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DIVERGENT SOLUTIONS TO THE 5D HARTREE EQUATIONS

BY

DAOMIN CAO and QING GUO (Beijing)

Abstract. We consider the Cauchy problem for the focusing Hartree equation iut +
∆u+ (| · |−3 ∗ |u|2)u = 0 in R5 with initial data in H1, and study the divergence property
of infinite-variance and nonradial solutions. For the ground state solution of −Q+∆Q+
(| · |−3 ∗ |Q|2)Q = 0 in R5, we prove that if u0 ∈ H1 satisfies M(u0)E(u0) < M(Q)E(Q)
and ‖∇u0‖2‖u0‖2 > ‖∇Q‖2‖Q‖2, then the corresponding solution u(t) either blows up in
finite forward time, or exists globally for positive time and there exists a time sequence
tn →∞ such that ‖∇u(tn)‖2 →∞. A similar result holds for negative time.

1. Introduction. In this paper, we consider the following Cauchy prob-
lem for the 5D Hartree equation:

(1.1)
{
iut +∆u+ (V ∗ |u|2)u = 0, (x, t) ∈ R5 × R,
u(x, 0) = u0(x) ∈ H1(R5),

where V (x) = |x|−3, and ∗ denotes convolution in R5.
The Hartree type nonlinearity (| · |2−N ∗ |u|2)u in RN describes the dy-

namics of the mean-field limits of many-body quantum systems such as
coherent states and condensates. Note that equation (1.1) is invariant un-
der the scaling u(x, t) 7→ λ2u(λx, λ2t) which also leaves the norm of the
homogeneous Sobolev space Ḣ1/2(R5) invariant. That is why we call equa-
tion (1.1) the Ḣ1/2-Hartree equation. Similarly, the case N = 4 gives the
L2-critical Hartree equation, the solution of which, by [25], scatters when
the mass of the initial data is strictly less than that of the ground state.
Moreover in [23], the dynamics of minimal mass blowing up solutions of
the focusing L2-critical Hartree equation is characterized. A large amount
of work has been devoted to the scattering theory for the Hartree equation
(see for example [24, 5, 6, 26, 3, 21, 22, 27]).

It is well known from [4] that (1.1) is locally well-posed inH1. Namely, for
u0 ∈ H1, there exist 0 < T ≤ ∞ and a unique solution u(·) ∈ C([0, T );H1)
to (1.1). When T <∞, we have limt↑T ‖∇u(t)‖2 =∞, and say that solution
u blows up in finite positive time. On the other hand, when T = ∞, the
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solution is called positively global. Note that the local theory gives nothing
about the behavior of ‖∇u(t)‖2 as t ↑ ∞. For solutions of (1.1) the following
quantities are conserved:

L2-norm: M(u)(t) ≡
�
|u(x, t)|2dx = M(u0);

Energy : E(u)(t) ≡ 1
2

�
|∇u(x, t)|2 dx

− 1
4

� �

R5×R5

|u(x, t)|2|u(y, t)|2

|x− y|3
dx dy = E(u0);

Momentum: P (u)(t) ≡ Im
�
u(x, t)∇u(x, t) dx = P (u0).

In [3], it is proved that if u0 ∈ H1, M(u0)E(u0) < M(Q)E(Q) and
‖∇u0‖2‖u0‖2 > ‖∇Q‖2‖Q‖2, then the solution u(t) to (1.1) blows up in
finite time provided ‖xu0‖L2 < ∞ or u0 is radial. Note that this result is
sharp in the sense that u(t) = eitQ(x) solves (1.1) and does not blow up in
finite time.

In this paper, in the spirit of Holmer and Roudenko [9] dealing with
the cubic 3D Schrödinger equation, without assuming finite variance and
radiality we obtain the following result:

Theorem 1.1. Suppose that u0 ∈ H1, M(u0)E(u0) < M(Q)E(Q) and
‖∇u0‖2‖u0‖2 > ‖∇Q‖2‖Q‖2. Then either u(t) blows up in finite forward
time, or u(t) is forward global and there exists a time sequence tn → ∞
such that ‖∇u(tn)‖2 →∞. A similar statement holds for negative time.

The difference between NLS and the Hartree equation is the nonlinearity.
The former is a local interaction, while the latter is a nonlocal interaction.
We cannot always use NLS’s arguments to discuss the Hartree equation, es-
pecially when dealing with the nonlinearity. In fact, there are many essential
differences between the NLS and Hartree cases.

Remark 1.2. Using the same argument as in the introduction of [9]
(see more details in Appendix B there), via the Galilean transformation,
we will always assume that P (u) = 0. That is, we need only show Theo-
rem 1.1 under the condition P (u) = 0. In fact, on the one hand, by [9],
the dichotomy result of Propositions 2.1 and 2.2 below is preserved by the
Galilean transformation; on the other hand, from the relationship between
u(t) with nonzero momentum and its Galilean transformation ũ(t) satisfying

ũ(x, t) = eixξe−it|ξ|
2
u(x− 2ξt, t) with ξ =

P (u)
M(u)

we get

P (ũ) = 0, M(ũ) = M(u) = M(Q), ‖∇ũ‖2L2 = ‖∇u‖2L2 −
P (u)2

2M(u)
.

Thus, Theorem 1.1 is also true by the Galilean transformation.
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In this paper, H1 denotes the usual Sobolev space W 1,2(R5) and

‖u‖LV ≡
( � �

R5×R5

|u(x)|2V (x− y)|u(y)|2 dx dy
)1/4

.

As usual, we denote the Lp norm by ‖ · ‖p, and use the convention that c
always stands for absolute constants which may vary from line to line.

The rest of this paper is organized as follows. In Section 2 we recall the
dichotomy and scattering results. In Section 3, we discuss blow-up of so-
lutions based on the virial identity and its localized versions. Section 4 is
devoted to the variational characterization of the ground state and can be
considered as a preparation for Section 5, in which we set up the inductive
argument that will be continued in Sections 7 and 8. In Section 6 we in-
troduce the linear and nonlinear profile decomposition lemmas, which are
needed in the argument of Sections 7 and 8, where we give the proof of
Theorem 1.1.

2. Ground state and dichotomy. As argued in [30, 23], if CHLS is
the best constant in the Hardy–Littlewood–Sobolev inequality

� � |u(x)|2|u(y)|2

|x− y|3
dx dy ≤ CHLS‖u‖2‖∇u‖32,(2.1)

then it is attained at Q that is the unique radial positive solution to

Q−∆Q = (V ∗Q2)Q.(2.2)

The uniqueness of the ground state of (2.2) can be obtained by the same
method as in the cases of dimension three and four ([17] and [16]) by means
of Newton’s theorem [18]. In fact, it suffices to note that the convolution
term in (1.1) is just the Newtonian potential in R5. It is worth pointing out
that, generally, the uniqueness of the ground states of Hartree equations is
an open problem. One can also find some results on this problem in [20].

From (2.2) we have�
|Q|2 dx+

�
|∇Q|2 dx− ‖Q‖4LV = 0,

and the Pokhozhaev identity
5
2

�
|Q|2 dx+

3
2

�
|∇Q|2 dx− 7

4
‖Q‖4LV = 0.

These two equalities imply that

‖Q‖4LV =
4
3
‖∇Q‖22 = 4‖Q‖22.

As a consequence,

CHLS =
‖Q‖4

LV

‖Q‖2‖∇Q‖32
=

4
3

1
‖Q‖2‖∇Q‖2

,(2.3)
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and therefore

E(Q) =
1
6
‖∇Q‖22.(2.4)

Let

(2.5) η(t) =
‖∇u‖2‖u‖2
‖∇Q‖2‖Q‖2

.

By (2.1), (2.3) and (2.4) we have

(2.6) 3η(t)2 ≥ E(u)M(u)
E(Q)M(Q)

≥ 3η(t)2 − 2η(t)3.

Thus, it is not difficult to observe that if 0 ≤ M(u)E(u)/M(Q)E(Q) < 1,
then there exist two solutions 0 ≤ λ− < 1 < λ of the following equation
in λ:

(2.7)
E(u)M(u)
E(Q)M(Q)

= 3λ2 − 2λ3.

On the other hand, if E(u) < 0, there exists exactly one solution λ > 1 to
(2.7).

By the H1 local theory [4], there exist −∞ ≤ T− < 0 < T+ ≤ ∞ such
that (T−, T+) is the maximal time interval of existence for u(t) solving (1.1),
and if T+ <∞ then

‖∇u(t)‖2 →∞ as t ↑ T+.

A similar conclusion holds if T− > −∞. Moreover, as a consequence of the
continuity of the flow u(t), we have the following dichotomy proposition:

Proposition 2.1 (Global versus blow-up dichotomy). Let u0 ∈ H1, and
let I = (T−, T+) be the maximal time interval of existence of u(t) solving
(1.1). Suppose that

(2.8) M(u)E(u) < M(Q)E(Q).

If (2.8) holds and

(2.9) ‖u0‖2‖∇u0‖2 < ‖Q‖2‖∇Q‖2,
then I = (−∞,∞), i.e., the solution exists globally in time, and for all
t ∈ R,

(2.10) ‖u(t)‖2‖∇u(t)‖2 < ‖Q‖2‖∇Q‖2.
If (2.8) holds and

(2.11) ‖u0‖2‖∇u0‖2 > ‖Q‖2‖∇Q‖2,
then for t ∈ I,
(2.12) ‖u(t)‖2‖∇u(t)‖2 > ‖Q‖2‖∇Q‖2.
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Proof. Multiplying the formula for the energy by M(u) and using the
Hardy–Littlewood–Sobolev inequality (2.1), we obtain

E(u)M(u) =
1
2
‖∇u‖2L2‖u‖2L2 −

1
4
‖u‖4LV ‖u‖2L2

≥ 1
2
‖∇u‖22‖u‖22 −

1
4
CHLS‖∇u‖32‖u‖32.

