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REPRESENTATIONS OF MULTIVARIATE POLYNOMIALS BYSUMS OF UNIVARIATE POLYNOMIALS IN LINEAR FORMSBYA. BIA�YNICKI-BIRULA and A. SCHINZEL (Warszawa)In memory of Andrzej M¡kowskiAbstrat. The paper is onentrated on two issues: presentation of a multivariatepolynomial over a �eld K, not neessarily algebraially losed, as a sum of univariatepolynomials in linear forms de�ned over K, and presentation of a form, in partiulara zero form, as the sum of powers of linear forms projetively distint de�ned over analgebraially losed �eld. An upper bound on the number of summands in presentationsof all (not only generi) polynomials and forms of a given number of variables and degreeis given. Also some speial ases of these problems are studied.1. Introdution. Let d be a positive integer and K a �eld of harater-isti not dividing d. If charK = 0 or charK > d it is known (see [12℄) thatevery polynomial F ∈ K[x1, . . . , xn] of degree d an be written as(1) F =

m
∑

µ=1

fµ (lµ) ,

where m ≤
(

n+d−1
d

), fµ ∈ K[z] and lµ ∈ K[x1, . . . , xn] is a linear form
(1 ≤ µ ≤ m). For d ≤ 3 we have a better bound m ≤

(

n+d−2
d−1

) (see [13℄) andwe onjeture that this holds in general. For in�nite �elds and for �nite �eldsof not too small ardinality this onjeture follows from Theorem 1 below.But before we present the theorem, we reall that an n-ary form is said toessentially depend on n variables if it annot be expressed in fewer than nvariables after an invertible linear substitution (sometimes suh a form isalled nondegenerate, see e.g. [5℄). Later we shall also use this terminologyfor olletions of forms: a olletion essentially depends on n variables if theforms from the olletion annot be simultaneously expressed in fewer than
n variables after the same linear substitution.2000 Mathematis Subjet Classi�ation: 12E05, 11D85.Key words and phrases: sums of powers of linear polynomials and forms, Waringproblem.The �rst author was partially supported by Polish MNiSW Grant N201 019 32/0805.[201℄ © Instytut Matematyzny PAN, 2008
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Theorem 1. Let either charK = 0, or charK > d and |K| > 2d − 3.Every polynomial F ∈ K[x1, . . . , xn] of degree d has a presentation (1), where

m ≤

(

n+ d− 2

d− 1

)

.Moreover , if K is in�nite and the leading form of F essentially depends on
n variables, then for every �nite subset {p1, . . . ,ps} of Kn \{0}, there existsa presentation (1) with m ≤

(

n+d−2
d−1

) and lµ(pr) 6= 0 (1 ≤ r ≤ s).This theorem ontains as speial ases Theorem 4 of [12℄ (n = 2) andTheorem 1 of [13℄ (d = 3). It also implies immediatelyCorollary 1. Under the same assumption on K as in Theorem 1, everyform F ∈ K[x1, . . . , xn] of degree d has a presentation(2) m
∑

µ=1

aµl
d
µ, aµ ∈ K,

where m ≤
(n+d−2

d−1

), and if F essentially depends on n variables, the linearforms lµ an be hosen in suh a way that lµ(pr) 6= 0 (1 ≤ r ≤ s) for anygiven �nite subset {p1, . . . ,ps} of Kn \ {0}.If K is algebraially losed, we may put aµ = 1, µ = 1, . . . ,m. For
K = C this improves the result of Ellison [4℄. For K = C, the �rst part ofthe orollary has been asribed in [3℄ to B. Reznik, but his proof was neverpublished.Corollary 2. Under the assumption of Theorem 1 every polynomial
F ∈ K[x1, . . . , xn] of degree d an be written as

m
∑

µ=1

aµ(lµ + bµ)d,

where m ≤
(n+d−1

d−1

), aµ, bµ ∈ K, and lµ is a linear form over K.Let FK(n, d) denote the spae of forms with oe�ients in K of degree
d in n variables x1, . . . , xn. We shall sometimes write LK(n) in plae of
FK(n, 1). In ase K is �xed, we shall write F(n, d) and L(n) instead of
FK(n, d) and LK(n), respetively.For charK = 0, K algebraially losed, n = 3, d = 3, 4, F ∈ FK(n, d),Kleppe [8, Chapters 2 and 3℄, obtained better bounds for m than that givenin Corollary 1, namely m ≤ 5 and m ≤ 7, respetively, while our Corollary 1gives in these ases m ≤ 6 and m ≤ 10 and the easy (Ellison) bound gives
m ≤ 10 and m ≤ 15. However, in Corollary 1, we require that the linearforms li, whose dth powers appear in the presentation, do not belong to aunion of a �xed �nite family of hyperplanes in F(n, 1), and it may be the
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ase that under suh restritions our bound is the best possible. A betterbut inorret result for d = 3, n arbitrary is laimed in [3, p. 106℄.For generi forms over an algebraially losed �eld of harateristi 0 or
> d, Corollary 1 an be muh improved, namely as dedued by Iarrobino [6℄and Iarrobino and Kanev [7, Corollary 1.62℄ from a result of Alexander andHirshowitz [1℄, (

n+d−2
d−1

) an be replaed by
r0 =































n if d = 2,
⌈

1

n

(

n+ d− 1

d

)⌉

+ 1 if 〈d, n〉 = 〈3, 5〉, 〈4, 3〉, 〈4, 4〉 or 〈4, 5〉,
⌈

1

n

(

n+ d− 1

d

)⌉ otherwise.
Though Theorem 1 an be onsidered as the main result of the paper, wealso present other results. They mainly onern representability of a givenform as a linear ombination or, in partiular, as a sum of powers of linearforms and are onneted with the Waring problem and its extensions to thease where one onsiders representability not only of generi forms but also ofspei� forms. In the rest of the introdution we shall desribe these results.Problems of representability of a given form as a linear ombination ofpowers of linear forms, in partiular problems of uniqueness of suh represen-tations, lead to questions onerning linear dependene of powers of linearforms and related problems onerning presentations of the zero form. First,we explain our results onerning linear dependene of powers of linear forms.In a reent paper [2℄ A. Chlebowiz and M. Woªowie-Musiaª onsidered theproblem of when linear forms l1, . . . , lm over a �eld of harateristi 0 havethe property that ld1, . . . , ldm are linearly independent or, in their terminology,

l1, . . . , lm are d-independent. In order to desribe our results in this diretion,let us notie that F(n, d) is spanned by dth powers of linear forms. Moreover,forms l1, . . . , lr are d-independent if and only if the matrix of oe�ients oftheir d-powers is of rank r. Next,if r ≤
(n+d−1

d−1

)

= dimF(n, d), then a generi olletion of linear forms
l1, . . . , lr in n variables is d-independent. Moreover, every d-independent ol-letion of linear forms an be extended to a olletion of linear forms whose
d-powers form a base of F(n, d).In partiular, in the spae F(n, 1)r of all olletions (l1, . . . , lr), where li ∈
F(n, 1) and r ≤ (

n+d−1
d−1

), the subset omposed of d-independent olletions
(l1, . . . , lr) is non-empty and open.In general, heking if a given family is d-independent an be a umber-some task. In the ase of forms in one variable the theory is trivial. For two
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variables, dim(F(n, d)) = d+1 and a olletion l1, . . . , lr, where r ≤ d+1, is
d-independent i� the forms l1, . . . , lr are projetively di�erent. This followsimmediately from the well known properties of the Vandermonde determi-nant. As pointed out to us by A. Sªadek, it follows easily from Lemma 2.4of [2℄ that if charK = 0, m = d(n− 1) + 1, and li ∈ K[x1, . . . , xn] are linearforms (1 ≤ i ≤ m) suh that any n of them are linearly independent, thenthe li are d-independent. We shall omplete this result by showing that italso holds if charK > d and that, for all �elds in question of ardinality atleast m, it is best possible.Theorem 2. Let charK = 0 or charK > d. If linear forms

li ∈ K[x1, . . . , xn] (1 ≤ i ≤ m),where m = d(n − 1) + 1, have the property that any n of them are linearlyindependent , then ld1, . . . , ldm are linearly independent. This is no longer trueif m = d(n− 1) + 2 ≤ |K| + 1.If n = 2, then the theorem gives the above mentioned fats onerning
d-independene of linear forms. Hene Theorem 2 an be onsidered as amultivariable generalization of properties of the Vandermonde determinant.It seems that other similar results onerning relations between d-dependeneand d′-dependene for di�erent d and d′ would also be of some interest.The above results onerning linear dependene do not depend on arith-metial properties of the �eld K. However, in order to go further, we assumethat the �eld K is algebraially losed. Then in (2) we may assume that
aµ = 1 for µ = 1, . . . ,m.As already mentioned, the problems of presentation of a given form andin partiular problems of uniqueness of suh presentations, lead to questionsonerning presentations of the zero form. We will be interested in presen-tations of the zero form by powers of forms jointly essentially depending on
n variables. To desribe our results in this diretion we introdue some ter-minology. We shall all a presentation (2) of F a presentation of length mor an m-presentation. We shall all a presentation (2) of F a representationof length m or an m-representation if fµ = zd (1 ≤ µ ≤ m), the forms lµare non-zero and projetively di�erent. In [7℄ suh a presentation is allednormalized.We shall say that F ∈ F(n, d) has a lot of representations of length m iffor every �nite subset {p1, . . . ,ps} of Kn \ {0}, F has a representation (2)suh that aµ = 1 and lµ(pr) 6= 0 (1 ≤ µ ≤ m, 1 ≤ r ≤ s). We shall saythat a representation is simple if no proper subsum is zero. Let us all tworepresentations F = ld1 + · · · + ldr = md

