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GENERALIZED FREE PRODUCTS

BY

J. D. MONK (Boulder, CO)

Abstract. A subalgebra B of the direct product
∏
i∈I Ai of Boolean algebras is

finitely closed if it contains along with any element f any other member of the product
differing at most at finitely many places from f . Given such a B, let B⋆ be the set of
all members of B which are nonzero at each coordinate. The generalized free product
corresponding to B is the subalgebra of the regular open algebra with the poset topology
on B⋆ generated by the natural basic open sets. Properties of this product are developed.
The full regular open algebra is also treated.

A natural construction in the theory of partially ordered sets, particu-
larly as considered in constructing generic extensions of models of set theory,
is the product construction. If we apply this construction to Boolean alge-
bras, it is natural to delete the zero elements in the factors; we then obtain a
product which is no longer a Boolean algebra, but which can be embedded in
one. When considering two Boolean algebras, this gives the well known and
important construction of the free product. Applied to an infinite system
of Boolean algebras the construction no longer coincides with the infinite
free product. It gives a new construction of Boolean algebras, one that has
evidently not been studied in general. The particular case of products of
copies of (P(ω)/fin) \ {0} has been studied; see, e.g., Spinas [96].
The purpose of this article is to develop the elementary properties of this

construction for general Boolean algebras, mainly for incomplete generalized
free products. Beginning the study of cardinal invariants for such generalized
free products, we give some results on cellularity. Complete generalized free
products are also discussed, and a simple application to a Boolean algebraic
formulation of the Easton theorem for sets is given.

1. Definition and simple properties. For any function f , any ele-
ment i of its domain, and any object a, S(f, i, a) is the function c with the
same domain as f such that, for any element x of that domain,

c(x) =
{

f(x) if x 6= i,
a if x = i.
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Let 〈Ai : i ∈ I〉 be a system of BAs each with more than one element.
A subalgebra B of

∏

i∈I Ai is finitely closed provided that the following
condition holds:

(⋆) For every b ∈ B, i ∈ I, and a ∈ Ai, the function S(b, i, a) is also in B.

Examples of finitely closed subalgebras of
∏

i∈I Ai are
∏

i∈I Ai itself, the
weak product

∏w
i∈I Ai consisting of all functions which are either 0 except

for finitely many places or 1 except for finitely many places, and, more
generally, for each infinite cardinal κ, the subalgebra

{

b ∈
∏

i∈I

Ai : |{i ∈ I : bi 6= 0}| < κ or |{i ∈ I : bi 6= 1}| < κ
}

.

It is also clear that any finitely closed subalgebra of
∏

i∈I Ai contains
∏w
i∈I Ai. And note that if B is a finitely closed subalgebra of

∏

i∈I Ai, then
{f↾J : f ∈ B} is a finitely closed subalgebra of

∏

j∈J Ai for any J ⊆ I.

Now let B be a finitely closed subalgebra of
∏

i∈I Ai. We define

B⋆ = {b ∈ B : ∀i ∈ I (bi 6= 0)}.

B⋆ is partially ordered by: b ≤ c iff ∀i ∈ I (bi ≤ ci). For each b ∈ B
⋆ define

Ob = {x ∈ B
⋆ : x ≤ b}.

These sets form a base for a topology on B⋆.

Lemma 1.1. Ob is regular open for every b ∈ B
⋆.

Proof. Note that clOb = {x ∈ B
⋆ : Ox ∩ Ob 6= ∅} = {x ∈ B

⋆ : x and
b are compatible}. Now suppose that y ∈ int clOb. Then for every w ≤ y,
w and b are compatible. Suppose that y 6≤ b. Choose i ∈ I such that yi 6≤ bi.
Then S(y, i, yi · −bi) ∈ B

⋆, S(y, i, yi · −bi) ≤ y, but S(y, i, yi · −bi) and b are
not compatible, contradiction.

Now we define the B-generalized free product of the system 〈Ai : i ∈ I〉
to be the subalgebra of RO(B⋆) generated by all of the sets Ob, b ∈ B

⋆;

this subalgebra is denoted by
⊕B

i∈I Ai. Suppose that B is a finitely closed
subalgebra of

∏

i∈I Ai, i ∈ I, and a ∈ Ai. Then we define

(g(i, a))j =
{

a if j = i,
1 otherwise.

Thus g(i, a) ∈ B. Now we define fi(a) = Og(i,a) for a 6= 0, and fi(0) = 0.

This defines fi : Ai →
⊕B

i∈I Ai.

Proposition 1.2. fi is an isomorphism of Ai into
⊕B

i∈I Ai.