Define f(x) = 1
2x

2 − 1
4CHLSx

3. Then f ′(x) = x(1− (3CHLS/4)x), and f ′(x)
= 0 when x0 = 0 and x1 = ‖∇Q‖2‖Q‖2 = 4/3CHLS by (2.3). Note that
f(0) = 0 and f(x1) = 1

6‖∇Q‖
2
2‖Q‖22. Thus f has two extrema: a local

minimum at x0 and a local maximum at x1. (2.8) implies that E(u0)M(u0)
< f(x1), which combined with energy conservation leads to

(2.13) f(‖∇u‖2‖u‖2) ≤ E(u)M(u0) = E(u)M(u) < f(x1).

If initially ‖∇u0‖2‖u0‖2 < x1, i.e., (2.9) holds, then by (2.13) and the
continuity of ‖∇u(t)‖2 in t, we have ‖∇u(t)‖2‖u(t)‖2 < x1 for all t ∈ I. In
particular, the H1 norm of the solution is bounded, which implies the global
existence and (2.10) in this case.

If initially ‖∇u0‖2‖u0‖2 > x1, i.e., (2.11) holds, then by (2.13) and the
continuity of ‖∇u(t)‖2 in t, we have ‖∇u(t)‖2‖u(t)‖2 > x1 for all t ∈ I,
which proves (2.12).

The following is another statement of the Dichotomy Proposition in
terms of λ and η(t) defined by (2.7) and (2.5) respectively, which will be
useful in what follows.

Proposition 2.2. Let M(u)E(u) < M(Q)E(Q) and 0 ≤ λ− < 1 < λ
be defined as (2.7). Then exactly one of the following statements holds:

(1) The solution u(t) to (1.1) is global and

1
3
E(u)M(u)
E(Q)M(Q)

≤ η(t)2 ≤ λ2
−, ∀t ∈ (−∞,∞).

(2) 1 < λ ≤ η(t) for all t ∈ (T−, T+).

For a better understanding, one can refer to the figure in [9] describing
the relationship between M(u)E(u)/M(Q)E(Q) and η(t). Whether the so-
lution is of the first or second type in Proposition 2.2 is determined by the
initial data. Note that the second case does not assert finite-time blow-up.

In the remainder of this section, we will review the Strichartz estimates
and some facts about scattering. It is well-known that a pair of exponents
(q, r) is Strichartz admissible if

2
q

+
5
r

=
5
2
, 2 ≤ q ≤ ∞, 2 ≤ r ≤ 10

3
.
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Similarly for s > 0, we say that (q, r) is Ḣs(R5) admissible and write
(q, r) ∈ Λs if

2
q

+
5
r

=
5
2
− s, 4 < q ≤ ∞, 10

5− 2s
≤ r < 10

3
.

Correspondingly, the Hölder dual (q′, r′) to (q, r) is dual Ḣs(R5) admissible,
written (q′, r′) ∈ Λ′s, if (q, r) ∈ Λ−s. We define the Strichartz norm

‖u‖S(Ḣ1/2) = sup
(q,r)∈Λ1/2

‖u‖Lq
tL

r
x

and the dual Strichartz norm

‖u‖S′(Ḣ−1/2) = inf
(q′,r′)∈Λ′

1/2

‖u‖
Lq′

t L
r′
x

= inf
(q,r)∈Λ−1/2

‖u‖
Lq′

t L
r′
x
,

where (q′, r′) is the Hölder dual to (q, r).
So we have the following Strichartz estimates:

‖eit∆φ‖S(L2) ≤ c‖φ‖2 and
∥∥∥t�

0

ei(t−t
1)∆f(·, t1) dt1

∥∥∥
S(L2)

≤ c‖f‖S′(L2).

Together with Sobolev embeddings, we obtain

‖eit∆φ‖S(Ḣ1/2) ≤ c‖φ‖Ḣ1/2

and ∥∥∥t�
0

ei(t−t
1)∆f(·, t1) dt1

∥∥∥
S(Ḣ1/2)

≤ c‖D1/2f‖S′(L2).

In fact, we also have the following Kato inhomogeneous Strichartz esti-
mate [10]: ∥∥∥t�

0

ei(t−t
1)∆f(·, t1) dt1

∥∥∥
S(Ḣ1/2)

≤ c‖f‖S′(Ḣ−1/2).(2.14)

We will write S(Ḣ1/2; I) to indicate the restriction to a time subinterval
I ⊂ (−∞,∞).

For the first case of the dichotomy proposition (Proposition 2.2), we have
furthermore scattering results that will be used in the future discussion. We
omit the proofs since they are similar to those in [3].

Lemma 2.3 (Small data). Let ‖u0‖Ḣ1/2 ≤ A. Then there exists δsd =
δsd(A) > 0 such that ‖eit∆u0‖S(Ḣ1/2) ≤ δsd, then u solving (1.1) is global and

‖u‖S(Ḣ1/2) ≤ 2‖eit∆u0‖S(Ḣ1/2),(2.15)
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‖D1/2u‖S(L2) ≤ 2c‖u0‖Ḣ1/2 .(2.16)

Note that by Strichartz estimates, the hypotheses are satisfied if ‖u0‖Ḣ1/2

≤ cδsd.
Theorem 2.4 (Scattering). Suppose that 0 < M(u)E(u)/M(Q)E(Q)

< 1 and the first case of Proposition 2.2 holds. Then u(t) scatters as t→∞
or t→ −∞. That is, there exist φ± ∈ H1 such that

(2.17) lim
t→±∞

‖u(t)− eit∆φ±‖H1 = 0.

Consequently,

(2.18) lim
t→±∞

‖u(t)‖LV = 0

and

(2.19) lim
t→±∞

η(t)2 =
1
3
E(u)M(u)
E(Q)M(Q)

.

Lemma 2.5 (Existence of wave operators). Suppose that φ+ ∈ H1 and

(2.20)
1
2
‖φ+‖22‖∇φ+‖22 < E(Q)M(Q).

Then there exists v0 ∈ H1 such that the corresponding solution v to (1.1)
exists globally and satisfies

‖∇v(t)‖2‖v0‖2 ≤ ‖∇Q‖2‖Q‖2, M(v) = ‖φ+‖22, E(v) =
1
2
‖∇φ+‖22,

and
lim
t→∞
‖v(t)− eit∆φ+‖H1 = 0.

Moreover, if ‖eit∆φ+‖S(Ḣ1/2) ≤ δsd, then

‖v‖S(Ḣ1/2) ≤ 2‖eit∆φ+‖S(Ḣ1/2), ‖D1/2v‖S(L2) ≤ 2c‖φ+‖Ḣ1/2 .

3. Virial identity and blow-up conditions. From now on we will
focus on the second case of Proposition 2.2. Using the classical virial identity
we first derive an upper bound of the finite blow-up time under the finite
variance hypothesis.

Proposition 3.1. Suppose that ‖xu0‖2 <∞. Let M(u) = M(Q), E(u)
< E(Q) and suppose that the second case of Proposition 2.2 holds with λ > 1
defined in (2.7). Let r(t) be the scaled variance given by

r(t) =
‖xu‖22

48λ2(λ− 1)E(Q)
.

Then blow-up occurs in forward time before tb, where

tb = r′(0) +
√
r′(0)2 + 2r(0).
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Proof. The virial identity gives

r′′(t) =
24E(u)− 4‖∇u‖22
48λ2(λ− 1)E(Q)

.

Using (2.3) we obtain

r′′(t) =
1

2λ2(λ− 1)

(
E(u)
E(Q)

− ‖∇u‖
2
2

‖∇Q‖22

)
.

By the definition of λ and η,

r′′(t) =
3λ2 − 2λ3 − η(t)2

2λ2(λ− 1)
.

Since η(t) ≥ λ > 1, we have

r′′(t) ≤ −1,

which by twice integrating in time gives

r(t) ≤ −1
2
t2 + r′(0)t+ r(0).

Note that tb is the positive root of the polynomial on the right hand side,
which leads to r(t) ≤ tb.

The next result is related to the local virial identity. Let ϕ ∈ C∞c (RN )
be radial such that ϕ′′ ≤ 2 and

ϕ(x) =
{
|x|2, |x| ≤ 1,
0, |x| ≥ 2.

For R > 0 define

(3.1) zR(t) =
�
R2φ

(
x

R

)
|u(x, t)|2 dx.

Then by direct calculations we obtain the following local virial identity:

(3.2) z′′R(t) = 4
∑
j,k

�
∂j∂kϕ

(
x

R

)
∂j ū∂ku dx−

1
R2

�
∆2ϕ

(
x

R

)
|u|2 dx

+R
� �(
∇ϕ
(
x

R

)
−∇ϕ

(
y

R

))
∇V (x− y)|u(x)|2|u(y)|2 dx dy.

Set

I = 3
∑
j

� �[(
2xj −R∂jϕ

(
x

R

))
−
(

2yj −R∂jϕ
(
y

R

))]
× xj − yj
|x− y|5

|u(x)|2|u(y)|2dxdy,

and by the definition of ϕ, we have

z′′R(t) = 24E(u)− 4‖∇u‖22 +AR(u(t)),
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where

AR(u(t)) = 4
∑
j 6=k

�

|x|>R

∂j∂kϕ

(
x

R

)
∂j ū∂ku dx

+ 4
∑
j

�

|x|≤R

[
∂2
jϕ

(
x

R

)
− 2
]
|∇u|2 dx

− 1
R2

�

|x|>R

∆2ϕ

(
x

R

)
|u|2 dx+ I.

Observe that I vanishes in the region |x|, |y| ≤ R, while in the region
|x|, |y| ≥ R, I becomes 6

	
|x|≥2R

	
|y|≥2R V (x−y)|u(x)|2|u(y)|2 dy dx. In other

cases, since the integral is symmetric with respect to x and y, I is bounded
by

6
∑
j

� �

|x|≥R

[(
2xj −R∂jϕ

(
x

R

))
−
(

2yj −R∂jϕ
(
y

R

))]
× xj − yj
|x− y|5

|u(x)|2|u(y)|2 dx dy,

which is bounded by c
	 	
|x|≥R

|u(x)|2|u(y)|2
|x−y|3 dx dy. Thus, for a suitable radial

function ϕ such that ϕ′′ ≤ 2, we have the following control:

AR(u(t)) ≤ c
(

1
R2
‖u‖2L2(|x|>R) + ‖u‖4LV (|x|>R)

)
.(3.3)

The local virial identity will give another version of Proposition 3.1, for
which, without the assumption of finite variance, we will assume that the
solution is suitably localized in H1 for all times.