1 + · · · + md
s disjoint if ldi 6= md

j forall i ≤ r and j ≤ s. We say that a form given as a sum ld1 + · · · + ldr has adisjoint representation of length s if there exist forms m1, . . . ,ms suh that
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ld1 + · · · + ldr = md
1 + · · · +md

s, where ldi 6= md
j for all i ≤ r, j ≤ s. Disjointrepresentations of xd

1 + · · · + xd
n are of partiular importane, beause it islear that they provide representations of zero by powers of forms jointlyessentially depending on n variables and vie versa. Finally, we shall saythat a representation of a given form F is unique if any other representationof the same length di�ers by a permutation of summands.Theorem 2 impliesCorollary 3. For all n and d there exists a simple representation of 0of length d(n− 1) + 2 by powers of linear forms jointly essentially dependingon n variables.We onjeture that, if charK = 0 or charK > d, then d(n − 1) + 2 isthe least number with the above property. This is true for n ≤ 4 by virtueof Theorems 4, 7 and 8 below.We next haveProposition 1. Let n≥2. Assume that F ∈F(n, d) admits an (r−1)-pre-sentation. If there are no representations of F of length r, then the dimensionof the spae of r-presentations of F is 1 greater than the dimension of thespae of (r − 1)-presentations of F .Let φn,r,d be the morphism of L(n)r into F(n, d) given by

φn,r,d (l1, . . . , lr) = ld1 + · · · + ldr .Proposition 2. Let n ≥ 2. Assume a generi form F in φn,r,d(L(n)r)admits two di�erent r-representations. Then F admits two disjoint r-repres-entations
F = ld1 + · · · + ldr = zd

1 + · · · + zd
r .From the results of [6℄, [7℄ we shall draw the following onsequenes.Corollary 4. Let n ≥ 2 and either charK = 0 or charK > d. Thenfor r ≥ r0 the dimension of the spae of r-representations of a generi formis equal to nr − dimF(n, d) and thus is the same as the dimension of thespae of r-presentations.Corollary 5. Assume that n ≥ 2, charK = 0 or charK > d, and

F ∈ F(n, d). Let r ≥ r0. Assume that F admits an r-representation andlet q be the dimension of the spae of r-representations of F . Then q ≥
nr−dimF(n, d). Moreover , if there are no (r+1)-representations of F , then
q ≥ nr − dimF(n, d) + n− 1.Proposition 3. Let n ≥ 2 and either charK = 0 or charK > d. Forevery t ≥ 2r0 + 1 there exists a t-representation of the zero form whosesummands inlude at least r = ⌊t/2⌋ dth powers of algebraially independentgeneri linear forms l1, . . . , lr.
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Theorem 3. Assume that the �eld K is algebraially losed and

r > max{1, (n− 1)(d− 1)}.Then xd
1 + · · · + xd

n admits a lot of r-representations.In the rest of the introdution we shall desribe our results onerningmainly forms in two, three and four variables. In the ase of forms in twovariables our results are the most omplete and satisfatory. In fat, we havethe followingTheorem 4. Let K be an algebraially losed �eld and r ≥ max{2, d}.Then xd
1 + xd

2 has a lot of r-representations by powers of linear forms in twovariables. If either charK = 0, or charK = p, pν ‖ d + 1 and pν+1 > d+ 1,then onversely the existene of suh an r-representation implies r = 2 or
r ≥ max{2, d}.Let F(n, d, s) be the subset of F(n, d) onsisting of all forms for whihthe minimal length of a representation is equal to s. For binary forms overa �eld of harateristi 0 or > d we haveTheorem 5. Let K be an algebraially losed �eld of harateristi 0 or
> d. If F ∈ F(2, d, s) and F has an r-representation, then either r = s ≤
(d+ 1)/2 or F has in�nitely many r-representations.Moreover , for every binary form of degree d:(a) the set of representations of length d+ 1 has a omponent of dimen-sion d+ 1,(b) the set of representations of length r ≥ d + 1 has a omponent ofdimension 2r − (d+ 1),() there are a lot of representations of any length r ≥ d+ 1.Theorem 6. Let K be an algebraially losed �eld of harateristi 0 or
> d. Every binary form over K of degree d ≥ 2 essentially depending on twovariables admits a lot of representations of length d.The existene of representations of length at most d has already beenproved by Kleppe [8, Chapter 1℄. Theorem 6 is best possible as shown byProposition 4. Let F = xd1

1 x
d2

2 , c = max(d1, d2) < d1 + d2. Then
F ∈ F(2, d1 + d2, c+ 1)and there are a lot of representations of F of length c+ 1.The �rst part of this proposition for d1 = 1 an be found both in [8,p. 11℄ and in [12, p. 656℄.We know from Theorem 5 that every form F ∈ F(2, d, s), where s >

(d+ 1)/2, admits in�nitely many representations of any length r ≥ s, if ithas at least one suh r-representation. However, it is not known if it admits
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a representation of every length r ≥ s, and whether it admits a lot of r-representations when it admits in�nitely many r-representations. Moreover,Kleppe [8℄ proved that F(2, d, d) onsists exatly of the forms equivalent to
x1x

d−1
2 by a linear invertible substitution. A similar desription of F(2, d, r),where (d+ 3)/2 ≤ r ≤ d − 1, is not known, but it is evident that all thesesets are not empty.Every binary form F over an algebraially losed �eld an be written asa produt

(⋆) F =

j
∏

i=1

(aix1 + bix2)
di ,where the fators aix1 + bix2 are projetively di�erent.However, exept in the ases where j = 1, 2, or 3, the minimal lengthof representations of F depends not only on j and the sequene of expo-nents d1, . . . , dj, but also on spei� arithmeti properties of a1, b1, . . . , aj , bj.Hene the desription of the minimal length of a representation of a spei�form F given as in (⋆) may be a di�ult task. However, it would also beinteresting to know the minimal length of a representation of a generi form

F, given as in (⋆), for �xed d1, . . . , dj.We are only able to partially extend the above results about binary formsto forms in three or four variables. We have the following results in thesediretions.Theorem 7. Let d ≥ 2, K be an algebraially losed �eld , and r ≥ 2d−1.Then xd
1+xd

2+xd
3 has a lot of r-representations. Conversely , if charK = 0 or

charK > d, and xd
1+xd

2+xd
3 has a disjoint r-representation, then r ≥ 2d−1.Corollary 6. If , under the assumptions of Theorem 7, a form F ∈

F(3, d) over K essentially depends on three variables and admits two disjointrepresentations of length s and r, respetively , then s+ r ≥ 2d+ 2.Corollary 7. If , under the assumptions of Theorem 7, a form F ∈
F(3, d, s) admits some but only �nitely many representations of length r ≤
2d+ 1 − s, then r = s.Corollary 8. If F ∈ F(3, 4, s) has some but only �nitely many r-representations over an algebraially losed �eld K with charK 6= 2, 3, then
r = s ≤ 5.Theorem 8. Let K be an algebraially losed �eld. Let the number n ofvariables be even, n = 2m. Then xd

1+· · ·+xd
n admits a disjoint representationof every length r ≥ md.Moreover , if charK = 0 or charK > d, and if n = 4 and r ≤ 3d−3, thenevery disjoint r-representation is obtained by adding an s-representation of
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xd

i + xd
j and an (r − s)-representation of xd

k + xd
l , where {i, j} ∪ {k, l} =

{1, 2, 3, 4} and r − d ≥ s ≥ d. In partiular r ≥ 2d.Corollary 9. Let K be an algebraially losed �eld and charK = 0or charK > d. If a form F ∈ F(4, d) over K essentially depends on fourvariables and admits two disjoint representations of lengths s and r, then
s+ r ≥ 2d+ 4.Corollary 10. Let K be an algebraially losed �eld and charK = 0 or
charK > d. If a form F ∈ F(4, d, s) essentially depending on four variablesadmits some but only �nitely many representations of length r ≤ 2d+ 3− s,then r = s.M. Woªowie-Musiaª [15℄ asked whether, if a representation of a form
F over an algebraially losed �eld is unique, then the length of the rep-resentation is minimal. For binary forms and charK = 0 or charK > dthe a�rmative answer follows from Theorem 5. For quarti ternary formsand charK 6= 2, 3 the a�rmative answer follows from Corollary 7. For qua-ternary forms and charK = 0 or charK > d a partial a�rmative answerfollows from Corollary 9. Here are some other results pointing towards thea�rmative answer.Theorem 9. If K is algebraially losed , F ∈ F(n, d, s) and F has only
a <∞ representations of length r, then