Proof. Suppose that a0, a1 ∈ A; we show that fi(a0 + a1) = fi(a0)
+ fi(a1). If one of a0, a1 is 0, this is clear, so assume that both are nonzero.
We want to show that Og(i,a0+a1) = int cl(Og(i,a0)∪Og(i,a1)). Clearly Og(i,a0)
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∪ Og(i,a1) ⊆ Og(i,a0+a1), and hence int cl(Og(i,a0) ∪ Og(i,a1)) ⊆ Og(i,a0+a1).
Now suppose that x ∈ Og(i,a0+a1) and y ≤ x; we want to show that Oy ∩
(Og(i,a0) ∪Og(i,a1)) 6= ∅. Suppose that Oy ∩Og(i,a0) = ∅. Clearly then yi · a0
= 0. Since y ≤ x ∈ Og(i,a0+a1), it follows that yi ≤ a0 + a1, so yi ≤ a1.
So y ∈ Og(i,a1), as desired. Thus fi preserves +.
To show that fi preserves −, note first that fi(1) = 1, and hence it

suffices to take a ∈ Ai such that 0 < a < 1 and show that fi(−a) = −fi(a).
Now −fi(a) = −Og(i,a) = int(B

⋆ \ Og(i,a)). Clearly fi(−a) = Og(i,−a) ⊆
B⋆ \ Og(i,a), and hence fi(−a) ⊆ −fi(a). Now suppose that x ∈ −fi(a). If
xi · a 6= 0, then clearly Ox ∩ Og(i,a) 6= 0, contradiction. So xi · a = 0, hence
x ∈ Og(i,−a) = fi(−a), as desired. So f is a homomorphism. Clearly it is
one-one.

Proposition 1.3. If b ∈ B⋆, then Ob =
⋂

i∈I fi(bi) =
∏

i∈I fi(bi).

Proof. Clearly b ≤ g(i, bi), so Ob ⊆ fi(bi), for each i ∈ I. If y ∈ fi(bi) for
all i ∈ I, then y ≤ g(i, bi) for all i ∈ I, hence y ≤ b and so y ∈ Ob.

Corollary 1.4. 〈fi[Ai] : i ∈ I〉 is an independent system of subalgebras

of
⊕B

i∈I Ai.

Proposition 1.5. If B =
∏w
i∈I Ai, then

⊕B

i∈I Ai
∼=
⊕

i∈I Ai.

Proof. By Handbook 11.4 it suffices to show that
⊕B

i∈I Ai is generated
by
⋃

i∈I fi[Ai]. Take any b ∈ B
⋆. Then F := {i ∈ I : bi 6= 1} is finite.

Hence
⋂

i∈I fi(bi) =
⋂

i∈F fi(bi). The desired conclusion now follows from
Proposition 1.3.

Proposition 1.6. If b 6= c, then Ob 6= Oc.

Proof. Say b 6≤ c. Then b ∈ Ob \Oc.

Proposition 1.7. −Ob = {x ∈ B
⋆ : ∃i ∈ I (xi ≤ −bi)}.

Proof. To prove this, first recall that −Ob = int(B
⋆ \Ob). If xi ≤ −bi for

some i ∈ I, then Ox ∩ Ob = 0, and so x ∈ int(B
⋆ \ Ob). Now suppose that

xi · bi 6= 0 for all i ∈ I. Clearly then Ox ∩Ob 6= 0, and so x 6∈ int(B
⋆ \Ob).

Proposition 1.8. B⋆ is order-isomorphic to a dense generating set of
⊕B

i∈I Ai. Moreover , b ≤ c iff Ob ⊆ Oc.

Proof. The second statement is obvious, and it immediately implies the
first statement.

Proposition 1.9. (i) Ob · Oc = Ob ∩Oc.

(ii) Ob · Oc 6= 0 iff ∀i ∈ I [bi · ci 6= 0].
(iii) If Ob ·Oc 6= 0, then Ob · Oc = Ob·c.

Proposition 1.10. Suppose that m is a positive integer and b, c0, . . .
. . . , cm−1 ∈ B⋆. Then the following conditions are equivalent :
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(i) Ob ⊆ Oc0 + . . .+ Ocm−1 .

(ii) ∀w ∈ B⋆ (w ≤ b⇒ ∃i < m (w · ci ∈ B⋆)).
(iii) For all j < m and all i ∈ I, if bi · −c

j
i 6= 0, then OS(b,i,bi·−c

j
i )
⊆

∑

k<m, k 6=j Ock .

Proof. Note that Oc0 + . . .+ Ocm−1 = int cl(Oc0 ∪ . . . ∪Ocm−1). Hence

Ob ⊆ Oc0 + . . .+ Ocm−1 iff Ob ⊆ cl(Oc0 ∪ . . . ∪ Ocm−1)

iff ∀w ∈ B⋆ (w ≤ b ⇒ ∃i < m (w · ci ∈ B⋆)).

It follows that (i) and (ii) are equivalent.
For (i)⇒(iii), suppose that (iii) fails. We then obtain j < m and i ∈ I

such that bi ·−c
j
i 6= 0 and OS(b,i,bi·−c

j
i )
6⊆
∑

k<m, k 6=j Ock . This means by (ii)

that there is an s ≤ S(b, i, bi · −c
j
i ) such that Os ∩Ock = 0 for all k < m for

which k 6= j. But also clearly Os ∩Ocj = 0, contradiction.
(iii)⇒(i). Suppose that Ob 6⊆ Oc0 + . . . + Ocm−1 . Then by (ii) there is

an s ∈ Ob such that Os ∩ Ocj = 0 for all j < m. Choose i ∈ I such that
si · c

0
i = 0. Then bi · −c

0
i 6= 0, so by (iii), OS(b,i,bi·−c0i ) ⊆

∑

k<m, k 6=0Ock . But

s ≤ S(b, i, bi · −c
0
i ), contradiction.