Proposition 3.2. Let M(u) = M(Q), E(u) < E(Q) and suppose that
the second case of Proposition 2.2 holds with λ > 1 defined in (2.7). Select γ
such that 0 < γ < min{λ− 1, 1}. Suppose that there is a radius R ≥

√
c/6γ

such that for all t,

(3.4) ‖u‖4LV (|x|≥R) <
6γE(Q)

c
,

where the absolute constant c is determined in (3.3). Let r̃(t) be the scaled
local variance given by

r̃(t) =
zR(t)

48λ2(λ− 1− γ)E(Q)
.

Then blow-up occurs in forward time before tb, where

tb = r̃′(0) +
√
r̃′(0)2 + 2r̃(0).
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Proof. In view of the assumptions, by the local virial identity and the
same steps as in the proof of Proposition 3.1,

r̃′′(t) =
1

48λ2(λ− 1− γ)E(Q)
(
24E(u)− 4‖∇u‖22 +AR(u(t))

)
=

1
2λ2(λ− 1− γ)

(
3λ2 − 2λ3 − η(t)2 +

AR(u(t))
24E(Q)

)
≤ 3λ2 − 2λ3 − η(t)2

2λ2(λ− 1− γ)
+

c
R2 ‖u‖2L2(|x|>R)

48E(Q)λ2(λ− 1− γ)
+

c‖u‖4
LV (|x|>R)

48E(Q)λ2(λ− 1− γ)

≤ 1
2λ2(λ− 1− γ)

(3λ2 − 2λ3 − η(t)2 + γη(t)2) ≤ 1.

Finally, we complete our proof as in the proof of Proposition 3.1.

Remark 3.3. Note that by the Hardy–Littlewood–Sobolev inequalities,
Hölder estimates and Sobolev embeddings, the assumption (3.4) is satisfied
by u which is H1 bounded and H1 localized, i.e. for any ε > 0 there exists
R > 0 large enough such that ‖u‖H1(|x|≥R) ≤ ε.

We will finally give a quantified proof of finite-time blow-up for radial
solutions, for which we need the following radial Sobolev embedding: If u ∈
H1(Rd) is radially symmetric, then

(3.5)
∥∥|x|(d−1)/2u

∥∥2

∞ ≤ c‖u‖2‖∇u‖2.

Proposition 3.4. Let M(u) = M(Q), E(u) < E(Q). Suppose u is
radial and the second case of Proposition 2.2 holds with λ > 1 defined
in (2.7). Select γ such that 0 < γ < min{λ − 1, 1}. Suppose that R ≥
max{

√
c/6γ, (cE(Q)/12γ)5/4}, where the absolute constant c is determined

by those in (3.3) and (3.5). Let r̃(t) be the scaled local variance given by

r̃(t) =
zR(t)

48λ2(λ− 1− γ)E(Q)
.

Then blow-up occurs in forward time before tb = r̃′(0) +
√
r̃′(0)2 + 2r̃(0).

Proof. Again from the local virial identity,

r̃′′(t) =
1

48λ2(λ− 1− γ)E(Q)
(24E(u)− 4‖∇u‖22 +AR(u(t)))

≤ 3λ2 − 2λ3 − η(t)2

2λ2(λ− 1− γ)
+

c
R2 ‖u‖2L2(|x|>R)

48E(Q)λ2(λ− 1− γ)

+
c‖u‖4

LV (|x|>R)

48E(Q)λ2(λ− 1− γ)
.
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The radial Sobolev embedding (3.5) implies that for any p ≥ 2,

‖u‖pLp(|x|>R) ≤
c

R2p−2
‖u‖(p+2)/2

L2(|x|>R)
‖∇u‖(p−2)/2

L2(|x|>R)
.

This, combined with the Hardy–Littlewood–Sobolev inequalities and Hölder
estimates, implies that

‖u‖4LV (|x|>R) ≤ ‖u‖
2
L10/7(R5)

‖u‖2
L10/7(|x|>R)

≤ c

R4/5
‖u‖11/5

L2(R5)
‖∇u‖9/5

L2(R5)

≤ cE(Q)2

R(4)/5
η(t)2.

Thus in view of the assumptions, we have

r̃′′(t) ≤ 1
2λ2(λ− 1− γ)

(3λ2 − 2λ3 − η(t)2 + γη(t)2) ≤ 1.

Arguing as in the proof of the preceding propositions we can complete our
proof.

4. Variational characterization of the ground state. In this sec-
tion we deal with the variational characterization of Q defined in Section 2.
This is an important preparation for the “near boundary case” in Section 5.
Since time dependence plays no role in this section, we will write u = u(x)
from now on.

Proposition 4.1. There exists a function ε(ρ) with ε(ρ)→ 0 as ρ→ 0
such that the following holds: Suppose there is λ > 0 satisfying

(4.1)
∣∣∣∣ M(u)E(u)
M(Q)E(Q)

− (3λ2 − 2λ3)
∣∣∣∣ ≤ ρλ3,

and

(4.2)
∣∣∣∣ ‖u‖2‖∇u‖2‖Q‖2‖∇Q‖2

− λ
∣∣∣∣ ≤ ρ{λ, λ ≥ 1,

λ2, λ ≤ 1.

Then there exist θ ∈ R and x0 ∈ R5 such that

(4.3) ‖u− eiθλ5/2β−2Q(λ(β−1 · −x0))‖2 ≤ β1/2ε(ρ)

and

(4.4) ‖∇[u− eiθλ5/2β−2Q(λ(β−1 · −x0))]‖2 ≤ λβ−1/2ε(ρ),

where β = M(u)/M(Q).

Remark 4.2. If we let v(x) = β2u(βx), then M(v) = β−1M(u) =
M(Q), and we can restate Proposition 4.1 as follows:

Suppose ‖v‖2 = ‖Q‖2 and there is λ > 0 such that

(4.5)
∣∣∣∣ E(v)
E(Q)

− (3λ2 − 2λ3)
∣∣∣∣ ≤ ρλ3,
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and

(4.6)
∣∣∣∣ ‖∇v‖2‖∇Q‖2

− λ
∣∣∣∣ ≤ ρ{λ, λ ≥ 1,

λ2, λ ≤ 1.

Then there exist θ ∈ R and x0 ∈ R5 such that

(4.7) ‖v − eiθλ5/2Q(λ(· − x0))‖2 ≤ ε(ρ)

and

(4.8) ‖∇[v − eiθλ5/2Q(λ(· − x0))]‖2 ≤ λε(ρ).

Thus it suffices to prove the scaled statement equivalent to Proposi-
tion 4.1. We will apply the following result of Lions [19].

Lemma 4.3. There exists a function ε(ρ), defined for small ρ > 0, such
that limρ→0 ε(ρ) = 0 and for all u ∈ H1 with

(4.9)
∣∣‖u‖LV − ‖Q‖LV

∣∣+
∣∣‖u‖2 − ‖Q‖2∣∣+

∣∣‖∇u‖2 − ‖∇Q‖2∣∣ ≤ ρ,
there exist θ0 ∈ R and x0 ∈ RN such that

(4.10) ‖u− eiθ0Q(· − x0)‖H1 ≤ ε(ρ).

Proof of Proposition 4.1. In view of Remark 4.2, we will prove the equiv-
alent version rescaling the mass. Set ũ(x) = λ−5/2v(λ−1x). Then (4.6) gives

(4.11)
∣∣∣∣ ‖∇ũ‖2‖∇Q‖2

− 1
∣∣∣∣ ≤ ρ.

On the other hand, (2.3), (4.5) and (4.6) imply

2
∣∣∣∣ ‖v‖4LV

‖Q‖4
LV

− λ3

∣∣∣∣ ≤ ∣∣∣∣ E(v)
E(Q)

− (2λ3 − 3λ2)
∣∣∣∣+ 3

∣∣∣∣ ‖∇v‖22‖∇Q‖22
− λ2

∣∣∣∣
≤ ρλ3 + 3ρ

{
λ2, λ ≥ 1,
λ4, λ ≤ 1

≤ 4ρλ3.

Thus in terms of ũ, we obtain

(4.12)
∣∣∣∣ ‖ũ‖4LV

‖Q‖4
LV

− 1
∣∣∣∣ ≤ 2ρ.

Thus (2.20) and (4.12) imply that ũ satisfies (4.9) (maybe with different ρ).
By Lemma 4.3 and scaling back to v, we obtain (4.7) and (4.8).

5. Near-boundary case. We know from Proposition 2.2 that if M(u)
= M(Q) and E(u)/E(Q) = 3λ2 − 2λ3 for some λ > 1 and ‖∇u0‖2/‖∇Q‖2
≥λ, then ‖∇u(t)‖2/‖∇Q‖2≥λ for all t. Now we claim that ‖∇u(t)‖2/‖∇Q‖2
cannot remain near λ globally in time.
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Proposition 5.1. Let λ0 > 1. There exists ρ0 = ρ0(λ0) > 0, with
ρ0(λ0)→ 0 as λ0 → 1, such that for any λ ≥ λ0, the following holds: There
does not exist a solution u(t) of problem (1.1) with P (u) = 0 satisfying
M(u) = M(Q),

(5.1)
E(u)
E(Q)

= 3λ2 − 2λ3,

and for all t ≥ 0,

(5.2) λ ≤ ‖∇u(t)‖2
‖∇Q‖2

≤ λ(1 + ρ0).

An equivalent statement is: For any solution u(t) to (1.1) with P (u) = 0
satisfying M(u) = M(Q), (5.1), and ‖∇u(t)‖2/‖∇Q‖2 ≥ λ for all t ≥ 0,
there exists a time t0 ≥ 0 such that ‖∇u(t0)‖2/‖∇Q‖2 ≥ λ(1 + ρ0).

Before proving Proposition 5.1, following the idea of [2], we introduce a
useful lemma.

Lemma 5.2. Suppose that u(t) with P (u) = 0 solving (1.1) satisfies, for
all t,

(5.3) ‖u(t)− eiθ(t)Q(· − x(t))‖2H1 ≤ ε
for some continuous functions θ(t) and x(t). Then if ε > 0 is sufficiently
small, we have

|x(t)|
t
≤ cε as t→∞.