r = s if s = 1, a > 0,

r ≤ s+ d− 3 if s ≥ 2, a ≥ 0.Corollary 11. Let K be an algebraially losed �eld. If F ∈ F(n, 2, s),where s ≥ 2, then F has in�nitely many representations of length r for every
r ≥ s.Corollary 12. Let K be an algebraially losed �eld. If F ∈ F(n, 3, s)and F admits some, but only �nitely many , representations of length r, then
r = s.At this point, it should be mentioned that, in general, uniqueness of
s-representations of a given form is not implied by the fat that the formhas only �nitely many suh representations. For example, a general form ofdegree d in n variables, where d ≥ n > 2, has a unique representation ofminimal length if and only if n = 3, d = 5 (see Theorem 1 in [10℄), thoughfor n = 3, it has �nitely many suh representations whenever d ≥ 5 is notdivisible by 3.However, notie that (by the ited theorem of Iarrobino), for r < r0 ageneri form in F(n, d, r) admits only �nitely many r-representations, andMella has proved (see Remark 4.6 in [10℄) that, for r < r0 − 1, suh a
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representation is unique. This improves a theorem of Iarrobino and Kanev[7, Theorem 2.6(ii), pp. 62�63℄.We should like to thank A. Sªadek for many remarks whih have helpedto improve the presentation.2. Proof of Theorem 1. Denote by Lin(l1, . . . , lk) the linear spaespanned over K by the elements l1, . . . , lk of LK(n), and by l∗ the oe�ientvetor of l ∈ LK(n).Lemma 2.1. Let charK = 0 or charK > d. If F ∈ F(n, d) and l ∈
LK(n) \ {0} satisfy ∂F/∂l = 0, then F essentially depends on fewer than nvariables l1, . . . , lk, whih all satisfy lj(l∗) = 0.Proof. Let l1 = l, l2, . . . , ln be a basis for LK(n), where lj(l∗) = 0 for
1 < j ≤ n if l(l∗) 6= 0, and lj(l∗) = 0 for 1 ≤ j < n otherwise. Notie that inthe seond ase ln(l) 6= 0. We have

F = F0(l1, l2, . . . , ln)for some F0 ∈ F(n, d). Then, in the �rst ase,
0 =

∂F

∂l
=
∂F0

∂x1
l(l∗),and in the seond ase,

0 =
∂F

∂l
=
∂F0

∂xn
ln(l∗).Hene either ∂F0/∂x1 = 0 or ∂F/∂xn = 0, and F depends on fewer than nvariables lj , whih all satisfy lj(l∗) = 0.Lemma 2.2. Let n > 1, d > 1, s ≥ 0, charK = 0 or charK > d and

|K| > 2s + 1. If a form F ∈ F(n, d) essentially depends on n variablesand l1, . . . , ls ∈ LK(n) \ {0}, then there exists a form l ∈ LK(n) suh that
l/lr 6∈ K (1 ≤ r ≤ s) and

∂2F

∂l2
6= 0,

∂2F

∂l∂l1
6= 0, . . . ,

∂2F

∂l∂ls
6= 0.Proof. For �xed r = 1, . . . , s, the set of forms l suh that ∂2F/∂l∂lr = 0is a proper Zariski losed subset in LK(n). In fat, if it is not a proper subset,we should have

∂

∂l

(

∂F

∂lr

)

= 0for all l ∈ LK(n) and hene ∂F/∂lr ∈ K. Sine F is of degree d > 1 it followsthat ∂F/∂lr = 0, hene by Lemma 2.1, F depends essentially on fewer than
n variables, ontrary to the assumption. Hene if K is in�nite, the set of
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l ∈ LK(n) suh that

∂2F

∂l∂l1
6= 0, . . . ,

∂2F

∂l∂ls
6= 0is not empty and open in LK(n). If K is �nite the set of l ∈ LK(n) satisfyingthe above ondition has at least |K|n − 1 − s(|K|n−1 − 1) elements.It remains to onsider the set of forms l ∈ LK(n) suh that ∂2F/∂l2 = 0.Suppose that ∂2F/∂l2 = 0 for all l ∈ LK(n). Then, in partiular, ∂2F/∂x2

i

= 0 for i = 1, . . . , n. Hene d ≤ n, and F is a linear ombination of squarefree monomials
(∗∗)

d
∏

j=1

xijfor some distint indies ij ≤ n. Now
∂2(

∏d
j=1 xij )

∂(xi1 + xi2)
2

= 2

d
∏

j=3

xij 6= 0.Moreover, the partial derivatives
∂2

∂(xi1 + xi2)
2
,for �xed xi1 , xi2 , when applied to di�erent square free monomials yield 0 ordi�erent monomials of degree d− 2. Hene

∂2F

∂(xi1 + xi2)
2
6= 0.Thus the set of forms l for whih ∂2F/∂l2 6= 0 is non-empty and forK in�nitethe lemma is proved. For K �nite there are at most (2|K| − 1)|K|n−2 − 1non-zero forms l satisfying

∂2F

∂l2
= 0(see [9, Theorems 6.26 and 6.27℄).Therefore, the number of forms l in LK(n) suh that

∂2F

∂l2
6= 0,

∂2F

∂l∂lr
6= 0 (1 ≤ r ≤ s)is at least

|K|n − s(|K|n−1 − 1) − (2|K| − 1)|K|n−2 ≥ |K|2 − (s+ 2)|K| + (s+ 1);on the other hand, the number of forms l ∈ LK(n) \ {0} suh that l/lr ∈ Kfor some r ≤ s is at most
s(|K| − 1).
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The ondition |K| > 2s + 1 guarantees that the former quantity is greaterthan the latter.Definition 1. Let P ⊂ Kn \ {0}. Let S(F, P ) be the minimal length ofa presentation (2) of the form F with the ondition that(A) lµ(p) 6= 0 for all p ∈ P ,(B) ld−1
µ are linearly independent (1 ≤ µ ≤ m) in F(n, d− 1).In ase suh presentations do not exist, S(F, P ) is de�ned to be ∞.

S(n, d, s) is de�ned as the maximum of all S(F, P ) for all forms F ∈
F(n, d) essentially depending on n variables and for all P ⊂ Kn \ {0} ofardinality s.For p = (p1, . . . , pn) ∈ Kn, ∂F/∂px denotes the partial derivative of Fwith respet to p1x1 + · · · + pnxn.Lemma 2.3. Let F = F1(l1, . . . , lk), F1 ∈ F(k, d), lj ∈ LK(n) and F1essentially depend on k variables. If pr ∈ Kn (1 ≤ r ≤ s) and for eah r,(3) ∂F

∂prx
6= 0,then

F =

m
∑

µ=1

aµl
d
0µ, where m ≤ S(k, d, s), aµ ∈ K, l0µ ∈ Lin(l1, . . . , lk),

loµ(pr) 6= 0 for all r ≤ s and ld−1
0µ (1 ≤ µ ≤ m) are linearly independent.Proof. For eah r ≤ s,(4) 〈l1(pr), . . . , ls(pr)〉 6= 0sine otherwise we should obtain

∂F

∂prx
=

k
∑

j=1

∂F1

∂xj

∣

∣

∣

∣

(l1,...,lk)

·
∂lj
∂prx

=
k

∑

j=1

∂F

∂xj
· lj(pr) = 0,

ontrary to (3). From (4) and the de�nition of S(k, d, s) it follows that
F1 =

m
∑

µ=1

aµl
d
1µ, m ≤ S(k, d, s), aµ ∈ K, l1µ ∈ LK(n),

l1µ(l1(pr), . . . , lk(pr)) 6= 0 (1 ≤ µ ≤ m, 1 ≤ r ≤ s)and the ld−1
1µ are linearly independent. Now, it su�es to take

l0µ = l1µ (l1, . . . , lk) .
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Lemma 2.4. If d > 1, s ≥ 0, and either charK = 0, or charK > d and

|K| > 2d+ 2s− 3, then
S(n, d, s) ≤

(

n+ d− 2

d− 1

)

.

Proof. We proeed by indution on n + d. If n + d = 3 we have n = 1,
d = 2 and the assertion is trivially true. Assume that it is true for all n ≥ 1,
d ≥ 2 with n+ d < N and onsider F ∈ F(n, d) essentially depending on nvariables, where n ≥ 1, d ≥ 2, n + d = N , and a �nite subset {p1, . . . ,ps}of Kn \ {0}. If n = 1, the assertion is trivially true. If n ≥ 2, by Lemma 2.2,there exists l ∈ LK(n) suh that l∗ is projetively di�erent from p1, . . . ,psand(5) ∂2F

∂l2
6= 0,

∂2F

∂l∂prx
6= 0 (1 ≤ r ≤ s).Consider �rst d = 2. Taking(6) F0 =

(

∂F

∂l

)2/

2
∂2F

∂l2we obtain
∂(F − F0)

∂l
= 0,hene, by Lemma 2.1, F − F0 essentially depends on n1 < n variables,(7) F − F0 = F1(l1, . . . , ln1

),where F1 ∈ F(n1, d), lj ∈ LK(n) and lj(l∗) = 0.We have n1 = n − 1, sine otherwise F would depend on fewer than nvariables. Sine the lj are linearly independent and lj(l∗) = 0 (1 ≤ j ≤ n−1),and l∗ is projetively di�erent from p1, . . . ,ps, for all r ≤ s we have
〈l1(pr), . . . , ln−1(pr)〉 6= 0.Now, by the indutive assumption we have

F1(x1, . . . , xn−1) =

n
∑

µ=2

aµl
2
1µ, where aµ ∈ K, l1µ ∈ LK(n− 1),(8)

l1µ(l1(pr), . . . , ls(pr)) 6= 0 (1 ≤ r ≤ s)(9)and the forms l1µ (2 ≤ µ ≤ n) are linearly independent. Now, taking
a1 =

1

2∂2F/∂l2
, l01 =

∂F

∂l
,

l0µ = l1µ(l1, . . . , ln−1) (2 ≤ µ ≤ n),(10)
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from (6)�(8) we obtain(11) F =

n
∑

µ=1

aµl
2
0µ,where, by (5) and (9), l0µ(pr) 6= 0 (1 ≤ r ≤ s).Assume now that

n
∑

µ=1

Aµl0µ = 0, Aµ ∈ K.