Corollary 1.11. Suppose that m is a natural number , b, c0, . . . , cm−1

∈ B⋆, and Ob ⊆ Oc0 + . . .+ Ocm−1 . Then m > 0 and b ≤ c
0 + . . .+ cm−1.

Proof. Since Ob 6= 0, it follows thatm > 0. Now suppose that b 6≤ c
0+. . .

. . . + cm−1. Choose i such that u := bi · −c
0
i · . . . · −c

m−1
i 6= 0.

Then S(b, i, u) ≤ b and ∀j < m (S(b, i, u) · ci 6∈ B⋆), contradicting Proposi-
tion 1.10.

Proposition 1.12. Suppose that m is a positive integer and b, c0, . . .
. . . , cm−1 ∈ B⋆. For each ε ∈ mI define dε ∈ B by setting , for each i ∈ I,

dεi = bi ·
∏

j<m, ε(j)=i

−cji .

Then

Ob ∩ −Oc0 ∩ . . . ∩ −Ocm−1 =
⋃

ε∈mI, dε∈B⋆

Odε .

Proof. Suppose w ∈ Ob ∩ −Oc0 ∩ . . . ∩ Ocm−1 . By Proposition 1.7, for
each j < m choose ε(j) ∈ I such that wε(j) ≤ −c

j

ε(j). Clearly then w ≤ d
ε.

Conversely, if w ∈ dε, it is clear that w ∈ Ob ∩ −Oc0 ∩ . . . ∩ −Ocm−1 .

Corollary 1.13. Suppose that m is a positive integer and b, c0, . . .
. . . , cm−1 ∈ B⋆. Then Ob ≤ Oc0 + . . .+ Ocm−1 iff

∀ε ∈ mI ∃i ∈ I
[

bi ≤
∑

j<m, ε(j)=i

cji

]

.
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So much for the elementary arithmetic of generalized free products. Now
we turn to elementary algebraic results, specifically to universal mapping
properties.

Proposition 1.14. Suppose that B and C are finitely closed subalgebras
of
∏

i∈I Ai, and B ≤ C. Then
⊕B
i∈I Ai can be isomorphically embedded in

⊕C

i∈I Ai. In fact , the mapping f such that f(O
B
b ) = OCb for all b ∈ B

⋆ can

be extended to an isomorphism into.

Proof. Let b0, . . . , bm−1, c0, . . . , cn−1 ∈ B⋆. It suffices to show that

O
B
b0 · . . . · O

B
bm−1 · −O

B
c0 · . . . · −O

B
cn−1 = 0

iff O
C
b0 · . . . · O

C
bm−1 · −O

C
c0 · . . . · −O

C
cn−1 = 0.

We may assume that m > 0 (put b0 = 1 otherwise). Now

O
B
b0 · . . . · O

B
bm−1 =

{

0 if (b0 · . . . · bm−1)i = 0 for some i ∈ I,
OB
b0·...·bm−1 otherwise.

and similarly for OCb0 · . . . · O
C
bm−1
, so we may assume that m = 1. Clearly

then n > 0.

Next, using Corollary 1.13 we have

O
B
b0 · −O

B
c0 · . . . · −O

B
cn−1 = 0 iff ∀ε ∈

nI ∃i ∈ I
[

b0i ≤
∑

j<n, ε(j)=i

cji

]

iff O
C
b0 · −O

C
c0 · . . . · −O

C
cn−1 = 0.

The following proposition abstractly characterizes generalized free prod-
ucts.

Theorem 1.15. Let 〈Ai : i ∈ I〉 be a system of BAs, and let B be a
finitely closed subalgebra of

∏

i∈I Ai. Then for any BA C, the following
conditions are equivalent :

(i) C ∼=
⊕B

i∈I Ai.

(ii) There exist embeddings fi of Ai into C with the following properties:

(a) For all b ∈ B⋆,
∏C

i∈I fi(bi) exists and is nonzero;

(b) {
∏C

i∈I fi(bi) : b ∈ B
⋆} is a dense generating set for C.

Proof. (i)⇒(ii) by Propositions 1.2, 1.3.

(ii)⇒(i). Assume (ii). Define F (Ob) =
∏C

i∈I bi for any b ∈ B
⋆. It suffices

now to show that if b0, . . . , bm−1, c0, . . . , cn−1 ∈ B⋆, then

Ob0 · . . . · Obm−1 · −Oc0 · . . . · −Ocn−1 = 0

iff
∏

i∈I

fi(b
0
i ) · . . . ·

∏

i∈I

fi(b
m−1
i ) · −

∏

i∈I

fi(c
0
i ) · . . . · −

∏

i∈I

fi(c
n−1
i ) = 0.
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As in the proof of Proposition 1.14 we may assume that m = 1. Then n > 0.
So what we want to prove is that

Ob ⊆ Oc0+ . . .+Ocn−1 iff
∏

i∈I

fi(bi) ≤
∏

i∈I

fi(c
0
i )+ . . .+

∏

i∈I

fi(c
n−1
i ).

