, q,2q according
to the parities of the exponents of a and b. Factoring the last equation in
Q(v—d) we get (z + zv/—d)(z — z2/—d) = y". Here z = 2%¢” for some
nonnegative integers o and (3. Conditions (I) and (II) allow us to assume
that o + zy/—d = " with some algebraic integer v = u + vv/—d € Z[v/—d).

As a consequence,

(4) 20H g0V —d = 4" "
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Let n > 5 be a prime. The Lucas number L,, :== (7" —7")/(y —7) has a
primitive prime factor (it cannot be defective, see Table 1 in [3]). A primitive
prime factor r of L,, satisfies the congruence r = e (mod n), where e = (‘T‘ld).

5.1. The Diophantine equation 2+ 2%17° = y™. In this case r = 17,
hence n |16 or n|18. Therefore has no solution with prime n > 5. Note,
using Lemma 4(i), that (1) has a solution (z,y,a,b) = (47,3,8,1) for n = 8.

5.2. The Diophantine equation 2+ 2%29° = y™. In this case r = 29,
hence n |28 or n|30. Therefore, n=7andd=1orn=>5and d = 2.

CASE n = 7. Using with n =7, d = 1, we obtain
(5) v(7u® — 35utv? + 21u?vt — v5) = 22295,
Since u and v are coprime, we have the following possibilities.

(a)v =42229°  (b)v=429°, (c)v=42% (d)v=+l.

We only need to look at the last two possibilities.

In case (¢), v = +2%, and the Diophantine equation is

7u® — 35utv? + 21utvt — o8 = £29°.
Dividing both sides by v%, we obtain
(6) 7X3 —35X%4+21X —1=DY?,

where X = u?/v2 Y =29% /v3, 31 = |3/2], D1 = +1,£29.
In the case D1 = £1, we have to find {2}-integral points on the elliptic
curves

(7) 7X? - 35mX? +21X —n=DiY? 5=+l
We mutiply both sides of by 72 to obtain
(8) U3 — 35nU% + 147U — 49y = V2,

where (U, V) = (TnX,7Y) are {2}-integral points on the above elliptic
curves.

Using Magma, we find (U, V) € {(1,8),(58,—293)} (hence, (X,Y) €
{(1/7,8/7),(58/7,—293/7)}) for n = 1. These do not lead to solutions of (2)).

If n = —1, we find (U, V) € {(~21,56), (—5,8), (0,7), (7, —56), (39, 344),
(301/4,—6377/8)} (and hence (X,Y) € {(3,8),(5/7,8/7),(0,1),(—1,—8),
(—39/7,344/7),(—43/4,—-911/8)}). These do not lead to solutions of
either.

Consider the case D1 = +29. The unique {2}-integral point (2349, —87464)
on the elliptic curve U3 — 35 - 29U2 + 21 - 7- 292U — 7% - 292 = V2 does not
lead to a solution of (2). Magma finds the {2}-integral points (—812, 5887),
(—377,6728), (—5, —776), (91, 4648), (1015, 47096), (8365 /4, —941297/8) on
the elliptic curve U2 4 35 - 29U2% + 21 - 7 - 292U + 7% - 293 = V2. The point
(—812,5887) leads to the solution (z,y,a,b) = (278,5,0,2) of .
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Consider case (d), v = £1. We have to find integral points on
(9) 7X3 —35X%2 421X —1=D,Y?

where D = +1, 42, +£29, +58.

The cases D1 = £1, £29 were treated above.

Consider the case D1 = +2. There exists no integral point on the curve
U3 —35-202421-7-22U —7?.23 = V2, and there are two integral points
(—14,56), (7,91) on the curve U3 + 35202 +21-7-22U + 7% .23 = V2.
These do not lead to solutions of .

Consider the case D1 = £58.There exists no integral point on the curve
U3 —35-2-29U% +21-7-22.292U — 7723 . 293 = V2 and there are two
integral points (58, 6728), (879, —51883) on the curve U3 +35-2-29U2 + 21 -
7-22.292U 4+ 7223 . 293 = V2. These do not lead to solutions of .

CASE n = 5. Using with n =5, d = 2, we obtain
(10) v(5u* — 20u%v? 4 40') = 27295
As in the case n = 7, we only need to check v = +2%, v = £1.

In the first case, the Diophantine equation (10 is 5u* — 20u?v? + 4v* =
+298. Dividing both sides by v*, we obtain

(11) 5X* —20X? +4=DY?

where X = wu/v, Y = 299 /0% B; = |3/2], and D; = =+1,+29. Using
Magma we find three {2}-integral points (0,2), (2,2), (—2,2) on with
Dy = 1, and none in the remaining cases. These points do not lead to
solutions of .

In the second case, the Diophantine equation is but — 20u® + 4 =
422298 We need to find integral points on the curves 5X* — 20X2% 4+ 4 =
D1Y? Dy = 41,42, 4£29, +58. Magma finds no solution.

5.3. The Diophantine equation z? + 2°41° = . We have (Z—f) =
(Z—f) =1, hence in thiscase n =5, d=1orn=25,d = 2.
Using with n =5, d = 2, we obtain

(12) v(5ut — 20u%v? + 4vt) = 2941P.
We only need to check v = £2% v = +1.

In the first case, the Diophantine equation (12)) is 5u* — 20u?v? + 4v* =
+418. Dividing both sides by v*, we obtain

(13) 5X1-20X% +4=D,Y?

where X = u/v,Y = 41% /o2, 81 = | $/2], and D; = +1,441. Using Magma
we find three {2}-integral points (0,2), (2,2), (—2,2) on with D; =1,
and none in the remaining cases. These points do not lead to solutions of .
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In the second case, the Diophantine equation is but — 20u? + 4 =

+2%418. We need to find integral points on the curves 5X* — 20X2 + 4 =
D1Y?, Dy = 41,42, +41,482. Magma finds no solution.

Using with n = 5, d = 1, we obtain v(5u? — 10u?v? 4 v*) = 29415,

In the case v = +2% we obtain bu* — 10u?v? + v* = +41°. Magma finds
{2}-integral points on

5X* —10X%2+1=+4D,Y? D =41,441,

namely, (1,2) if D; = —1, and (2,1) if D; = 41. The point (2,1) gives the
new solution (z,y) = (38,5) of (B).

In the case v = %1, we obtain 5u* — 10u?v? 4+ v* = +£2%41°. Magma finds

no integral points on the curves

(1]
2]
3l

4]

5]

6]
17
8]
9
[10]
[11]

[12]

5X* —10X%2+1=+D,Y? Dy =41,441 +2,+82.
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