If A1 6= 0, then l01 depends linearly on l0µ (2 ≤ µ ≤ n), hene by (10)and (11), F depends on lj (1 ≤ j ≤ n−1), ontrary to the assumption. Thus
A1 = 0 and by the linear independene of the l1µ, Aµ = 0 for all µ ≤ n.Assume now that d ≥ 3. The form ∂F/∂l of degree d − 1 essentiallydepends on n0 ≤ n variables. By (5) and Lemma 2.3 it follows that
∂F

∂l
=

m0
∑

µ=1

aµl
d−1
0µ , where m0 ≤ S(n0, d− 1, s+ 1), aµ ∈ K, l0µ ∈ LK(n),(12) l0µ(l∗) 6= 0, l0µ(pr) 6= 0 (1 ≤ r ≤ s)and(13) ld−2

0µ (1 ≤ µ ≤ m0) are linearly independent.Taking
F0 =

m0
∑

µ=1

aµl
d
0µ

dl0µ(l∗)we obtain
∂(F − F0)

∂l
= 0,hene, by Lemma 2.1, F − F0 = F 0

1 (l01, . . . , l
0
n−1), where l0j ∈ LK(n) and

l0j (l
∗) = 0. Let T be a minimal subset of {1, . . . ,m0} with the propertythat for a ertain point p projetively di�erent from 0,p1, . . . ,ps and somelinearly independent forms l1, . . . , ln1

in LK(n), and a ertain F1 in F(n1, d),
F −

∑

µ∈T

aµl
d
0µ

dl0µ(l∗)
= F1(l1, . . . , ln1

), lj(p) = 0,(14)
l0µ 6∈ Lin(l1, . . . , ln1

) for µ ∈ T.(15)(The set {1, . . . ,m0} has this property with p = l∗, lj = l0j , F1 = F 0
1 , so suhsets exist.) Sine lj(p) = 0 (1 ≤ j ≤ n1) we have n1 ≤ n− 1. We assert that

n1 = n− 1. Indeed, supposing the ontrary we ould �nd µ1 ∈ T suh that
l0µ1

6∈ Lin(l1, . . . , ln1
) (otherwise F would depend on n1 variables) and a
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point p 6= 0 suh that l0µ1

(p) = 0 = l1j(p) (1 ≤ j ≤ n1). Sine l0µ1
(pr) 6= 0,

p is projetively di�erent from pr (1 ≤ r ≤ s). Taking
T1 = T \ {µ ≤ m0 : l0µ ∈ Lin(l0µ1

, l1, . . . , ln1
)}we should obtain (14) and (15) with T replaed by T1  T , ontrary tothe hoie of T . Thus n1 = n − 1 and sine the lj are linearly independent

(1 ≤ j ≤ n− 1) and lj(p) = 0, for every r ≤ s we have
〈l1(pr), . . . , ln−1(pr)〉 6= 0.Hene, by the de�nition of S(n− 1, d, s) we have(16) F1(x1, . . . , xn−1) =

m0+m1
∑

µ=m0+1

aµl
d
1µ, aµ ∈ K, l1µ ∈ Ln−1(K),where m1 ≤ S(n− 1, d, s),(17) l1µ(l1(pr), . . . , ln−1(pr)) 6= 0 (m0 < µ ≤ m0 +m1, 1 ≤ r ≤ s)and the ld−1

1µ are linearly independent.It follows from (14) and (16) that(18) F =
∑

µ∈T

aµl
d
0µ

dl0µ(l∗)
+

m0+m1
∑

µ=m0+1

aµl1µ(l1, . . . , ln−1)
d,where, by (12) and (17), the relevant linear forms do not vanish at pr (1 ≤

r ≤ s). Assume now that(19) ∑

µ∈T

Aµl
d−1
0µ +

m0+m1
∑

µ=m0+1

Aµl1µ(l1, . . . , ln−1)
d−1 = 0, Aµ ∈ K.By (15) there exists z ∈ LK(n) \ {0} suh that l0µ(z∗) 6= 0 (µ ∈ T ) and

lj(z
∗) = 0 (1 ≤ j ≤ n− 1). Di�erentiating (19) with respet to z we obtain

∑

µ∈T

Aµ(d− 1)ld−2
0µ l0µ(z∗) = 0,hene, by (13), Aµ = 0 for all µ ∈ T , and by (19),

m0+m1
∑

µ=m0+1

Aµl1µ(l1, . . . , ln−1)
d−1 = 0.

Therefore, by the linear independene of the ld−1
1µ we have Aµ = 0 for all µ.It now follows from (18) and the indutive assumption that

S(F, s) ≤ |T | +m1 ≤ m0 +m1 ≤ S(n0, d− 1, s+ 1) + S(n− 1, d, s)

≤

(

n+ d− 3

d− 2

)

+

(

n+ d− 3

d− 1

)

=

(

n+ d− 2

d− 1

)

.
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Sine F was an arbitrary element of F(n, d) essentially depending on n vari-ables, it follows that
S(n, d, s) ≤

(

n+ d− 2

d− 1

)

,and the indutive proof is omplete.Lemma 2.5. If the forms ld−1
µ (1 ≤ µ ≤ m), where lµ ∈ LK(n), span thespae F(n, d − 1), then for every i ≤ d the forms ld−i

µ (1 ≤ µ ≤ m) span
F(n, d− i).Proof. Let F ∈ F(n, d− i) be given as

F =
d−i
∑

j=0

Ajx
d−i−j
n , Aj ∈ K[x1, . . . , xn−1] ∩ F(n− 1, j).By the assumption

Fi :=
d−i
∑

j=0

Aj
xd−1−j

n
∏i−1

k=1(d− j − k)
=

m
∑

µ=1

aµl
d−1
µ , aµ ∈ K, lµ ∈ LK(n),hene

F =
∂i−1F1

∂xi−1
n

=
m

∑

µ=1

aµl
d−i
µ

(

∂lµ
∂xn

)i−1

.Proof of Theorem 1. For d = 1 the assertion is obvious. For d ≥ 2, let
F =

∑d
δ=0 Fδ, where Fδ ∈ F(n, δ). Assume Fd essentially depends on nd ≤ nvariables. By Lemma 2.4 with s = 0 we have Fd =

∑md

µ=1 adµl
d
µ, where

md ≤

(

nd + d− 2

d− 1

)

≤

(

n+ d− 2

d− 1

)

,

adµ ∈ K, lµ ∈ LK(n) and the ld−1
µ are linearly independent (1 ≤ µ ≤ md).Sine the dimension of F(n, d− 1) is (n+d−2

d−1

) and, by Lemma 2.4, this spaeis spanned by ld−1, l ∈ LK(n), there exist forms lµ (

md < µ ≤
(n+d−2

d−1

))suh that the forms ld−1
µ

(

1 ≤ µ ≤
(

n+d−2
d−1

)) span the spae F(n, d−1), thus,by Lemma 2.5, for eah δ < d we have
Fδ =

(n+d−2
d−1

)

∑

µ=1

aδµl
δ
µand it su�es to take fµ =

∑d
δ=0 aδµz

δ, where for δ = d and µ > md wetake aδµ = 0.This proves the �rst part of the theorem. In order to prove the seondpart observe that ifK is in�nite we an apply Lemma 2.4 with an arbitrary s.
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Proof of Corollary 2. It su�es to apply Theorem 1 to the polynomial

xd
n+1F (x1/xn+1, . . . , xn/xn+1) ∈ F(n+ 1, d) and then substitute xn+1 = 1.
3. Proof of Theorem 2 and Corollary 3. We shall prove the �rstassertion of the theorem by indution on d. For d = 1 the assertion is obvious.Assume it is true for the exponent d − 1 and let li be the linear forms inquestion. By an invertible linear transformation we an ahieve that(20) li = xi−(d−1)(n−1) for i > (d− 1)(n− 1).For i ≤ (d− 1)(n− 1) let

li =
n

∑

j=1

aijxj , aij ∈ K.

If ai1 = 0, then the forms li and xk = lk+(d−1)(n−1), for k = 2, . . . , n, arelinearly dependent. Hene by the assumption ai1 6= 0 for all i ≤ (d−1)(n−1).Assume now that
(21) d(n−1)+1

∑

i=1

Ail
d
i = 0, Ai ∈ K.

Di�erentiating with respet to x1 we obtain
(d−1)(n−1)

∑

i=1

dAiai1l
d−1
i + dA(d−1)(n−1)+1x

d−1
1 = 0.