Proof. If not, (5.3) holds for any small ε > 0 while there exists a time
sequence tn →∞ such that |x(tn)|/tn ≥ ε0 with some ε0 > 0. Without loss
of generality we assume x(0) = 0. For R > 0 we define t0(R) = inf{t ≥ 0 :
|x(t)| ≥ R} and then by the continuity of x(t) we find that 1) t0(R) > 0;
2) |x(t)| < R for 0 ≤ t < t0(R); and 3) |x(t0(R))| = R. If we set Rn =
|x(tn)| and t̃n = t0(Rn), then tn ≥ t̃n, which implies that Rn/t̃n ≥ ε0. From
|x(tn)|/tn ≥ ε0 and tn → ∞ we deduce that Rn = |x(tn)| → ∞. Thus,
t̃n = t0(Rn)→∞. From now on, we will work on the time interval [0, t̃n] to
get a contradiction.

For that purpose we need a uniform localization. That is, for any ε > 0
there exists R0(ε) ≥ 0 such that for all t ≥ 0,�

|x−x(t)|≥R0(ε)

(|u|2 + |∇u|2) dx ≤ 2ε.(5.4)

In fact, since the ground state Q is in H1, there must exist R(ε) > 0 such
that �

|x|≥R(ε)

(|Q|2 + |∇Q|2 + (V ∗ |Q|2)|Q|2) dx ≤ ε.(5.5)
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Thus, taking R0(ε) = R(ε) we have

�

|x−x(t)|≥R0(ε)

(|u|2 + |∇u|2) dx

≤
� (
|u− eiθ(t)Q(· − x(t))|2 + |∇(u− eiθ(t)Q(· − x(t)))|2

)
dx

+
�

|x−x(t)|≥R(ε)

(
|Q(· − x(t))|2 + |∇Q(· − x(t))|2

)
dx ≤ 2ε.

Let θ ∈ C∞c (R) be such that θ(x) = x for −1 ≤ x ≤ 1, θ(x) = 0
for |x| ≥ 21/3, |θ(x)| ≤ |x|, ‖θ‖∞ ≤ 2 and ‖θ′‖∞ ≤ 4. For x ∈ R5, let
φ(x) = (θ(x1), . . . , θ(x5)); then φ(x) = x for |x| ≤ 1 and ‖φ‖∞ ≤ 2. For
R > 0, set φR(x) = Rφ(x/R). We consider the truncated center of mass:
zR(t) =

	
φR(x)|u(x, t)|2 dx and [z′R(t)]j = 2 Im

	
θ′(xj/R)∂juū dx.

By the zero momentum property we obtain |z′R(t)| ≤ 5
	
|x|≥R(|u|2 +

|∇u|2) dx. Setting R̃n = Rn+R0(ε), we have |x−x(t)| ≥ R0(ε) for 0 ≤ t ≤ t̃n
and |x| > R̃n. Then by the uniform localization (5.4), we obtain

|z′
R̃n

(t)| ≤ 5ε.(5.6)

Now we claim that

|zR̃n
(0)| ≤ R0(ε)M(u) + 2R̃nε(5.7)

and

|zR̃n
(t̃n)| ≥ R̃n(M(u)− 3ε)− 2R0(ε)M(u).(5.8)

In fact, first, the upper bound for zR̃n
(0) can be obtained from

zR̃n
(0) =

�

|x|<R0(ε)

φR̃n
(x)|u0(x)|2 dx+

�

|x|≥R0(ε)

φR̃n
(x)|u0(x)|2 dx

and (5.4) immediately. Next, we show the lower bound for zR̃n
(t) as follows.

For 0 ≤ t ≤ t̃n, we split zR̃n
(t) into

zR̃n
(t) =

�

|x−x(t)|<R0(ε)

φR̃n
(x)|u(x, t)|2 dx+

�

|x−x(t)|≥R0(ε)

φR̃n
(x)|u(x, t)|2 dx

≡ I + II.

Again from (5.4), we obtain |II| ≤ 2R̃nε. For I, since |x| ≤ |x−x(t)|+|x(t)| ≤
R0(ε) +Rn = R̃nε, we can write
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I =
�

|x−x(t)|<R0(ε)

(x− x(t))|u(x, t)|2 dx+ x(t)
�

|x−x(t)|<R0(ε)

|u(x, t)|2 dx

=
�

|x−x(t)|<R0(ε)

(x− x(t))|u(x, t)|2 dx+ x(t)M(u)

− x(t)
�

|x−x(t)|≥R0(ε)

|u(x, t)|2 dx

≡ I1 + I2 + I3.

Since |I1| ≤ R0(ε)M(u), and since |I3| ≤ |x(t)|ε by (5.4), we have

|zR̃n
(t)| ≥ |I2| − |I1| − |I3| − |II| ≥ |x(t)|M(u)−R0(ε)M(u)− 3R̃nε,

which gives (5.8) since |x(t̃n)| = Rn.
Combining (5.6)–(5.8), we obtain

5εt̃n ≥
∣∣∣t̃n�
0

z′
R̃n

(t) dt
∣∣∣ ≥ |zR̃n

(t̃n)− zR̃n
(0)| ≥ R̃n(M(u)− 5ε)− 3R0(ε)M(u).

Thus assuming ε ≤ M(u)/5, since R̃n ≥ Rn and Rn/t̃n ≥ ε0, we finally
obtain

5ε ≥ ε0(M(u)− 5ε)− 3R0(ε)M(u)
t̃n

.

If we take ε < M(u)ε0/20 and let n → ∞ (hence t̃n → ∞), we get a
contradiction.

We shall prove Proposition 5.1 using the above lemma; our arguments,
unlike those for the Schrödinger equation, will not use any exponential decay
property of the ground state Q.

Proof of Proposition 5.1. Towards a contradiction, suppose that there
exists a solution u(t) satisfying M(u) = M(Q), E(u)/E(Q) = 3λ2−2λ3 and

(5.9) λ ≤ ‖∇u(t)‖2
‖∇Q‖2

≤ λ(1 + ρ0).

Since ‖∇u(t)‖22 ≥ λ2‖∇Q‖22 = 6λ2E(Q), we have

24E(u)− 4‖∇u(t)‖22 ≤ −48E(Q)λ2(λ− 1).

By Proposition 4.1, there exist functions θ(t) and x(t) such that for ρ = ρ0,

(5.10) ‖u(t)− eiθ(t)λ5/2Q(λ(· − x(t)))‖2 ≤ ε(ρ)

and

(5.11) ‖∇[u(t)− eiθ(t)λ5/2Q(λ(· − x(t)))]‖2 ≤ λε(ρ).
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By the continuity of the u(t) flow, we may assume θ(t) and x(t) are contin-
uous. Let

R(T ) = max
{

max
0≤t≤T

|x(t)|, R(ε(ρ))
}
,

where R(ε(ρ)) is given by (5.5) with R(ε(ρ)) → ∞ as ρ → 0. For fixed T,
take R = 2R(T ) in the local virial identity (3.2). Then we claim

|AR(u(t))| ≤ cλ3ε(ρ)2.

In fact,

‖u‖LV (|x|≥R) ≤ ‖u− eiθ(t)λ5/2Q(λ(· − x(t)))‖LV

+ ‖eiθ(t)λ5/2Q(λ(· − x(t)))‖LV (|x|≥R).

By the Hardy–Littlewood–Sobolev inequality (2.1), (5.10) and (5.11) imply

‖u− eiθ(t)λ5/2Q(λ(· − x(t)))‖4LV ≤ λ3ε(ρ)4.

On the other hand, by (5.5), we have

‖eiθ(t)λ5/2Q(λ(· − x(t)))‖4LV (|x|≥R) ≤ ‖λ
5/2Q(λ(·))‖4LV (|x|≥R−max0≤t≤T |x(t)|)

≤ ‖λ5/2Q(λ(·))‖4LV (|x|≥R(T )) ≤ ‖λ
5/2Q(λ(·))‖4LV (|x|≥R(ε(ρ))) ≤ λ

3ε(ρ)4.

Similarly, ‖u‖2L2(|x|>R) ≤ cε(ρ)2. Thus (3.3) implies the claim.
Taking ρ0 small enough to make ε(ρ) small we obtain, for all 0 ≤ t ≤ T,

z′′R(t) ≤ −24E(Q)λ2(λ− 1),

and so
zR(T )
T 2

≤ zR(0)
T 2

+
z′R(0)
T
− 12E(Q)λ2(λ− 1).

By definition of zR(t) we have

|zR(0)| ≤ cR2‖u0‖22 = c‖Q‖22R2

and
|z′R(0)| ≤ cR‖u0‖2‖∇u0‖2 ≤ c‖Q‖2‖∇Q‖2R(1 + ρ0)λ.

Consequently,

z2R(T )(T )
T 2

≤ c
(
R(T )2

T 2
+
λR(T )
T

)
− 12E(Q)λ2(λ− 1).

Taking T sufficiently large, from Lemma 5.2 we have

0 ≤
z2R(T )(T )

T 2
≤ c(λε(ρ)2 − λ2(λ− 1)) < 0

provided ρ0 is small enough.
Note that ρ0 is independent of T . Thus, we get a contradiction.
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6. Profile decomposition. The following Keraani-type profile decom-
position will play an important role in our future discussion.

Lemma 6.1 (Profile expansion). Let φn be a uniformly bounded sequence
in H1. Then for each M there exists a subsequence of φn, also denoted by φn,
and

(1) for each 1 ≤ j ≤M , there exists a (fixed in n) profile ψ̃j(x) in H1,
(2) for each 1 ≤ j ≤M , there exists a sequence (in n) of time shifts tjn,
(3) for each 1 ≤ j ≤M , there exists a sequence (in n) of space shifts xjn,
(4) there exists a sequence (in n) of remainders W̃M

n (x) in H1,

such that

φn(x) =
M∑
j=1

e−it
j
n∆ψ̃j(x− xjn) + W̃M

n (x).

The time and space sequences have the pairwise divergence property, i.e.,
for 1 ≤ j 6= k ≤M , we have

(6.1) lim
n→∞

(|tjn − tkn|+ |xjn − xkn|) =∞.