We have
∏

i∈I

fi(bi) ≤
∏

i∈I

fi(c
0
i ) + . . .+

∏

i∈I

fi(c
n−1
i )

iff
∏

i∈I

fi(bi) ·
∑

i∈I

−fi(c
0
i ) · . . . ·

∑

i∈I

−fi(c
n−1
i ) = 0

iff
∑

ε∈nI

(

∏

i∈I

fi(bi) ·
∏

j∈n

−fε(j)(c
j

ε(j))
)

= 0

iff
∑

ε∈nI

(

∏

i∈I

fi(bi) ·
∏

j∈n

fε(j)(−c
j

ε(j))
)

= 0.

Now we claim that this last equality is equivalent to saying

(∗) ∀ε ∈ nI ∃i ∈ I
[

fi(bi) ·
∏

j<n, ε(j)=i

fε(j)(−c
j
i ) = 0

]

.

In fact, the latter condition clearly implies the indicated equality. Conversely,
suppose that for some ε ∈ nI it is the case that

∀i ∈ I
[

fi(bi) ·
∏

j<n, ε(j)=i

fε(j)(−c
j
i ) 6= 0

]

.

Then, since fi is an embedding,

∀i ∈ I
[

bi ·
∏

j<n, ε(j)=i

−cji 6= 0
]

.

So if we define a new element e by

ei = bi ·
∏

j<n, ε(j)=i

−cji

for all i ∈ I, then e ∈ B⋆, and so by (a),
∏

i∈I fi(ei) 6= 0. But this means
that

∏

i∈I

fi(bi) ·
∏

j∈n

fε(j)(−c
j

ε(j)) 6= 0,

so that the indicated equality fails. Thus our equivalence is true, and hence
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∏

i∈I

fi(bi) ≤
∏

i∈I

fi(c
0
i ) + . . .+

∏

i∈I

fi(c
n−1
i )

iff ∀ε ∈ nI ∃i ∈ I
[

bi ·
∏

j<n, ε(j)=i

−cji = 0
]

iff Ob ⊆ Oc0 + . . .+ Ocn−1 .

Here we have used the hypothesis (ii)(a) and Corollary 1.13.

Corollary 1.16. Suppose that B is a finitely closed subalgebra of
∏

i∈I Ai, and J ⊆ I. Let BJ = {f↾J : f ∈ B} and BI\J = {f↾(I \ J) :
f ∈ B}. Assume also

(∗) B = {u⌢v : u ∈ BJ and v ∈ BI\J}.

Then
⊕

i∈I

B

Ai ∼=
(

⊕

i∈J

BJ
Ai

)

⊕
(

⊕

i∈I\J

BI\J
Ai

)

.

Proof. For brevity let C =
⊕BJ
i∈J Ai and D =

⊕BI\J

i∈I\J Ai. We consider C

andD as subalgebras of E := C⊕D. For each i ∈ J let fi be the isomorphism
of Ai into C defined before Proposition 1.2, and for each i ∈ I\J let gi be the
isomorphism of Ai into D given there. We intend to check the conditions of
Theorem 1.15 in order to show that E ∼=

⊕B

i∈I Ai. To check 1.15(a), suppose

that b ∈ B⋆. Let c0 =
∏C

i∈J fi(bi); this product exists and is nonzero by 1.15

for C. Similarly, let c1 =
∏D

i∈I\J gi(bi); it is nonzero. Thus the member c0 ·c1
of E is nonzero. We claim that it is the product in E of all members of

(∗∗) {fi(bi) : i ∈ J} ∪ {gi(bi) : i ∈ I \ J}.

To check this, first we have c0 · c1 ≤ c0 ≤ fi(bi) for all i ∈ I by the definition
of c0. Similarly, c0 · c1 ≤ gi(bi) for all i ∈ I \J . Now suppose that e ∈ E and
e is a lower bound for all members of the set (∗∗). Write

e =
∑

i<m

ui · vi,

where each ui ∈ C and vi ∈ D. From ui ·vi ≤ fj(bj) we infer that ui ≤ fj(bj)
by the basic property of free products, for each i < m and each j ∈ J . So ui
is a lower bound for {fj(bj) : j ∈ J}, so ui ≤ c0. Similarly, vi ≤ c1 for each
i < m. Hence e ≤ c0 · c1. This establishes our claim. Hence 1.15(a) holds
for E.

To prove 1.15(b), given a nonzero e ∈ E, choose nonzero d0 ∈ C and
d1 ∈ D such that d0 · d1 ≤ e. Then by 1.15(b) for C and D we can find

u ∈ B⋆J and v ∈ B
⋆
I\J such that

∏C

i∈J fi(ui) ≤ d0 and
∏D

i∈I\J gi(vi) ≤ d1.