By the indutive assumption we have
dAiai1 = 0 (1 ≤ i ≤ (d− 1)(n− 1)) and dA(d−1)(n−1)+1 = 0,hene Ai = 0 (1 ≤ i ≤ (d − 1)(n − 1)). It now follows from (20) and (21)that

n
∑

i=1

A(d−1)(n−1)+ix
d
i = 0,

hene Ai = 0 for all i.In order to prove the seond assertion of the theorem take m = d(n− 1)

+ 2, li =
∑n

j=1 a
j−1
i xj (1 ≤ i < m), lm = xn, where the ai are distintelements of K (we assume 00 = 1). It is easy to hek that any n among the

li are linearly independent. On the other hand, we have
ldi =

d(n−1)
∑

k=0

ak
i fk (1 ≤ i < m), ldm = xd

n = fd(n−1),
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where(22) fk =
∑

i2+2i3+···+(n−1)in=k
i1+···+in=d

(

d

i1 . . . in

) n
∏

q=1

x
iq
q .

Hene the dimension of the spae generated by the ldi is at most d(n−1)+1.Proof of Corollary 3. Sine the forms ldi onstruted in the proof of theseond part of Theorem 2 are linearly dependent we have
d(n−1)+2

∑

i=1

Ail
d
i = 0, Ai ∈ K.

On the other hand, for every j ≤ d(n−1)+2 the forms ldi (i 6= j) are linearlyindependent, by the �rst part of Theorem 2, hene all proper subsums of theabove sum are di�erent from 0, and in partiular Ai 6= 0. Moreover, li/lj ∈ Kimplies i = j, and the li jointly essentially depend on n variables. Expliitly,we have
Ai = −

d(n−1)+1
∏

j=1
j 6=i

(aj − ai)
−1 (1 ≤ i ≤ d(n− 1) + 1), Ad(n−1)+2 = 1.

4. Proofs of Propositions 1�3 and Corollaries 4�5. Let
F ∈ φn,r,d(LK(n)r), F 6= 0.Let W be an irreduible omponent of φ−1

n,r,d(F ). Assume that W does notontain any representation of F . That means that for every (l1, . . . , lr) ∈W ,there exist i, j = 1, . . . , r, i 6= j, and a ∈ K suh that li = alj . Sine W isirreduible, we may �nd i, j = 1, . . . , r, i 6= j, suh that for all (l1, . . . , lr) ∈
W , li = alj for some a ∈ K. We may assume that i = r− 1, j = r. Then forsome b ∈ K, we have an (r− 1)-presentation F = ld1 + · · ·+ (blr−1)

d. Let W ′be an irreduible omponent of φ−1
n,r−1,d(F ) ontaining all suh presentations.Then we will prove the followingLemma 4.1. dimW = dimW ′ − 1.We shall use the following lassial result:

(∗) Let φ : X → Y be a morphism of irreduible algebrai varieties de�nedover an algebraially losed �eld K. Assume that φ(X) = Y . Then,for every y ∈ φ(X), the dimension of every irreduible omponent of
φ−1(y) is at least dimX−dimY . Moreover , for a generi point y ∈ Y ,the dimensions of all irreduible omponents of φ−1(y) are equal to
dimX − dimY .
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This result, under the assumption φ(X) = Y , an be found in [14, Chap-ter I, Se. 6.3, �rst part of Theorem 7℄. The proof presented there worksunder the weaker assumption φ(X) = Y .Proof of Lemma 4.1. We use the notation introdued above. We mayrepresent φn,r,d as the omposition φ2

n,r,d ◦ φ
1
n,r,d, where

φ1
n,r,d : LK(n)r → φ1

n,r,d(LK(n)r)⊂F(n, d)r, φ1
n,r,d(l1, . . . , lr)=(ld1, . . . , l

d
r),and

φ2
n,r,d : Φ1

n,r,d(LK(n)r) → F(n, d), φ2
n,r,d(f1, . . . , fr) = f1 + · · · + fr.Notie that φ1

n,r,d is a �nite morphism. For a generi r-presentation F =

ld1 + · · · + ldr of F ontained in W , let lr = alr−1 and f1 = ld1, . . . , fr−1 =
(1 + ad)ldr−1. Then

F = f1 + · · · + fr−1.Let ψ : W → φ1
n,r−1,d(W

′) be the rational map de�ned by
ψ(l1, . . . , lr) = (ld1, . . . , l

d
r−2, (1 + ad)ldr−1).Then ψ(W ) = φn,r−1,d(W

′) and a generi �ber of ψ is of dimension 1. Thusby (∗),
dimW = dim(φn,r−1,d(W

′)) + 1.Sine φ1
n,r−1,d is a �nite morphism,

dim(φ1
n,r−1,d(W

′)) = dimW ′,and thus our lemma has been proved.The lemma implies at one Proposition 1.Proof of Proposition 2. Assume that the proposition is not true. Considerindependent generi linear forms l1, . . . , lr in n variables and a generi F =
ld1+· · ·+ldr . Then (l1, . . . , lr) ∈ φ−1

n,r,d(F ). LetW be the irreduible omponentof φ−1
n,r,d(F ) ontaining (l1, . . . , lr). For every (z1, . . . , zr) ∈W we have zd

i = ldjfor some i, j = 1, . . . , r. Sine the algebrai properties of all independentgeneri olletions of linear forms indexed by (1, . . . , r) are the same, wehave proved that there exists an integer i suh that for every independentgeneri olletion (l1, . . . , lr) of linear forms and for (z1, . . . , zr) belongingto the irreduible omponent of φ−1
n,r,d(l

d
1, . . . , l

d
r ) ontaining (l1, . . . , lr) wehave zi = li. On the other hand, sine every permutation σ of (1, . . . , r)determines another independent generi olletion (lσ(1), . . . , lσ(r)), we �ndthat the above property of the integer i holds for all integers 1, . . . , r. Thus

z1 = l1, . . . , zr = lr and this means that there is only one point in theirreduible omponent. This ontradits our assumption.
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Proof of Corollaries 4 and 5. By Iarrobino's theorem [6℄ for every r ≥ r0the mapping φn,r,d is dominant, hene the dimensions of generi �bers of
φn,r+1,d and φn,r,d di�er by n. For n ≥ 2 a generi �ber of φn,r,d orrespondsto an r-representation. Now an appliation of (∗) quoted in the proof ofLemma 4.1 gives Corollaries 4 and 5.Proof of Proposition 3. In Proposition 2 and its proof we may replaethe assumption that �F admits two di�erent representations� by �F admitstwo di�erent projetively inequivalent representations� and then we onludethat the forms li, zj are also projetively inequivalent. The assumption isvalid for r > r0. Sine 0 = ld1 + · · ·+ldr −z

d
1 − . . .−z

d
r , this proves the assertionof Proposition 3 for t even > 2r0. In order to prove it for t odd > 2r0 notethat the same type of argument gives the following. Let F be a generiform in F(n, d), r ≥ r0. Then F admits an r-representation and an (r + 1)-representation. Moreover, there exist representations F = ld1 + · · ·+ ldr = zd

1 +
· · ·+zd

r+1 suh that li/zj is non-onstant for i = 1, . . . , r and j = 1, . . . , r+1.5. Proofs of Theorems 3 and 4Lemma 5.1. Let(23) Bi(z1, . . . , zm) = (−1)i
∏

1≤j<k≤m
j 6=i6=k

(zk − zj).

Then for every µ ≤ m− 2,(24) Pµ :=
m

∑

i=1

Biz
µ
i = 0.Proof. Bi is of degree (m−1

2

), hene Pµ is either 0 or of degree (m−1
2

)

+µ <
(m

2

). On the other hand, if p < q and zp = zq, then Bi = 0 for i 6= p, q,(25) Pµ = (Bp +Bq)z
µ
pand

(Bp +Bq)
∏

1≤j<k≤m
{j,k}∩{p,q}=∅

(zk − zj)
−1

= (−1)p
∏

j<q
j 6=p

(zq − zj)
∏

j>q

(zj − zq) + (−1)q
∏

j<p

(zp − zj)
∏

j>p
j 6=q

(zj − zp)

= (−1)p
∏

j<q
j 6=p

(zp − zj)
∏

j>q

(zj − zp) + (−1)q
∏

j<p

(zp − zj)
∏

j>p
j 6=q

(zj − zp)

= (−1)p+q−2
∏

j 6=p,q

(zj − zp) + (−1)p+q−1
∏

j 6=p,q

(zj − zp) = 0.
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Thus by (25), Pµ is divisible by ∏

p<q(zp − zq) and is either 0 or of degreeat least (

m
2

). Conlusion (24) follows.Lemma 5.2. For d > 1, xd
1 + · · ·+xd

n essentially depends on n variables.Proof. Assume that
xd

1 + · · · + xd
n = F (l1, . . . , ln−1),where F ∈ F(n − 1, d) ∩ K[y1, . . . , yn−1], li ∈ L(n). Di�erentiating withrespet to xi we obtain

dxd−1
i =

n−1
∑

j=1

∂F

∂yj

∂lj
∂xi

.Sine by the assumption made at the beginning of the paper d 6≡ 0 (mod
charK), it follows that xd−1

1 , . . . , xd−1
n are linearly dependent, whih is falsefor d > 1.Proof of Theorem 3. Let