The remainder sequence has the following asymptotic smallness property:

(6.2) lim
M→∞

lim
n→∞

‖eit∆W̃M
n ‖S(Ḣ1/2) = 0.

For fixed M and any 0 ≤ s ≤ 1, we have the asymptotic Pythagorean expan-
sion:

(6.3) ‖φn‖2Ḣs =
M∑
j=1

‖ψ̃j‖2
Ḣs + ‖W̃M

n ‖2Ḣs + on(1).

Remark 6.2. By refining the subsequence for each j and using a stan-
dard diagonalization argument, we may assume that for each j the sequence
tjn is convergent to some time in the compactified time interval [−∞,∞].
If tjn converges to some finite time tj ∈ (−∞,∞), we may shift ψ̃j by the
linear propagator e−it

j∆ to assume without loss of generality that tjn con-
verges to either −∞, 0, or ∞. If tjn converges to 0, we may absorb the error
e−it

j
n∆ψ̃j− ψ̃j in the remainder W̃M

n without affecting significantly the scat-
tering size of the linear evolution of W̃M

n and so assume, without loss of
generality, that in this case tjn ≡ 0.

Since the profile decomposition corresponds to the linear equation and
there is no difference in the linear terms between the Hartree equation and
the Schrödinger equation, there is no essential difference in the proof from
that in [2] for the 3D cubic Schrödinger equation. Furthermore, we also have
the following energy expansion.
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Lemma 6.3 (Energy Pythagorean expansion). Under the assumptions
of Lemma 6.1,

(6.4) E(φn) =
M∑
j=1

E(e−it
j
n∆ψ̃j) + E(W̃M

n ) + on(1).

Similar to [14] and [12], we give the following definition of a nonlinear
profile:

Definition 6.4. Let V be a solution to the linear Schrödinger equation.
We say that U is a nonlinear profile associated to (V, {tn}) if U is a solution
to (1.1) satisfying

‖(U − V )(−tn)‖H1 → 0 as n→∞.
Note that, similar to the arguments in [12], by the local theory and

Lemma 2.5, there always exists a nonlinear profile associated to a given
(V, {tn}). In fact, it is obtained by solving (1.1) with U(−t0, x) = V (−t0, x),
where t0 = limn tn. V (−t0, x) is an initial data if t0 is finite, and an asymp-
totic state otherwise. Thus for every j, there exists a solution vj to (1.1)
associated to (ψ̃j , {tjn}) such that

‖vj(· − xjn,−tjn)− e−it
j
n∆ψ̃j(· − xjn)‖H1 → 0 as n→∞.

If we denote the solution to (1.1) with the initial data ψ by NLH(t)ψ,
by shifting the linear profile ψ̃j when necessary, we may denote vj(−tjn) as
NLH(−tjn)ψj with some ψj ∈ H1. Thus using the same method of replacing
linear flows by nonlinear flows as in [8] we can get the following proposition:

Proposition 6.5. Let φn be a uniformly bounded sequence in H1. There
exists a subsequence, also denoted by φn, profiles ψj in H1, and parameters
xjn, tjn such that for each M ,

(6.5) φn(x) =
M∑
j=1

NLH(−tjn)ψj(x− xjn) +WM
n (x),

where

• For each j, either tjn = 0, tjn →∞ or tjn → −∞ as n→∞.
• If tjn → ∞ as n → ∞, then ‖NLH(−t)ψj‖S(Ḣ1/2;[0,∞)) < ∞; if tjn →
−∞, then ‖NLH(−t)ψj‖S(Ḣ1/2;(−∞,0]) <∞ (1).
• For j 6= k,

lim
n→∞

(|tjn − tkn|+ |xjn − xkn|) =∞.

(1) This property is obtained by solving an asymptotic problem similar to that
in the proof of the existence of the wave operator. In fact, we deduce further that
‖D1/2 NLH(−t)ψj‖S(L2;[0,∞)) < ∞ in the case of tjn → ∞, and a similar result for

tjn → −∞.
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• NLH(t)WM
n is global for M large enough with

lim
M→∞

lim
n→∞

‖NLH(t)WM
n ‖S(Ḣ1/2) = 0.

We also have the Hs-Pythagorean decomposition: for fixed M and 0 ≤ s ≤ 1,

(6.6) ‖φn‖2Ḣs =
M∑
j=1

‖NLH(−tjn)ψj‖2
Ḣs + ‖WM

n ‖2Ḣs + on(1),

and, by energy conservation E(NLH(−tjn)ψj) = E(ψj), the energy Pytha-
gorean decomposition

(6.7) E(φn) =
M∑
j=1

E(ψj) + E(WM
n ) + on(1).

Remark 6.6. As is stated in [9], (6.7) was proven by first establishing
the following orthogonal decomposition:

(6.8) ‖φn‖4LV =
M∑
j=1

‖NLH(−tjn)ψj‖4LV + ‖WM
n ‖4LV + on(1),

and we will find a similar one in the proof of Lemma 6.8.

The next perturbation lemma is essential to get our main theorem.

Lemma 6.7 (Long time perturbation theory). For any given A � 1,
there exist ε0 = ε0(A) � 1 and c = c(A) such that the following statement
holds: For fixed T > 0, let u = u(x, t) ∈ L∞([0, T ];H1) solve

iut +∆u+ (V ∗ |u|2)u = 0

on [0, T ]. Let ũ = ũ(x, t) ∈ L∞([0, T ];H1) and set

e ≡ iũt +∆ũ+ (V ∗ |ũ|2)ũ.

For each ε ≤ ε0, if

‖ũ‖S(Ḣ1/2;[0,T ]) ≤ A, ‖e‖S′(Ḣ−1/2;[0,T ]) ≤ ε, ‖e
it∆(u(0)−ũ(0)‖S(Ḣ1/2;[0,T ]) ≤ ε,

then
‖u− ũ‖S(Ḣ1/2;[0,T ]) ≤ c(A)ε.

Proof. Define w = u− ũ. Then w solves the equation

iwt +∆w + (V ∗ |w + ũ|2)w + (V ∗ |w + ũ|2)ũ− (V ∗ |ũ|2)ũ+ e = 0.

That is,

(6.9) iwt +∆w + (V ∗ |w|2)w + (V ∗ (w̄ũ))w + (V ∗ (w ¯̃u))w

+ (V ∗ |w|2)ũ+ (V ∗ |ũ|2)w + (V ∗ (w̄ũ))ũ+ (V ∗ (w ¯̃u))ũ+ e = 0.

Since ‖ũ‖S(Ḣ1/2;[0,T ]) ≤ A, we can split [0, T ] into N = N(A) intervals
Ij = [tj , tj+1) such that, for each 0 ≤ j ≤ N − 1, ‖ũ‖S(Ḣ1/2;Ij)

< δ with
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a sufficiently small δ to be specified later. The integral equation of (6.9)
with the initial time tj is

w(t) = ei(t−tj)∆w(tj) + i

t�

tj

ei(t−s)∆W (·, s) ds,(6.10)

where

W = (V ∗ |w|2)w + (V ∗ (w̄ũ))w + (V ∗ (w ¯̃u))w

+ (V ∗ |w|2)ũ+ (V ∗ |ũ|2)w + (V ∗ (w̄ũ))ũ+ (V ∗ (w ¯̃u))ũ+ e.

Applying the Kato–Strichartz estimate (2.14) on Ij we have

(6.11) ‖w‖S(Ḣ1/2;Ij)
≤ ‖ei(t−tj)∆w(tj)‖S(Ḣ1/2;Ij)

+ c‖(V ∗ |w|2)w‖
L

24/13
Ij

L
12/7
x

+ c‖(V ∗ (w̄ũ))w‖
L

24/13
Ij

L
12/7
x

+ c‖(V ∗ (w ¯̃u))w‖
L

24/13
Ij

L
12/7
x

+ c‖(V ∗ |w|2)ũ‖
L

24/13
Ij

L
12/7
x

+ c‖(V ∗ |ũ|2)w‖
L

24/13
Ij

L
12/7
x

+ c‖(V ∗ (w̄ũ))ũ‖
L

24/13
Ij

L
12/7
x

+ c‖(V ∗ (w ¯̃u))ũ‖
L

24/13
Ij

L
12/7
x

.

In fact, we can easily check that (24/13, 12/7) ∈ Λ′1/2 and (24/5, 60/19),
(8, 20/7) ∈ Λ1/2. And by the Hardy–Littlewood–Sobolev inequalities and
Hölder estimates we have
‖(V ∗ |ũ|2)w‖

L
24/13
Ij

L
12/7
x
≤ ‖ũ‖2

L
24/5
Ij

L
60/19
x
‖w‖

L8
Ij
L

20/7
x

≤ ‖ũ‖2
S(Ḣ1/2;Ij)

‖w‖S(Ḣ1/2;Ij)
≤ δ2‖w‖S(Ḣ1/2;Ij)

,

‖(V ∗ |w|2)ũ‖
L

24/13
Ij

L
12/7
x
≤ ‖w‖2

L
24/5
Ij

L
60/19
x
‖ũ‖

L8
Ij
L

20/7
x
≤ δ‖w‖2

S(Ḣ1/2;Ij)
.

Similarly, we can estimate other terms in (2.17) and get

‖w‖S(Ḣ1/2;Ij)
≤ ‖ei(t−tj)∆w(tj)‖S(Ḣ1/2;Ij)

+ cδ2‖w‖S(Ḣ1/2;Ij)
(6.12)

+ cδ‖w‖2
S(Ḣ1/2;Ij)

+ c‖w‖3
S(Ḣ1/2;Ij)

+ c‖e‖S′(Ḣ−1/2;Ij)

≤ ‖ei(t−tj)∆w(tj)‖S(Ḣ1/2;Ij)
+ cδ2‖w‖S(Ḣ1/2;Ij)

+ cδ‖w‖2
S(Ḣ1/2;Ij)

+ c‖w‖3
S(Ḣ1/2;Ij)

+ cε.