Let b = u⌢v; then b ∈ B⋆ by (∗), and by the above the product in E of all
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fi(ui) and gj(vj) for i ∈ J , j ∈ I \ J is ≤ e. So the indicated elements are
dense in E. Clearly they generate E.

The two most important special cases of
⊕B
i∈I Ai are the one in which

B =
∏w
i∈I Ai, where

⊕B

i∈I Ai is isomorphic to the ordinary free product by
Proposition 1.5, and the one in which B =

∏

i∈I Ai. We denote the latter
by
⊕π

i∈I Ai. It is the notion mainly studied here.

The following universal property of generalized free products generalizes
the one for usual free products.

Theorem 1.17. Suppose that 〈Ai : i ∈ I〉 is a system of BAs each with
at least four elements, and B is a finitely closed subalgebra of

∏

i∈I Ai. Let
C be any BA, and suppose that hi : Ai → C is a homomorphism for every
i ∈ I such that for any b ∈ B⋆, the product

∏

i∈I hi(bi) exists. Then there

is a homomorphism k :
⊕B

i∈I Ai → C such that k(Ob) =
∏

i∈I hi(bi) for all
b ∈ B⋆.

Proof. For any b ∈ B⋆ let k(Ob) =
∏

i∈I hi(bi). We want to show that

k extends to a homomorphism from
⊕B

i∈I Ai into C. To this end, suppose
that

Ob0 · . . . · Obm−1 · −Oc0 · . . . · −Ocn−1 = 0;

we want to show that
∏

i∈I

hi(b
0
i ) · . . . ·

∏

i∈I

hi(b
m−1
i ) · −

∏

i∈I

hi(c
0
i ) · . . . · −

∏

i∈I

hi(c
n−1
i ) = 0.

As in the proof of Proposition 1.14, we may assume that m = 1; so we
drop the superscript 0 on b0. Then it is clear that n > 0. Now suppose
that
∏

i∈I hi(bi) · −
∏

i∈I hi(c
0
i ) · . . . · −

∏

i∈I hi(c
n−1
i ) 6= 0. Then there exist

i0, . . . , in−1 ∈ I such that
∏

i∈I hi(bi) ·−hi0(c
0
i0
) ·−hin−1(c

n−1
in−1
) 6= 0. We now

define

wi = bi ·
∏

{−ckik : ik = i}

for every i ∈ I. Then
∏

i∈I

hi(wi) =
∏

i∈I

hi(bi) · −hi0(c
0
i0
) · . . . · −hin−1(c

n−1
in−1
) 6= 0,

and hence w ∈ B⋆. But by Proposition 1.7 we have w ∈ Ob·−Oc0 ·. . .·−Ocn−1 ,
contradiction.

It follows that k can be extended to a homomorphism.

Proposition 1.18. Suppose that 〈Ai : i ∈ I〉 is a system of BAs each
with at least four elements, and B is a finitely closed subalgebra of

∏

i∈I Ai.

Then
⊕

i∈I Ai is a retract of
⊕B

i∈I Ai.
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Proof. By 1.14 let g be the isomorphism of
⊕

i∈I Ai into
⊕B

i∈I Ai such
that g(Ob) = OBb for all b ∈ C

⋆, where C =
∏w
i∈I Ai. Let fi : Ai →

⊕

i∈I Ai
be as before 1.2.

(1) If b ∈ B⋆ and {i ∈ I : bi 6= 1} is infinite, then
∏

i∈I fi(bi) = 0.

For, suppose that
∏

i∈I fi(bi) 6= 0. Then there is a c ∈ C
⋆ such that Oc ⊆

fi(bi) for all i ∈ I. Choose i ∈ I such that ci = 1 and bi 6= 1. Then
Oc ⊆ fi(bi) = Og(i,bi), so by 1.8, 1 ≤ bi, contradiction. Thus (1) holds.

By (1) and 1.17 let k be a homomorphism from
⊕B

i∈I Ai into
⊕

i∈I Ai
such that k(OBb ) =

∏

i∈I fi(bi) for all b ∈ B
⋆. Then for any b ∈ C⋆,

k(g(Ob)) = k(O
B
b ) =

∏

i∈I

fi(bi) = Ob,

and so k ◦ g is the identity on
⊕

i∈I Ai, as desired.

Proposition 1.19. Suppose that 〈Ai : i ∈ I〉 is a system of BAs each
with at least four elements, and B is a finitely closed subalgebra of

∏

i∈I Ai.
Let 〈Fi : i ∈ I〉 be a system consisting of an ultrafilter Fi on Ai for each

i ∈ I. Then there is a homomorphism k from
⊕B

i∈I Ai into B such that
(
∏

i∈I Fi) ∩B is a subset of rng(k).

Proof. For each i ∈ I we define hi : Ai →
∏

k∈I Ak as follows: for any
a ∈ Ai and k ∈ I,

(hi(a))k =

{

a if i = k,
1 if i 6= k and a ∈ Fi,
0 if i 6= k and a 6∈ Fi.

Clearly hi is a homomorphism from Ai into
∏w
i∈I Ai, for each i ∈ I.