I := {n+ 1, . . . , n+ r}.Choose (a1, . . . , an) ∈ Kn suh that ai 6= aj for i 6= j. Let U ⊂ Kr beomposed of all (an+1, . . . , an+r) suh that all ai are di�erent from a1, . . . , anand ai 6= aj for i 6= j in I. Then the group S of permutations of I ats on U .For i = 1, . . . , n, let
li = x1 + aix2 + · · · + an−1

i xnand for a = (an+1, . . . , an+r) ∈ U and i = n+ 1, . . . , n+ r, let
li(a) = x1 + aix2 + · · · + an−1

i xn.Then by Lemma 5.1 applied with m = n+ r ≥ d(n− 1) + 2,
n+1
∑

i=1

Bi(a1, . . . , an+r)l
d
i =

d(n−1)
∑

µ=0

fµ

n+r
∑

i=1

Bi(a1, . . . , an+r)a
µ
i = 0,where fµ is given by (22). It follows that(26) n

∑

i=1

Ai(a)ldi = −
n+r
∑

i=n+1

Ai(a)li(a)d,where(27) Ai(a) =
Bi(a1, . . . , an,a)

D
, D =

∏

n<j<k≤n+r

(ak − aj).Now by (22) and (27), A1(a), . . . , An+r(a) do not vanish on U , are sym-metri, and for τ ∈ S and i ∈ I we have
Ai(τ(a)) = Aτ(i)(a).
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By a linear substitution (or a linear hange of variables) li 7→ yi, where
i = 1, . . . , n, we obtain from (26) the equality(28) A1(a)yd

1 +A2(a)yd
2 + · · · +An(a)yd

n = −
n+r
∑

i=n+1

Ai(a)li(a)d,

where li(a) is the linear form (in the variables y1, . . . , yn) obtained from li(a)by the above substitution.Now, another substitution in (28),
d
√

Ai(a) yi 7→ zi,where i = 1, . . . , n, gives for every a ∈ U the equality(29) zd
1 + · · · + zd

n = −
n+r
∑

i=n+1

Ai(a)mi(a)d,where, for i = n + 1, . . . , n + r, mi(a) is the linear form (in z1, . . . , zn)obtained from li by this substitution. In ontrast to the previous substitution,the substitution depends on a ∈ U and, to be preise, in order to onsiderroots of degree d of the funtions Ai we should replae U by its properlydetermined over, also denoted by U (e.g. one may take normalization of Uin the extension of K(an+1, . . . , an+r), where an+1, . . . , an+r are onsideredas variables, obtained by adjoining all roots of Ai(a) of degree d, for i =
1, . . . , n).Moreover, notie that, sine the funtions Ai(a) for i = 1, . . . , n aresymmetri, the group S ats on the desribed family of representations of
zd
1 + · · · + zd

n. More exatly, the image of a representation (29) under τ ∈ Sis the representation
zd
1 + · · · + zd

n = −
n+r
∑

i=n+1

Ai(τ(a))mi(τ(a)).Sine li(τ(a)) = lτ(i)(a) and the above substitutions are invariant under theation of S, we still have
mi(τ(a)) = mτ(i)(a) for i = n+ 1, . . . , n+ r.Hene the image of (29) under τ an be written as
zd
1 + · · · + zd

n = −

n+r
∑

i=n+1

Ai(τ(a))mτ(i)(a).

We are going to prove that there are a lot of representations of zd
1+· · ·+zd

nin the above desribed family parametrized by U . Sine U is irreduible, ifthis is not the ase, then there exists p = (p1, . . . , pn) ∈ Kn \ {0} suh that,for every representation (29) and for every a ∈ U , there exists an index
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i ∈ {n+ 1, . . . , n+ r} suh that mi(a)(p) = 0. Again, sine U is irreduible,there exists a �xed index i0 suh that, for all a ∈ U , we have

mi0(a)(p) = 0.However, for every τ ∈ S,
mτ(i0)(a)(p) = mi0(τ(a))(p) = 0.Thus, for all indies i = n+ 1, . . . , n+ r and all a ∈ U , we have

mi(a)(p) = 0.This means that the formsmn+1(a), . . . ,md(n−1)+2(a) jointly depend on n−1variables. For d > 1 this ontradits the equality (29), sine by Lemma 5.2the left hand side essentially depends on n variables. This ompletes theproof exept for the ase d = 1, whih is trivial.Lemma 5.3. In every r-representation of 0 by sums of dth powers oflinear forms we have
r > min{d, d1} + 1,where d1 = d + 1 if charK = 0, and d1 = pν+1

{

d+1
pν+1

} if charK = p and
pν ‖ d+ 1.Proof. We may assume without loss of generality that one of the linearforms in question is x, hene it is enough to show impossibility of the equation(30) xd

1 =
r

∑

j=1

(ajx1 + lj)
d,where min{d, d1} ≥ r > 1, aj ∈ K, lj ∈ LK(n− 1) ∩K[x2, . . . , xn] and(31) the forms ajx1 + lj are non-zero and projetively di�erent.If charK = 0, we have ( d

i ) 6= 0 for all i ≤ r. If charK = p, let d =
∑k

i=0 cip
i,

0 ≤ ci < p. By the de�nition of ν we have ci = p− 1 (0 ≤ i < ν), cν < p− 1and by the Luas theorem ( d
i ) 6≡ 0 mod p for i < (cν + 1)pν = d1.Therefore, the identity (30) gives(32) r

∑

j=1

ai
jl

d−i
j = 0 (0 ≤ i < r).By (31) we may assume that lj 6= 0 for all j < r. If lr 6= 0, then we inferfrom (32) that

D := det (ai
jl

d−i
j ) 0≤i<r

1≤j≤r

= 0.However, by a redution to a Vandermonde determinant(33) D =

r
∏

j=1

ldj
∏

1≤i<j≤r

(

aj

lj
−
ai

li

)
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and, by (31), D 6= 0. This shows that lr = 0 and (32) gives
D1 := det (ai

jl
d−i
j ) 0≤i<r−1

1≤j≤r−1

= 0.Sine(34) D1 =
r−1
∏

j=1

ldj
∏

1≤i<j≤r

(

aj

lj
−
ai

li

)

6= 0,we have a ontradition.Remark 5.4. For charK = p > 0 the number 1 in Lemma 5.3 annotbe replaed by 2, as shown by the example d = p2 + p− 1, d1 = p,
0 = −xd

1 +

p+1
∑

j=1

(x1 + ζj
p+1x2)

d,where ζp+1 is a primitive root of unity of order p+ 1 in K.Proof of Theorem 4. The �rst part of the theorem follows from Theo-rem 1. The seond part follows from Lemma 5.3 and the trivial observationthat if pν+1 > d+ 1, then
pν+1

{

d+ 1

pν+1

}

= d+ 1.

6. Proofs of Theorems 5�7 and Proposition 4Proof of Theorem 5. Let F ∈ F(2, d, s) have an r-representation. If r ≤
(d+ 1)/2, then s ≤ r ≤ (d+ 1)/2 and unless r = s we have a representationof 0 = F − F of length at most r + s < d + 1, ontrary to Lemma 5.3. If
r > (d+ 1)/2, then r ≥ r0 and by Corollary 5 the set of r-representationsof F has dimension at least 2r − (d+ 1) > 0, thus it is in�nite. This provesthe �rst part of the theorem.In order to prove the seond part notie that by Theorem 2 for a generipoint (l1, . . . , ld+1) ∈ LK(2)d+1 the set {ld1, . . . , l

d
d+1} is a basis of F(2, d).Hene for every form F , the set φ−1

2,d+1,d(F ) interseted with a non-emptyopen subset of LK(2)d+1 is of dimension d+ 1. This proves (a).For a �xed form F of degree d and for �xed linear forms ld+2, . . . , lr,
φ−1

2,d+1,d(F + ldd+2 + · · · + ldr ) has a omponent of dimension d + 1, and thisimplies that φ−1
2,r,d(F ) has a omponent of dimension d+ 1 + 2(r − d− 1) =

2r − (d + 1). This proves (b), and sine the ondition li(p) 6= 0 does notin�uene the dimension, also ().Lemma 6.1. Let K be an in�nite �eld with charK = 0 or charK > d,and let f ∈ K[x] be of degree d. If f(x) 6= a(x+ b)d + c for all a, b, c in K,
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then for every �nite subset S of K there exist β1, . . . , βd−1 and b1, . . . , bd in
K suh that βi 6= βj for i 6= j, βi 6∈ S (1 ≤ i < d), bi 6= 0 (1 ≤ i ≤ d) and
(35) f(x) =

d−1
∑

µ=1

bµ(x+ βµ)d + bd.Proof. Let τi(y1, . . . , yl) be the ith elementary symmetri polynomial of
y1, . . . , yl and let(36) f(x) =

d
∑

i=0

(

d

i

)

aix
d−i.We follow the proof of Theorem 4 in [12℄ and put

G(y1, . . . , yd−2) =
∏

1≤i<j≤d−2

(yj − yi)
d

∑

i=2

(−1)i−1ad−iτi−2(y1, . . . , yd−2)

×

d−2
∏

j=1

(

ad−1 +

d−1
∑

i=2

(−1)i−1ad−i(τi−1(y1, . . . , yd−2) + yjτi−2(y1, . . . , yd−2))

+ (−1)d−1a0yjτd−2(y1, . . . , yd−2)
)

.Further, for k ≤ d− 2 we put
Hk(y1, . . . , yd−2) =

d−3
∑

i,j=0

(−1)i+j(ad−2−iad−2−j − ad−1−iad−3−j)

× τi(y1, . . . , yk−1, yk+1, . . . , yd−2)τj(y1, . . . , yk−1, yk+1, . . . , yd−2),

Hd−1(y1, . . . , yd−2) =

d
∑

i=2

(−1)i−1ad−iτi−2(y1, . . . , yd−2),

(37) Hd(y1, . . . , yd−2)

= ad − (−1)d
d−2
∑

k=1

Hk(y1, . . . , yd−2)y
d
k

d−2
∏

j=1
j 6=k

(yj − yk)
(d−1

∑

i=1
(−1)iad−iτi−1(y1, . . . , yd−2) − ykHd−1

)

+

(d−1
∑

i=1
(−1)iad−iτi−1(y1, . . . , yd−2)

)d

d−2
∏

k=1

(d−1
∑

i=1
(−1)iad−iτi−1(y1, . . . , yd−2) − ykHd−1

)

Hd−1

.