Now if δ ≤ min(1, 1/6c) and

‖ei(t−tj)∆w(tj)‖S(Ḣ1/2;Ij)
+ cε ≤ min

{
1,

1
2
√

6c

}
,(6.13)

we obtain

‖w‖S(Ḣ1/2;Ij)
≤ 2‖ei(t−tj)∆w(tj)‖S(Ḣ1/2;Ij)

+ 2cε.(6.14)
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Next, taking t = tj in (6.10) and applying ei(t−tj+1)∆ to both sides, we obtain

ei(t−tj+1)∆w(tj+1) = ei(t−tj)∆w(tj) + i

tj+1�

tj

ei(t−s)∆W (·, s) ds.(6.15)

Noting that the Duhamel integral is confined to Ij , similarly to (6.12) we
have the estimate

‖ei(t−tj+1)∆w(tj+1)‖S(Ḣ1/2;[0,T ])

≤ ‖ei(t−tj)∆w(tj)‖S(Ḣ1/2;[0,T ]) + cδ2‖w‖S(Ḣ1/2;Ij)

+ cδ‖w‖S(Ḣ1/2;Ij)
+ c‖w‖3

S(Ḣ1/2;Ij)
+ cε.

Then (2.19) and (6.14) imply

‖ei(t−tj+1)∆w(tj+1)‖S(Ḣ1/2;[0,T ]) ≤ 2‖ei(t−tj)∆w(tj)‖S(Ḣ1/2;[0,T ]) + 2cε.

Now, beginning with j = 0 we get by iteration

‖ei(t−tj)∆w(tj)‖S(Ḣ1/2;[0,T ]) ≤ 2j‖ei(t−t0)∆w(t0)‖S(Ḣ1/2;[0,T ]) + (2j − 1)2cε

≤ 2j+2cε.

Since the second part of (2.19) is needed for each Ij , 0 ≤ j ≤ N − 1, we
require

2N+2cε0 ≤ min
{

1,
1

2
√

6c

}
.(6.16)

Recall that δ is an absolute constant satisfying (2.19); the number of inter-
vals N is determined by the given A; and then by (6.16), ε0 is determined
by N = N(A). Thus, the iteration completes our proof.

Note that from the proof above the parameters in Lemma 6.7 are inde-
pendent of T . As is stated in [9], besides the H1 asymptotic orthogonality
(6.6) at t = 0, this property can be extended to the nonlinear flow for
0 ≤ t ≤ T as an application of Lemma 6.7 with a constant A = A(T ) de-
pending on T (but only through A). As for the Hartree equation (1.1), we
will show a similar result:

Lemma 6.8. Let φn be a uniformly bounded sequence in H1. Fix any
time 0 < T < ∞. Suppose that un(t) ≡ NLH(t)φn exists up to time T for
all n and

lim
n→∞

‖∇un(t)‖L∞([0,T ];L2) <∞.

Let WM
n (t) ≡ NLH(t)WM

n . Then, for all j, vj(t) ≡ NLH(t)ψj exists up to
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time T and for all t ∈ [0, T ],

(6.17) ‖∇un‖22 =
M∑
j=1

‖∇vj(t− tjn)‖22 + ‖∇WM
n (t)‖22 + on(1),

where on(1)→ 0 uniformly for 0 ≤ t ≤ T .

Proof. Let M0 be such that for M ≥ M0 and for δsd in Lemma 2.3, we
have

‖NLH(t)WM
n ‖S(Ḣ1/2) ≤ δsd/2

and ‖vj‖S(Ḣ1/2) ≤ δsd for j > M0. Reorder the firstM0 profiles and introduce
an index M2, 0 ≤M2 ≤M0, such that:

• For each 0 ≤ j ≤ M2 we have tjn = 0 (there is no j in this case if
M2 = 0).
• For each M2 + 1 ≤ j ≤ M0 we have |tjn| → ∞ (there is no j in this

case if M2 = M0).

By the definition of M0, vj(t) for j > M0 scatters in both time directions.
We claim that for fixed T and M2 +1 ≤ j ≤M0, ‖vj(t− tjn)‖S(Ḣ1/2;[0,T ]) → 0

as n → ∞. Indeed, take the case tjn → ∞ for example. By Proposition 6.5,
‖vj(−t)‖S(Ḣ1/2;[0,∞)) < ∞. Then for q < ∞, ‖vj(−t)‖Lq([0,∞);Lr) < ∞ im-

plies ‖vj(t−tjn)‖Lq([0,T ];Lr) → 0.On the other hand, since vj(t) in Proposition
6.5 is constructed from the existence of wave operators which converge in
H1 to a linear flow at −∞, the L5/2 decay of the linear flow implies imme-
diately that ‖vj(t− tjn)‖L∞([0,T ];L5/2) → 0. Similarly, we can deduce that for

M2 + 1 ≤ j ≤M0, ‖D1/2vj(t− tjn)‖S(L2;[0,T ]) → 0 as n→∞.
Let B = max{1, limn ‖∇un‖L∞([0,T ];L2)}. For each 1 ≤ j ≤ M2, define

T j ≤ T to be the maximal forward time for which ‖∇vj‖L∞([0,T j ];L2) ≤ 2B.
Let T̃ = min1≤j≤M2 T

j , and if M2 = 0, just take T̃ = T. Note that if
we prove (6.17) for T = T̃ , then by the definition of T j , using continuity
arguments, it follows from (6.17) that for each 1 ≤ j ≤M2, we have T j = T.

Hence T̃ = T. Thus, for the remainder of the proof, we just work on [0, T̃ ].
For each 1 ≤ j ≤ M2, ‖vj‖

L∞([0,eT ];L2)
= ‖ψj‖2 ≤ limn ‖φn‖2 by (6.6),

thus we have

(6.18) ‖vj(t)‖
S(Ḣ1/2;[0,eT ])

≤ c(‖vj‖
L∞([0,eT ];L5/2)

+ ‖vj‖
L4([0,eT ];L10/3)

)

≤ c(‖vj‖1/2
L∞([0,eT ];L2)

‖∇vj‖1/2
L∞([0,eT ];L2)

+ T̃ 1/4‖∇vj‖
L∞([0,eT ];L2)

)

≤ c(1 + T̃ 1/4)B.
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In fact, from the local theory (see Chapter 4 in [1]), we further deduce that
for each 1 ≤ j ≤M2,

‖D1/2vj(t)‖
S(L2;[0,eT ])

≤ C(T̃ , B).(6.19)

For a fixed M , let

ũn(x, t) =
M∑
j=1

vj(x− xjn, t− tjn),

en = i∂tũn +∆ũn + (V ∗ |ũn|2)ũn.

Claim 1. There exists A = A(T̃ ) (independent of M) such that for all
M > M0, there exists n0 = n0(M) such that for all n > n0,

‖ũn‖S(Ḣ1/2;[0,eT ])
≤ A.

Claim 2. For each M > M0 and ε > 0, there exists n1 = n1(M, ε) such
that for n > n1 and for some Ḣ−1/2 admissible (q, r),

‖en‖Lq′ ([0,eT ];Lr′ ) ≤ ε.

We postpone the proof of those claims and just suppose they both hold.
Since un(0)− ũn(0) = WM

n , there exists M ′ = M ′(ε) large enough such that
for each M > M ′ there exists n2 = n2(M ′) such that for n > n2,

‖eit∆(u(0)− ũ(0))‖
S(Ḣ1/2;[0,eT ])

≤ ε.

For A = A(T̃ ) in the first claim, Lemma 6.7 gives ε0 = ε0(A) � 1. We
select an arbitrary ε ≤ ε0 and obtain from the above arguments an index
M ′ = M ′(ε). Now select an arbitrary M > M ′, and set n′ = max(n0, n1, n2).
Then by Lemma 6.7 and the above arguments, for n > n′, we have

(6.20) ‖un − ũn‖S(Ḣ1/2;[0,eT ])
≤ c(T̃ )ε.

To obtain the ‖∇ũn‖L∞([0,eT ];L2)
bound, we also have to discuss j ≥M2 + 1.

As was noted in the first paragraph of the proof, ‖vj(t− tjn)‖
S(Ḣ1/2;[0,eT ])

→ 0

as n→∞. By the Strichartz estimate we can get ‖∇vj(t− tjn)‖
L∞([0,eT ];L2)

≤
c‖∇vj(−tjn)‖2. By the pairwise divergence of parameters,

‖∇ũn‖2L∞([0,eT ];L2)

=
M2∑
j=1

‖∇vj(t)‖2
L∞([0,eT ];L2)

+
M∑

M2+1

‖∇vj(t− tjn)‖2
L∞([0,eT ];L2)

+ on(1)

≤ c
(
M2B

2 +
M∑

M2+1

‖∇NLH(−tjn)ψj‖22 + on(1)
)

≤ c(M2B
2 + ‖∇φn‖22 + on(1)) ≤ c(M2B

2 +B2 + on(1)).
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Note that for 5/2 < p < 10/3, from (6.20) we have, for some 0 < θ < 1,

‖un − ũn‖L∞([0,eT ];Lp)
≤ c(‖un − ũn‖θL∞([0,eT ];L5/2)

‖∇(un − ũn)‖1−θ
L∞([0,eT ];L2)

)

≤ c(T̃ )θ(M2B
2 +B2 + on(1))(1−θ)/2εθ.

Thus, by the Hardy–Littlewood–Sobolev inequalities and Hölder estimates
we obtain

sup
t∈[0,eT ]

‖un − ũn‖4LV ≤ c(T̃ )2(M2B
2 +B2 + on(1))ε2.(6.21)

Now we first replace the large parameter M in the notation ũn and all
other arguments above by M1. Then for any fixed M, we will prove (6.17)
on [0, T̃ ]. In fact, we only need to establish that, for each t ∈ [0, T̃ ],

(6.22) ‖un‖4LV =
M∑
j=1

‖vj(t− tjn)‖4LV + ‖WM
n (t)‖4LV + on(1).

By (6.7) and the energy conservation we have

(6.23) E(un(t)) =
M∑
j=1

E(vj(t− tjn)) + E(WM
n (t)) + on(1).

Thus (6.22) combined with (6.23) gives (6.17), which completes our proof.
So now we have to establish (6.22)

First, we apply the perturbation Lemma 6.7 to un(t) = WM
n (t) and

ũn =
∑M1

j=M+1 v
j(t−tjn). For any fixed M < M1, since un(0)−ũn(0) = WM1

n ,
similar to the above two claims and the arguments above, we obtain∥∥∥WM

n (t)−
M1∑

j=M+1

vj(t− tjn)
∥∥∥4

LV
→ 0 as n→∞.