Now we check the condition of Theorem 1.17. Suppose that b ∈ B⋆.
Define c ∈

∏

k∈I Ak as follows: for any k ∈ I,

ck =

{

0 if −bi ∈ Fi for some i 6= k,
bk otherwise.

We claim that c =
∏

i∈I hi(bi) in B. First take any i ∈ I. To show that
c ≤ hi(bi), take any k ∈ I; we want to show that ck ≤ (hi(bi))k. This is
clear if −bj ∈ Fj for some j 6= k, so assume that bj ∈ Fj for all j 6= k. Then

(hi(bi))k =

{

bi if i = k,
1 if i 6= k.

Since ck = bk, it follows that ck ≤ (hi(bi))k. Thus c is a lower bound for all
of the hi(bi)’s.
Now suppose that d is any lower bound for the hi(bi)’s. To show that

d ≤ c, take any i ∈ I. If bk ∈ Fk for all k 6= i, then di ≤ (hi(bi))i = bi = ci.
If bk 6∈ Fk for some k 6= i, then di ≤ (hk(bk))i = 0 ≤ ci.
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So we have established that c =
∏

i∈I hi(bi). Hence we can apply Theo-

rem 1.17 to obtain a homomorphism k :
⊕B

i∈I Ai → B such that k(Ob) =
∏

i∈I hi(bi) for all b ∈ B
⋆. If b ∈ (

∏

i∈I Fi) ∩B, then c, as defined above, is
equal to b, and so k(Ob) = b.

Proposition 1.20. (i) If bi is an atom for all i ∈ I, then Ob is an atom

of
⊕π

i∈I Ai.

(ii) If Ai is atomic for all i ∈ I, then
⊕π

i∈I Ai is atomic.

2. Duality. Let B be a finitely closed subalgebra of
∏

i∈I Ai. Suppose
that F = 〈Fi : i ∈ I〉 is a system consisting of an ultrafilter Fi on Ai for
each i ∈ I. Then

{Ob : ∀i ∈ I (bi ∈ Fi)} ∪ {−Ob : ∃i ∈ I (bi 6∈ Fi)}

has fip (and hence filter-generates an ultrafilter). In fact, suppose that

Ob0 ∩ . . . ∩ Obm−1 ∩ −Oc0 ∩ . . . ∩ −Ocn−1 = 0,

where f i ∈ Fi and c
i 6∈ Fi for all i ∈ I. Then b

0 · . . . · bm−1 ∈ B⋆. For each
j < n choose ij ∈ I such that c

j
ij
6∈ Fi. Now define

xi = b
0
i · . . . · b

m−1
i ·

∏

j<n, ij=i

−cjij

for each i ∈ I. Since xi ∈ Fi for each i ∈ I, we have x ∈ B
⋆. And

x ∈ Ob0 ∩ . . . ∩ Obm−1 ∩ −Oc0 ∩ . . . ∩ −Ocn−1 ,

contradiction. This shows that the indicated set has the fip, and we let UF
be the associated ultrafilter.

Now conversely, let G be an ultrafilter on
⊕B

i∈I Ai, and let i ∈ I. Clearly,

{a ∈ A+i : f(i, a) ∈ G} has fip. We let K
G
i be an ultrafilter containing this

set. Let KG = 〈KGi : i ∈ I〉.
Suppose now that F = 〈Fi : i ∈ I〉 is a system consisting of an ultrafilter

Fi on Ai for each i ∈ I. We claim that K
UF = F . For, let i ∈ I. We show

that KUFi ⊆ Fi (hence they are equal). Let a ∈ K
UF
i . Then f(i, a) ∈ UF ,

and hence a ∈ Fi.
From this it follows that U is one-one.

We claim that U is continuous with respect to the box topology when
B =

∏

i∈I Ai. For, suppose that F ∈ U
−1[S(Ob)]. Thus UF ∈ S(Ob),

so Ob ∈ UF . Hence ∀i ∈ I (bi ∈ Fi). We claim that F ∈
∏

i∈I S(bi) ⊆
U−1[S(Ob)]. For, suppose that H ∈

∏

i∈I S(bi). Then ∀i ∈ I (bi ∈ Hi), so
Ob ∈ UH and H ∈ U

−1[S(Ob)], as desired.

It is not true in general that UKG = G for G an ultrafilter on
⊕B

i∈I Ai.
For example, for each i ∈ ω let Ai be the free BA on free generators
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z0, z1, . . . , and let B =
∏

i∈ω Ai. Then z itself is a member of B
⋆, and

by Proposition 1.7,

−Oz = {x ∈ B
⋆ : ∃i ∈ ω(xi ≤ −zi)}.

Clearly now {f(i, zi) : i ∈ ω} ∪ {−Oz} has fip, and so is included in an

ultrafilter G on
⊕B

i∈I Ai. For any i ∈ ω we have zi ∈ K
G
i , so Oz ∈ UKG .

This shows that G 6= UKG .

On the other hand, if B=
∏w
i∈I Ai, then always UKG =G, and the Stone

topology on
⊕B

i∈I Ai corresponds to the product topology on
∏

i∈I Ult(Ai),
as one would expect.