Sine a0 6= 0 we have G 6= 0, and in partiular Hd−1 6= 0. Sine f(x) 6=
a(x+ b)d + c, we have a2

d−2−i − ad−1−iad−3−i 6= 0 for at least one i ≤ d− 3,
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hene Hk 6= 0 for all k ≤ d− 2. Also for the same reason
(38) d−1

∑

i=1

(−1)iad−iτi−1(y1, . . . , yd−2)/Hd−1 6∈ K.

Finally, the rational funtion Hd is not identially 0, sine it is of order 1with respet to y1. Indeed, denoting by ordR the order of a rational funtion
R with respet to y1 we have

ord ad = 0, ordH1 = 0, ord yd
1 = d,

ord

d−2
∏

j=2

(yj − y1) = d− 3,

ord
(

d
∑

i=1

(−1)iad−iτi−1(y1, . . . , yd−2) − y1Hd−1

)

= 2

and for 2 ≤ k ≤ d− 2,
ordHk = 2, ord yd

k = 0, ord

d−2
∏

j=1
j 6=k

(yj − yk) = 1,

ord
(

d
∑

i=1

(−1)iad−iτi−1(y1, . . . , yd−2) − ykHd−1

)

= 1.

Finally,
ord

(

d−1
∑

i=1

(−1)iad−iτi−1(y1, . . . , yd−2)
)d

= d,

ord
(

d−1
∑

i=1

(−1)iad−iτi−1(y1, . . . , yd−2) − ykHd−1

)

= ordHd−1 = 1 (k > 1),

hene all terms in the sum (37) exept one have order 0 and the exeptionalterm has order 1. Thus there exist β1, . . . , βd−2 in K suh that
(39) G(β1, . . . , βd−2)

d
∏

k=1

Hk(β1, . . . , βd−2) 6= 0,

moreover βk 6∈ S (1 ≤ k ≤ d− 2) and by (38),
βd−1 :=

d−1
∑

i=1

(−1)iad−iτi−1(β1, . . . , βd−2)/Hd(β1, . . . , βd−2) 6∈ S.
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Sine G(β1, . . . , βd−2) 6= 0 we have βi 6= βj (1 ≤ i < j < d). Now, for
k ≤ d− 2 put

bk =
(−1)dHk(β1, . . . , βd−2)

∏d−1
j=1, j 6=k(βj − βi)Hd−1(β1, . . . , βd−2)and
bd−1 =

−Hd−1(β1, . . . , βd−2)
∏d−2

k=1(βd−1 − βk)
.It follows that(40) bd := ad −

d−1
∑

µ=1

bµβ
d
µ = Hd(β1, . . . , βd−2)and, by (39), bµ 6= 0 (1 ≤ µ ≤ d).Now, a tedious omputation based on Lemma 3 of [12℄ shows that for

k < d,
bk = (−1)d+k+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 . . . 1 a0

β1 . . . βk−1 βk+1 . . . βd−1 a1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
βd−2

1 . . . βd−2
k−1 βd−2

k+1 . . . βd−2
d−1 ad−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

/

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 . . . 1

β1 . . . βd−1. . . . . . . . . . . . . . . .
βd−2

1 . . . βd−2
d−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

and sine, by the hoie of βd−1,
∣

∣

∣

∣

∣

∣

∣

∣

∣

1 . . . 1 a0

β1 . . . βd−1 a1. . . . . . . . . . . . . . . . . . . . . .
βd−2

1 . . . βd−2
d−1 ad−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

we have
d−1
∑

µ=1

bµβ
j
µ = aj (0 ≤ j < d).

Now, (35) follows from (36) and (40).Proof of Theorem 6. If F has a representation of length 2 the asser-tion follows from Theorem 4. If F has no representation of length 2, let
{p1, . . . ,ps} be a subset of K2 \ {0}. Choose ξ ∈ K suh that F (1, ξ) 6= 0and

pr2 − ξpr1 6= 0 (1 ≤ r ≤ s),and put
S =

{

pr1

ξpr1 − pr2
: 1 ≤ r ≤ s

}

.
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By Lemma 6.1 there exist elements β1, . . . , βd−1, b1, . . . , bd of K suh that
βi 6= βj for i 6= j, βi 6∈ S, bi 6= 0 and

F (x, ξx+ 1) =
d−1
∑

µ=1

bµ(x+ βµ)d + bd.It follows that
F (x1, x2) =

d−1
∑

µ=1

bµ(x1 + βµ(x2 − ξx1))
d + bd(x2 − ξx1)

d.The linear forms x1 +βµ(x2−ξx1) (1 ≤ µ ≤ d) and x2−ξx1 are projetivelydi�erent, sine the βµ are distint. Moreover, for all r ≤ s,
pr1 + βµ(pr2 − ξpr1) 6= 0, pr2 − ξpr1 6= 0by the hoie of ξ and S.Proof of Proposition 4. Assume that c = max(d1, d2) = d2, d1 > 0. First,notie that there is no representation of xd1

1 x
d2

2 of length smaller than c+ 1.In fat, if
xd1

1 x
d2

2 = ld1 + · · · + ldr ,then taking (∂/∂x1)
d1 of both sides, we obtain a representation of d1!x

d2

2 oflength at most r, thus a representation of the zero form of length at most
r + 1 by (d2)th powers of binary linear forms. Thus by Theorem 4, either
r+1 ≥ d2 +2 and r ≥ d2 +1 = c+1, or r = 1, l1 = ax2, whih is impossiblefor d1 > 0.On the other hand, there exist a lot of representations of xd1

1 x
d2

2 of length
c+ 1. In fat, let again c = d2. Then for every a ∈ K \ {0}, we have

(d2 + 1)

(

d1 + d2

d2

)

xd1

1 x
d2

2 =

d2
∑

j=0

a−d2ζj(x1 + aζjx2)
d1+d2 ,where ζ is a primitive root of 1 of degree d2 + 1. This ompletes the proofof Proposition 4.Proof of Theorem 7. The �rst part of the theorem follows from Theo-rem 3.To prove the seond part we proeed by indution on d. For d = 2 theassertion is obvious. Assume that it is true for the exponent d − 1 (d ≥ 3)and let(41) xd

1 + xd
2 + xd

3 = ld1 + · · · + ldvbe a disjoint v-representation with the least possible v. We may assume that
li ∈ K[x1, x2] exatly for i ≤ u. Then for i > u,

li = aix3 +mi, ai ∈ K∗, mi ∈ LK(2).
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By the hoie of v we have li/xj 6∈ K (1 ≤ i ≤ u, j = 1, 2) and mi 6= 0
(u < i ≤ v). Di�erentiating (41) with respet to x3 we obtain(42) xd−1

3 =
v

∑

i=u+1

ail
d−1
i .If dimLin(mu+1, . . . ,mv) = 2, then by the indutive assumption

v − u+ 1 ≥ 2(d− 1) + 2 = 2d, hene v ≥ 2d− 1.If dim Lin(mu+1, . . . ,mv) = 1, then mi = bim (u < i ≤ v), bi ∈ K∗,
m ∈ LK(2) and the equation (42) gives, by Lemma 5.3,(43) v − u+ 1 ≥ d+ 1.Moreover, after substitution x3 = 0, the equation (41) gives

xd
1 + xd

2 =
u

∑

i=1

ldi +md
v

∑

i=u+1

bdi ,hene, by Theorem 4,(44) u+ 1 ≥ d.Adding the inequalities (43) and (44) we obtain v ≥ 2d− 1.Proof of Corollary 6. Two disjoint representations of F of length r and
s, respetively, would give a representation of 0 = F − F of length at most
r + s by dth powers of linear forms jointly essentially depending on threevariables. If r + s < 2d+ 2 this ontradits Theorem 7.Proof of Corollary 7. Canelling the idential terms in the represen-tations of length r and s, respetively, we obtain disjoint representations
F ′ = ld1 + · · · + ldr′ = md