From all arguments above and by the pairwise divergence of parameters,

‖un‖4LV = ‖ũn‖4LV + on(1) =
∥∥∥M1∑
j=1

vj(t− tjn)
∥∥∥4

LV
+ on(1)

=
M∑
j=1

‖vj(t− tjn)‖4LV +
∥∥∥ M1∑
j=M+1

vj(t− tjn)
∥∥∥4

LV
+ on(1)

=
M∑
j=1

‖vj(t− tjn)‖4LV + ‖WM
n (t)‖4LV + on(1).

If on the other hand M ≥ M1, we easily deduce from the selection of M1

(see the above analysis) that ‖WM
n (t)‖LV = on(1) and (6.21) implies (6.22).
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Now it remains to establish the two claims. Recall that M0 is sufficiently
large such that ‖eit∆WM0

n ‖S(Ḣ1/2) ≤ δsd/2 and for each j > M0, we have

‖eit∆vj(−tjn)‖S(Ḣ1/2) ≤ δsd. Similar to the small data scattering and Propo-
sition 2.5, we obtain

‖vj(t− tjn)‖S(Ḣ1/2) ≤ 2‖eit∆vj(−tjn)‖S(Ḣ1/2) ≤ 2δsd,(6.24)

and

‖D1/2vj(t− tjn)‖S(L2) ≤ c‖vj(−tjn)‖Ḣ1/2 for j > M0.(6.25)

Thus by the elementary inequality, for aj > 0,∣∣∣∣∣∣ M∑
j=1

aj

∣∣∣7/2 − M∑
j=1

|aj |7/2
∣∣∣ ≤ CM∑

j 6=k
|aj | |ak|5/2,

we have

(6.26) ‖ũn‖7/2
L7/2([0,eT ];L7/2)

≤
M2∑
j=1

‖vj‖7/2
L7/2([0,eT ];L7/2)

+
M0∑

j=M2+1

‖vj(t− tjn)‖7/2
L7/2([0,eT ];L7/2)

+
M∑

j=M0+1

‖vj(t− tjn)‖7/2
L7/2([0,eT ];L7/2)

+ crossterms

≤
M2∑
j=1

‖D1/2vj‖7/2
S(L2;[0,eT ])

+
M0∑

j=M2+1

‖D1/2vj(t− tjn)‖7/2
S(L2;[0,eT ])

+
M∑

j=M0+1

‖D1/2vj(t− tjn)‖7/2
S(L2;[0,eT ])

+ crossterms

≤M0C(T̃ , B) +M0ε
7/2 + c

M∑
j=M0+1

‖vj(−tjn)‖7/2
Ḣ1/2

+ crossterms,

where we have used (6.19) and the fact that
M0∑

j=M2+1

‖D1/2vj(t− tjn)‖7/2
S(L2;[0,eT ])

≤M0ε
7/2

for M2 large enough. Now by (6.6),

‖un,0‖2Ḣ1/2 =
M0∑
j=1

‖vj(−tjn)‖2
Ḣ1/2 +

M∑
j=M0+1

‖vj(−tjn)‖2
Ḣ1/2(6.27)

+ ‖WM
n ‖2Ḣ1/2 + on(1),
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we know that the quantity
M∑

j=M0+1

‖vj(−tjn)‖2
Ḣ1/2 and so

M∑
j=M0+1

‖vj(−tjn)‖7/2
Ḣ1/2

is bounded independently of M provided n > n0 is sufficiently large. On
the other hand, the “crossterms” can also be made bounded by taking n0

large enough owing to the pairwise divergence of parameters. Above all,
we have shown that ‖ũn‖L7/2([0,eT ];L7/2)

is bounded independently of M for
n > n0. A similar argument shows that ‖ũn‖L∞([0,eT ];L5/2)

is also bounded
independently of M for n > n0, and the first claim holds true since the
Strichartz norm ‖ũn‖S(Ḣ1/2;[0,eT ])

can be bounded by interpolation between
the time-space norms with the above two exponents.

Now we prove the second claim. We easily find the following expansion
of en which consists of O(M3) terms involving V ∗ |vj(t − tjn)|2vk(t − tkn),
k 6= j (we will call such terms crossterms):

en =
(
V ∗

∣∣∣ M∑
j=1

vj(t− tjn)
∣∣∣2) M∑

j=1

vj(t− tjn)

−
M∑
j=1

(V ∗ |vj(t− tjn)|2)vj(t− tjn)

=
(
V ∗

(∣∣∣ M∑
j=1

vj(t− tjn)
∣∣∣2 − M∑

j=1

|vj(t− tjn)|2
)) M∑

j=1

vj(t− tjn)

+
M∑
j=1

(V ∗ |vj(t− tjn)|2)
∑
k 6=j

vk(t− tkn).

The point is to estimate the crossterms. Assume first that j 6= k and
|tjn − tkn| → ∞; then at least one index is ≥ M2 + 1. Take the Strichartz
estimate of one of the crossterms:

‖(V ∗ |vj |2)(t− tjn)vk(t− tkn)‖
L24/13([0,eT ];L12/7)

= ‖(V ∗ |vj |2)(t)vk(t+ tjn − tkn)‖
L24/13([0,eT ];L12/7)

.

Similar to the analysis in the second paragraph, this term goes to zero since
vj , vk ∈ L24/5

t L
60/19
x ∩ L8

tL
20/7
x and

‖(V ∗ |vj |2)(t)vk(t+ tjn − tkn)‖
L24/13([0,eT ];L12/7)

≤ ‖vj‖2
L24/5([0,eT ];L60/19)

‖vk(t+ tjn − tkn)‖
L8([0,eT ];L20/7)

.
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If j 6= k and tjn = tkn, then by (6.1), |xjn − xkn| → ∞. Taking the same
crossterm, we have∥∥∥∥� |vj(y − xjn)|2vk(x− xkn)

|x− y|3
dy

∥∥∥∥
L24/13([0,eT ];L12/7)

=
∥∥∥∥� |vj(y′)|2vk(x− xkn)

|x− xjn − y′|3
dy

∥∥∥∥
L24/13([0,eT ];L12/7)

=
∥∥∥∥� |vj(y′)|2vk(x′ + xjn − xkn)

|x′ − y′|3
dy

∥∥∥∥
L24/13([0,eT ];L12/7)

= ‖(V ∗ |vj |2)vk(·+ xjn − xkn)‖
L24/13([0,eT ];L12/7)

.

In the same way, we infer that it must go to zero again. Observe that all
other crossterms will have the same property through similar estimates, and
in fact we have proved the second claim.

Lemma 6.9 (Profile reordering). Let φn be a bounded sequence in H1 and
let λ0 > 1. Suppose that M(φn) = M(Q), E(φn)/E(Q) = 3λ2

n − 2λ3
n with

λn ≥ λ0 > 1 and ‖∇φn‖2/‖∇Q‖2 ≥ λn for each n. Then, for a given M, the
profiles can be reordered so that there exist 1 ≤M1 ≤M2 ≤M satisfying:

(1) For each 1 ≤ j ≤ M1, we have tjn = 0 and vj(t) ≡ NLH(t)ψj does
not scatter as t→∞. (We in fact assert that at least one j belongs
to this category.)

(2) For each M1 + 1 ≤ j ≤ M2, we have tjn = 0 and vj(t) scatters as
t→∞. (There is no j in this category if M2 = M1.)

(3) For each M2 + 1 ≤ j ≤M we have |tjn| → ∞. (There is no j in this
category if M2 = M.)

Proof. Firstly, we claim that there exists at least one j such that tjn
converges as n→∞. In fact,

‖φn‖4LV

‖Q‖4
LV

= −1
2
E(φn)
E(Q)

+
3
2
‖∇φn‖22
‖∇Q‖22

(6.28)

≥ −1
2

(3λ2
n − 2λ3

n) +
3
2
λ2
n = λ3

n ≥ λ3
0 > 1.

If |tjn| → ∞, then ‖NLH(−tjn)ψj‖LV → 0 and (6.8) implies our conclusion.
Now if j is such that tjn converges as n→∞, then we might as well assume
tjn = 0.

Reorder the profiles ψj so that for 1 ≤ j ≤M2, we have tjn = 0, and for
M2 + 1 ≤ j ≤ M we have |tjn| → ∞. It remains to show that there exists
one j, 1 ≤ j ≤ M2, such that vj(t) does not scatter as t → ∞. If, on the
contrary, vj(t) scatters for all 1 ≤ j ≤M2, then limt→∞ ‖vj(t)‖LV = 0. Let t0
be sufficiently large so that for all 1 ≤ j ≤M2, we have ‖vj(t0)‖4

LV ≤ ε/M2.
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The LV orthogonality (6.22) along the NLH flow and an argument as in
(6.28) imply

λ3
0‖Q‖4LV ≤ ‖un(t0)‖4LV

=
M2∑
j=1

‖vj(t0)‖4LV +
M∑

j=M2+1

‖vj(t0 − tjn)‖4LV + ‖WM
n (t0)‖4LV + on(1).

We know from Proposition 6.5 that
∑M

j=M2+1 ‖vj(t0−t
j
n)‖4

LV → 0 as n→∞,
and thus

λ3
0‖Q‖4LV ≤ ε+ ‖WM

n (t0)‖4LV + on(1).

This gives a contradiction since WM
n (t) is a scattering solution.

7. Recurrence argument and existence of a critical solution.
We now begin to prove Theorem 1.1. By Remark 1.2 we only need to deal
with the case P (u) = 0. We will use the notation from [9] and give some
definitions first.

Definition 7.1. Let λ > 1. We say that ∃GB(λ, σ) holds if there exists
a solution u(t) to
(1.1) such that

P (u) = 0, M(u) = M(Q),
E(u)
E(Q)

= 3λ2 − 2λ3

and
λ ≤ ‖∇u(t)‖2

‖∇Q‖2
≤ σ for all t ≥ 0.