To prove this, suppose that G is an ultrafilter on
⊕B

i∈I Ai. If Ob ∈ G,
then ∀i ∈ I [bi ∈ K

G
i ], and so Ob ∈ UKG . On the other hand, suppose that

−Ob ∈ G. Let F = {i ∈ I : bi 6= 1}. So F is finite. By Proposition 1.3,
Ob =

∏

i∈F fi(bi). It follows that there is an i ∈ F such that fi(bi) 6∈ G.
Hence bi 6∈ K

G
i . Hence −Ob ∈ UKG . Thus we have shown that UKG = G.

To finish proving our italicized statement it suffices to show that K is
continuous. To do this it suffices to take any i ∈ I, any a ∈ Ai, and any
G ∈ K−1[{x ∈

∏

j∈I Ult(Aj) : xi ∈ S(a)}] and find an open set U in

Ult(
⊕B
j∈I Aj) such that

G ∈ U ⊆ K−1
[{

x ∈
∏

j∈I

Ult(Aj) : xi ∈ S(a)
}]

.

Let U = S(f(i, a)). Now KGi ∈ S(a), so a ∈ K
G
i and hence f(i, a) ∈ G and

G ∈ U . Now suppose that H ∈ U . Then f(i, a) ∈ H, a ∈ KHi , K
H
i ∈ S(a),

and hence

H ∈ K−1
[{

x ∈
∏

j∈I

Ult(Aj) : xi ∈ S(a)
}]

,

as desired.

Thus these facts do not actually characterize the Stone spaces. We now
give such a characterization. A suitable set is a subset C of B⋆ with the
following property: for every finite subset F of C and every finite subset G
of B⋆ \ C there is a j ∈ GI such that for all i ∈ I,

∏

c∈F

ci ·
∏

b∈G, j(b)=i

−bi 6= 0.

If U is an ultrafilter on
⊕B

i∈I Ai, let C U = {b : Ob ∈ U}. Then C U is
suitable. In fact, suppose that F is a finite subset of C U and G is a finite
subset of B⋆ \ C U . Hence Ob ∈ U for all b ∈ F , and −Ob ∈ U for all b ∈ G.
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Therefore,
⋂

b∈F

Ob ∩
⋂

b∈G

−Ob 6= 0.

Choose x in this intersection. Thus x ∈ B⋆. Moreover, x ∈ Oc for all c ∈ F , so
x ≤ c for all c ∈ F . For each b ∈ G choose j(b) ∈ I such that xj(b) ≤ −bj(b),
by Proposition 1.7. Thus for all i ∈ I,

xi ≤
∏

c∈F

ci ·
∏

b∈G, j(b)=i

−bi,

as desired. So, we have shown that C U is suitable.
Conversely, suppose that C is suitable. Then clearly the set {Ob : b ∈ C}

∪ {−Ob : b ∈ B
⋆ \ C} has fip, and hence determines an ultrafilter V C .

If C is suitable, clearly C V
C

= C. And if U is an ultrafilter on
⊕B

i∈I Ai,

clearly V C
U

= U . Thus we have a one-one correspondence between ultrafil-
ters on

⊕B

i∈I Ai and suitable subsets of B
⋆.

The Stone topology on suitable sets is given by the basis consisting of
the following set for each a ∈

⊕B

i∈I Ai:

S ′(a) =
{

C : C is suitable and there exist F ⊆ C and G ⊆ B⋆ \ C

such that
⋂

b∈F

Ob ∩
⋂

b∈G

−Ob ⊆ a
}

.

This is proved as follows: for any suitable set C,

C ∈ C [S(a)] iff ∃U ∈ S(a) (C = C
U )

iff ∃U (U is an ultrafilter, a ∈ U , and C = C
U )

iff ∃U (U is an ultrafilter, a ∈ U , and V C = U)

iff a ∈ V C

iff C ∈ S ′(a).

3. Cellularity. Recall that cA is the supremum of cardinalities of dis-
joint subsets of A, while c′A is the least infinite cardinal greater than all
such cardinalities. Two related notions are the set PT(A) of cardinalities of
partitions of unity of A, and a(A), the least infinite member of PT(A).

Proposition 3.1. If κi ∈ PT(Ai) for each i ∈ I, then
∏

i∈I κi ∈
PT(
⊕π

i∈I Ai).

Proof. For each i ∈ I let Xi be a partition of unity in Ai such that
|Xi| = κi. It suffices to show that

Y :=
{

Ob : b ∈
∏

i∈I

Xi

}
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is a partition of unity in
⊕π

i∈I Ai. Clearly Y is a collection of nonzero pair-
wise disjoint elements. Suppose that Oc is given. For each i ∈ I there is a
bi ∈ Xi such that ci · bi 6= 0. Then Oc ·Ob 6= 0, as desired.

Proposition 3.2. Assume that Ai has at least four elements for all
i ∈ I, I infinite. Then ω ∈ PT(

⊕π

i∈I Ai), and hence a(
⊕π

i∈I Ai) = ω.