1 + · · · + md
s′ , where r − r′ = s − s′. If F ′ essen-tially depends on at most two variables, then sine F ′ has only �nitely many

r′-representations we have, by Corollary 5, s′ ≤ r′ ≤ (d+ 1)/2, hene unless
r′ = s′ there is a representation of 0 = F ′ −F ′ by fewer than d+ 2 dth pow-ers of linear forms, ontrary to Lemma 5.3. Thus r′ = s′, whene r = s or
F ′ essentially depends on three variables. In the latter ase, by Theorem 7,
r′ + s′ ≥ 2d+ 2, hene r + s ≥ 2d+ 2, ontrary to the assumption.Proof of Corollary 8. Here r0 = 6, thus if r ≥ 6 then there exist, byCorollary 5, either 0 or in�nitely many r-representations, so s ≤ r ≤ 5 andeither r = s = 5 or r + s ≤ 9. In the latter ase r = s by Corollary 7.Proof of Theorem 8. Sine, by Theorem 4, xd

i +xd
i+1 admits a lot of repre-sentations of every length ≥ d, xd

1+· · ·+xd
2m admits a disjoint representationof every length r ≥ md.The seond part of the theorem is proved by double indution on d and r.For d ≤ 2 or r ≤ 3 there is no representation of xd

1 + xd
2 + xd

3 + xd
4 of length
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r ≤ 3d − 3, thus the assertion holds trivially. Assume that it holds for theexponent d− 1 (where d ≥ 3) and for representations of length ≤ r− 1 withexponent d (where r ≥ 4). Let(45) xd
1 + xd

2 + xd
3 + xd

4 = ld1 + · · · + ldrbe a disjoint r-representation. If lw/xj = c ∈ K, then cd 6= 1 and
4

∑

i=1
i6=j

xd
i + (1 − cd)xd

j =

r
∑

v=1
v 6=w

ldv .

Thus by the indutive assumption there exist i, k, l and S ⊂ {1, . . . , r}\{w}suh that {i, j, k, l} = {1, 2, 3, 4} and
xd

i + (1 − cd)xd
j =

∑

v∈S

ldv , xd
k + xd

l =
∑

v∈{1,...,r}\(S∪{w})

ldv .Then
xd

i + xd
j =

∑

v∈S

ldv + ldw,so the indutive assertion holds.Therefore assume that(46) lv/xj /∈ K for v ≤ r, j ≤ 4.We may assume that lv ∈ K[x1, x2, x3] exatly for v ≤ u. Thus
lv = avx4 +mv,where av ∈ K∗, mv ∈ LK(3) \ {0} and u < v ≤ r.Di�erentiating (45) with respet to x4 we obtain
xd−1

4 =
∑

v>u

avl
d−1
v .If

δ := dimLin(mv; v > u) = 3we have dim Lin(x4, lv; v > u) = 4, and sine r − u + 1 ≤ 3d − 2, by theindutive assumption there exist w and a subset S of {u + 1, . . . , r} \ {w}suh that u < w ≤ r, r − u− d− 2 ≥ |S| ≥ d− 1 and(47) xd−1
4 − awl

d−1
w =

∑

v∈S

avl
d−1
v .Sine |S| ≤ r − u − d − 2 ≤ 2d − 5, by Theorem 7, the forms x4, lw, lv for

v ∈ S jointly depend on two variables, hene there exists m ∈ LK(3) \ {0}suh that
lv = avx4 + bvm
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for v = w or v ∈ S. Equation (47) implies

xd
4 − ldw =

∑

v∈S

ldv − cmd,where c ∈ K, whih subtrated from (45) gives
xd

1 + xd
2 + xd

3 =
∑

v/∈S∪{w}

ldv + cmd.

Sine the number of summands on the right hand side is r−|S| ≤ 2d−2, byTheorem 7 the representation is not disjoint and by (46) we have cmd = xd
kfor some k ≤ 3. Taking {i, j} = {1, 2, 3} \ {k} we obtain

xd
i + xd

j =
∑

v/∈S∪{w}

ldv ,hene by (45),
xd

k + xd
4 =

∑

v∈S∪{w}

ldv .Moreover, by Theorem 2, s = |S| + 1 satis�es r − d ≥ s ≥ d, whih provesthe indutive assertion in the ase δ = 3.If δ ≤ 2 we hoose p = (p1, p2, p3) 6= 0 suh that
mv(p) = 0 for u < v ≤ r.Substituting x4 = 0 in (45) and di�erentiating with respet to p1x1 +p2x2 +

p3x3 we obtain
p1x

d−1
1 + p2x

d−1
2 + p3x

d−1
3 =

u
∑

v=1

lv(p)ld−1
v ,hene by (46) and Theorems 4 and 7,(48) u ≥ d− 1.On the other hand, di�erentiating (45) with respet to x4 we obtain

xd−1
4 =

∑

v>u

avl
d−1
v ,thus by Theorems 4 and 7,(49) r − u+ 1 ≥

{

2d if δ = 2,
d+ 1 if δ = 1.Adding the inequalities (48) and (49) for δ = 2 we obtain

r + 1 ≥ 3d− 1,ontrary to r ≤ 3d− 3. Thus δ = 1, mv = bvm0 for some m0 ∈ LK(3) \ {0}
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and bv ∈ K (u < v ≤ r), and substituting x4 = 0 in (45) we obtain(50) xd
1 + xd

2 + xd
3 =

u
∑

v=1

ldv +md
0

∑

v>u

bdv.If the representations are disjoint, Theorem 7 yields
u+ 1 ≥ 2d− 1,whih together with (49) gives r + 2 ≥ 3d, ontrary to r ≤ 3d− 3. Thus therepresentations (50) are not disjoint and by (46) there exists k ≤ 3 suh that
xd

k = md
0

∑

v>u

bdv.Applying the above long argument with xk in plae of x4 we infer thateither the indutive assertion holds or all forms lv with the oe�ient of xkdi�erent from 0 belong to K[xk, x4], hene the lv for v ≤ u are in K[xi, xj ]where {i, j} = {1, 2, 3} \ {k}. It follows from (45) that
xd

i + xd
j =

u
∑

v=1

ldv , xd
k + xd

4 =
∑

v>u

ldv ,and by Theorem 4,
r − d ≥ u ≥ d.The indutive assertion follows in full generality, the seond statement of thetheorem is proved, and the last statement follows from the double inequalityfor r.Proof of Corollary 9. Two disjoint representations of F of respetivelengths r and s would give a representation of 0 = F − F of length atmost r + s by dth powers of linear forms jointly essentially depending onfour variables. If r + s < 2d+ 4, this ontradits Theorem 8.Proof of Corollary 10. Canelling the idential terms in the representa-tions of length r and s, respetively, we obtain disjoint representations

F ′ = ld1 + · · · + ldr′ = md
1 + · · · +md

s′ , where r − r′ = s− s′.If F ′ essentially depends on at most two variables, then sine F ′ has only�nitely many r′-representations, we have, by Corollary 5,
s′ ≤ r′ ≤ (d+ 1)/2;hene, unless r′ = s′, there is a representation of 0 = F ′ − F ′ by fewerthan d+ 2 dth powers of linear forms, ontrary to Lemma 5.3. Thus r′ = s′,whene either r = s or F ′ essentially depends on at least three variables. Inthe latter ase, by Corollary 6,
r′ + s′ ≥ 2d+ 2,hene either r+ s ≥ 2d+ 4, ontrary to the assumption, or r = r′, s = s′. In
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the latter ase F essentially depends on four variables and by Corollary 9,
r + s ≥ 2d+ 4, ontrary to the assumption.7. Proof of Theorem 9. Assume �rst that s = 1 and F has a repre-sentation of length r > s,(51) F =

r
∑

i=1

ldi .Sine s = 1 we have(52) F = ld0 6= 0.Without loss of generality we may assume that {l0, . . . , lq} is a linear basisof Lin(l0, . . . , lr) over K, hene l0, . . . , lq are linearly independent, and soalgebraially independent over K. Sine l1, l2 are projetively di�erent, wehave q ≥ 1 and(53) li =

q
∑

j=0

aijlj , aij ∈ K (1 ≤ i ≤ r).It follows from (51) and (53) that
ld0 = F =

r
∑

i=1

(

q
∑

j=0

aijlj

)d
,hene by the algebrai independene of l0, . . . , lq,

F =
r

∑

i=1

(

ai0l0 + t

q
∑

j=1

aijlj

)d
(t ∈ K).Sine a11 = 1 by (53), this gives in�nitely many r-representations of F .Now assume that s ≥ 2 and we have a representation

F =

s
∑

i=1

ldi ,where l1, . . . , lt are linearly independent of ls−1, ls, while li = zi−t(ls−1, ls)
(t < i ≤ s−2) with zi ∈ LK(2) (1 ≤ i ≤ s−t−2). Sine s ≥ 2 we have d ≥ 2.If r ≥ s + d − 2 we apply Theorem 4 and infer the existene of in�nitelymany identities(54) F =

t
∑

i=1

ldi +
s−2
∑

i=t+1

zi−t(ls−1, ls)
d +

r−s+2
∑

j=1

lrj(ls−1, ls)
d,where the forms lrj are projetively di�erent from eah other and from 0, zi−t.Therefore, lrj(ls−1, ls) are non-zero and projetively di�erent from li (1 ≤

i ≤ s− 2). Hene (54) gives in�nitely many r-representations of F .
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Corollaries 11 and 12 follow at one from Theorem 9.
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