∃GB(λ, σ) means that there exist solutions with energy 3λ2 − 2λ3 glob-
ally bounded by σ. Thus by Proposition 5.1, ∃GB(λ, λ(1 + ρ0(λ0))) is false
for all λ ≥ λ0 > 1.
∃GB(λ, σ) false is equivalent to saying that for every solution u(t)

of (1.1) with M(u) = M(Q) and E(u)/E(Q) = 3λ2 − 2λ3 such that
‖∇u(t)‖2/‖∇Q‖2 ≥ λ for all t, there exists a time t0 ≥ 0 such that
‖∇u(t0)‖2/‖∇Q‖2 ≥ σ. By resetting the initial time, we can find a sequence
tn →∞ such that ‖∇u(tn)‖2/‖∇Q‖2 ≥ σ for all n.

Note that if λ ≤ σ1 ≤ σ2, then ∃GB(λ, σ2) false implies ∃GB(λ, σ1)
false. We will induct on the statement and define a threshold.

Definition 7.2 (The critical threshold). Fix λ0 > 1. Let σc = σc(λ0)
be the supremum of all σ > λ0 such that ∃GB(λ, σ) is false for all λ such
that λ0 ≤ λ ≤ σ.

Proposition 5.1 implies that σc(λ0) > λ0. Let u(t) be any solution
to (1.1) with P (u) = 0, M(u) = M(Q), E(u)/E(Q) ≤ 3λ2

0 − 2λ3
0 and

‖∇u(0)‖2/‖∇Q‖2 > 1. If λ0 > 1 and σc = ∞, we claim that there exists a
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sequence of times tn such that ‖∇u(tn)‖2 →∞. In fact, if not, let λ ≥ λ0 be
such that E(u)/E(Q) = 3λ2 − 2λ3. Since there is no sequence tn such that
‖∇u(tn)‖2 → ∞, there exists σ < ∞ such that λ ≤ ‖∇u(t)‖2/‖∇Q‖2 ≤ σ
for all t ≥ 0, which means that ∃GB(λ, σ) holds true. Thus σc ≤ σ < ∞
and we get a contradiction.

In view of the above results, if we can prove that σc(λ0) = ∞ for every
λ0 > 1, we will have in fact proved Theorem 1.1. For a contradiction, fix
λ0 > 1 and assume σc <∞. Of course, it suffices to consider λ0 close to 1, so
we might as well assume that λ0 < 3/2. We first need to obtain the existence
of a critical solution:

Lemma 7.3. If σc(λ0) < ∞, then there exist initial data uc,0 and λc ∈
[λ0, σc(λ0)] such that uc(t) ≡ NLH(t)uc,0 is global, P (uc) = 0, M(uc) =
M(Q), E(uc)/E(Q) = 3λ2

c − 2λ3
c , and

λc ≤
‖∇uc(t)‖2
‖∇Q‖2

≤ σc for all t ≥ 0.

Proof. By the definition of σc, there exist sequences λn and σn such that
λ0 ≤ λn ≤ σn and σn ↓ σc for which ∃GB(λn, σn) holds. This means that
there exists un,0 such that un(t) ≡ NLH(t)un,0 is global with P (un) = 0,
M(un) = M(Q), E(un)/E(Q) = 3λ2

n − 2λ3
n, and

λn ≤
‖∇un(t)‖2
‖∇Q‖2

≤ σn for all t ≥ 0.

The boundedness of λn enables us to pass to a subsequence that converges
to a λ′ ∈ [λ0, σc].

According to Lemma 6.9, where we take φn = un,0, for M1 +1 ≤ j ≤M2,
vj(t) ≡ NLH(t)ψj scatters as t→∞ and combined with Proposition 6.5, for
M2 + 1 ≤ j ≤ M , vj also scatters in one or the other time direction. Thus
by the scattering theory, for M1 + 1 ≤ j ≤M , we have E(vj) = E(ψj) ≥ 0,
and then by (6.7),

M1∑
j=1

E(ψj) ≤ E(φn) + on(1).

Thus, there exists at least one 1 ≤ j ≤M1 with

E(ψj) ≤ max{lim
n
E(φn), 0},

Without loss of generality, we might take j = 1. Since, by the profile com-
position, also M(ψ1) ≤ limnM(φn) = M(Q), we have

M(ψ1)E(ψ1)
M(Q)E(Q)

≤ max
{

lim
n

E(φn)
E(Q)

, 0
}
.
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Thus, there exists λ̃ ≥ λ0 (2) such that

M(ψ1)E(ψ1)
M(Q)E(Q)

= 3λ̃2 − 2λ̃3.

Note that by Lemma 6.9, v1 does not scatter, so it follows from Theorem 2.4
that ‖ψ1‖2‖∇ψ1‖2 < ‖Q‖2‖∇Q‖2 cannot hold. Then, by the dichotomy
Proposition 2.2, we have ‖ψ1‖2‖∇ψ1‖2 ≥ λ̃‖Q‖2‖∇Q‖2.

Now if λ̃ > σc, recalling that t1n = 0, for all t we know that

λ̃2 ≤ ‖v
1(t)‖22‖∇v1(t)‖22
‖Q‖22‖∇Q‖22

(7.1)

≤ ‖∇v
1(t)‖22

‖∇Q‖22
≤
∑M

j=1 ‖∇vj(t− t
j
n)‖22 + ‖∇WM

n (t)‖22
‖∇Q‖22

.

Taking t = 0, for example, by Lemma 6.8 we have

λ̃2 ≤
∑M

j=1 ‖∇vj(−t
j
n)‖22 + ‖∇WM

n ‖22
‖∇Q‖22

≤ ‖∇un(0)‖22
‖∇Q‖22

+ on(1) ≤ σ2
c + on(1),

which contradicts the assumption λ̃ > σc. Hence we must have λ̃ ≤ σc.
Now if λ̃ < σc, we know from the definition of σc that ∃GB(λ̃, σc − δ)

is false for any δ > 0 sufficiently small, and so there exists a nondecreasing
sequence tk of times such that

lim
k

‖v1(tk)‖2‖∇v1(tk)‖2
‖Q‖2‖∇Q‖2

≥ σc.

Noting that t1n = 0, we have

σ2
c − ok(1) ≤ ‖v

1(tk)‖22‖∇v1(tk)‖22
‖Q‖22‖∇Q‖22

≤ ‖∇v
1(tk)‖22
‖∇Q‖22

(7.2)

≤
∑M

j=1 ‖∇vj(tk − t
j
n)‖22 + ‖∇WM

n (tk)‖22
‖∇Q‖22

≤ ‖∇un(tk)‖22
‖∇Q‖22

+ on(1) ≤ σ2
c + on(1),

where by Lemma 6.8 we take n = n(k) large. Taking k → ∞ and hence
n(k) → ∞, we conclude that all inequalities must be equalities. Thus
WM
n (tk) → 0 in H1, M(v1) = M(Q) and vj ≡ 0 for all j ≥ 2. Hence

easily P (v1) = P (un) = 0. On the other hand, if λ̃ = σc, we do not need the
inductive hypothesis but, similar to (7.1), we obtain

(2) If limn E(φn) ≥ 0, we have λ̃ ≥ λ′ ≥ λ0; while in the case limn E(φn) < 0, we will
have λ̃ ≥ 3/2 > λ0 though we might not have λ̃ ≥ λ′.
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σ2
c ≤

∑M
j=1 ‖∇vj(−t

j
n)‖22 + ‖∇WM

n ‖22
‖∇Q‖22

≤ ‖∇un(0)‖22
‖∇Q‖22

+ on(1) ≤ σ2
c + on(1),

and then again WM
n → 0 in H1, M(v1) = M(Q) and vj ≡ 0 for all j ≥ 2.

Moreover, by Lemma 6.8, for all t,
‖∇v1(t)‖22
‖∇Q‖22

≤ lim
n

‖∇un(t)‖22
‖∇Q‖22

≤ σ2
c .

Hence, we take uc,0 = v1(0) = ψ1 and λc = λ̃ to complete our proof.

8. Concentration of critical solutions and proof of Theorem 1.1.
In this section, we will complete our proof of Theorem 1.1 by virtue of the
precompactness of the flow of the critical solution. For convenience, we take
u(t) = uc(t).

Lemma 8.1. There exists a path x(t) in RN such that

K ≡ {u(t, · − x(t)) | t ≥ 0} ⊂ H1

is precompact in H1.

Proof. As was shown in [2], it suffices to prove that for each sequence
of times tn → ∞, there exists a sequence xn such that, by passing to a
subsequence, u(tn, · − xn) converges in H1.

Taking φn = u(tn) in Lemma 6.9 and by the definition of u(t) = uc(t),
similarly to the proof of Lemma 7.3, we find that there exists at least one
1 ≤ j ≤M1 with

E(ψj) ≤ max{lim
n
E(φn), 0}.

Without loss of generality, we can take j=1. Since alsoM(ψ1) ≤ limnM(φn)
= M(Q), there exists λ̃ ≥ λ0 such that

M(ψ1)E(ψ1)
M(Q)E(Q)

= 3λ̃2 − 2λ̃3.

Note that by Lemma 6.9, v1 does not scatter, so we must have ‖ψ1‖2‖∇ψ1‖2
≥ λ̃‖Q‖2‖∇Q‖2. Then, in the same way as in the proof of Lemma 7.3, we
deduce that WM

n (tk) → 0 in H1 and vj ≡ 0 for all j ≥ 2. Since we know
that WM

n (t) is a scattering solution, this implies that

(8.1) WM
n (0) = WM

n → 0 in H1.

Consequently, we have

u(tn) = NLH(−t1n)ψ1(x− x1
n) +WM

n (x).

Note that by Lemma 6.9, t1n = 0, and thus

u(tn, x+ x1
n) = ψ1(x) +WM

n (x+ x1
n).

This equality and (8.1) imply our conclusion.
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Using the uniform-in-time H1 concentration of u(t) = uc(t) and changing
variables, we can easily get

Corollary 8.2. For each ε > 0, there exists R > 0 such that for all t,

‖u(t, · − x(t))‖H1(|x|≥R) ≤ ε.
With the localization property of uc, we show, similar to [9], that uc must

blow up in finite time using the same method as in the proof of Proposition
3.2 and Remark 3.3. However, this contradicts the boundedness of uc in H1.
Hence, uc cannot exist and σc =∞. As is argued in Section 7, this completes
the proof of Theorem 1.1.
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