Proof. Let B =
∏

i∈I Ai. Let f be a one-one function mapping ω into I.
For each i ∈ I let ai be an element of Ai such that 0 < ai < 1. Now for each
i ∈ ω we define bi ∈ B by setting, for each j ∈ I,

bij =

{

−aj if j ∈ rng(f) and f
−1(j) < i,

ai if j ∈ rng(f) and f−1(j) = i,
1 otherwise.

We also define b∞ ∈ B by setting, for each j ∈ I,

bωj =
{

−aj if j ∈ rng(f),
1 otherwise.

Thus bi∈B⋆ for each i∈ω+1. If i<j<ω, then bi
f(i) · b

j

f(i)=af(i) · −af(i)=0.

Hence Obi · Obj = 0. And if i < ω, then b
i
f(i) · b

ω
f(i) = af(i) · −af(i) = 0,

and hence Obi · Obω = 0. Now suppose that c ∈ B
⋆. If cj ≤ −aj for all

j ∈ rng(f), then c ≤ bω, and hence Oc ⊆ Obω . Suppose that cj · aj 6= 0
for some j ∈ rng(f). Choose i minimum such that cf(i) · af(i) 6= 0. Then
Oc · Obi 6= 0.

Now we begin the discussion of c(
⊕π

i∈I Ai) itself. If I is finite, so that we
are dealing with the ordinary free product, the situation has been thoroughly
treated by Todorčević and Shelah; see, e.g., Monk [96]. For example, there
is an atomless BA C such that c(C ⊕ C) > c(C).
For infinite index sets I the situation is different: rather than supi∈I c(Ai),

which is the natural thing to compare c(
⊕

i∈I Ai) with, the product
∏

i∈I c(Ai) turns out to be what should be compared with c(
⊕π

i∈I Ai).

Proposition 3.3. If κi < c
′Ai for all i∈ I, then

∏

i∈I κi< c
′(
⊕π

i∈I Ai).

Proof. For each i ∈ I let Yi be a disjoint subset of Ai of size κi. Clearly
{Ob : b ∈

∏

i∈I Yi} is a disjoint subset of
⊕π

i∈I Ai.

Corollary 3.4. If cAi is attained for each i ∈ I, then
∏

i∈I cAi ≤
c(
⊕π

i∈I Ai).

Corollary 3.5. c(Aj) ≤ c(
⊕π

i∈I Ai) for each j ∈ I.

Proposition 3.6. Suppose that 〈Ai : i ∈ I〉 is a system of BAs each of
size at least four , with I infinite, and cAi is attained and is at most equal
to |I|, for all i ∈ I. Then c(

⊕π

i∈I Ai) =
∏

i∈I c(Ai), and it is attained.

Proof. The inequality ≥, and the fact that there is a disjoint set of size
∏

i∈I c(Ai), are true by Proposition 3.3. Now suppose that X ⊆
⊕π

i∈I Ai,
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X is disjoint, and |X| >
∏

i∈I c(Ai). Without loss of generality X = {Ob :
b ∈ Y }, where Y ⊆ B⋆. Then

[Y ]2 =
⋃

i∈I

{{x, y} : x, y ∈ Y, x 6= y, xi · yi = 0}.

Note that 2|I| ≤
∏

i∈I cAi. Hence by the Erdős–Rado theorem, there exist

Z ∈ [Y ]|I|
+

and i ∈ I such that for any two distinct x, y ∈ Z we have
xi · yi = 0. This gives a disjoint subset of Ai of size |I|

+, contradiction.

For the next proposition, recall that for any BA B, the cardinal number
π(B) is the smallest cardinality of a dense subset of B.

Proposition 3.7. Let 〈Ai : i ∈ I〉 be a system of BAs each with at least
four elements, I infinite. Then c(

⊕π

i∈I Ai) ≤
∏

i∈I πAi.

Proof. Suppose that X ⊆
⊕π

i∈I Ai is pairwise disjoint. We may assume
that X = {Ob : b ∈ Y }. For each i ∈ I let Zi be a subset of Ai \ {0} which
is dense in Ai, with |Zi| = πAi. For each b ∈ Y and i ∈ I choose cb(i) ∈ Zi
such that cb(i) ≤ b(i). Now if b, b

′ ∈ Y and b 6= b′, then Ob ∩ Ob′ = 0, and
hence there is an i ∈ I such that bi · b

′
i = 0; so cb(i) · cb′(i) = 0 and hence

cb 6= cb′ . Each cb is in
∏

i∈I Zi, and hence |X| ≤
∏

i∈I πAi.

Corollary 3.8. Let 〈Ai : i ∈ I〉 be a system of atomic BAs each with at
least four elements, I infinite. Then c(

⊕π

i∈I Ai) =
∏

i∈I cAi, with cellularity
attained.

Example 3.9. There is a system 〈Ai : i ∈ I〉 such that
∏

i∈I cAi <
c(
⊕π

i∈I Ai).

This example is just a slight adaptation of an example of Shelah con-
cerning cellularity in ultraproducts. (The example is based on a method of
Todorčević.) It depends on the following theorem of Shelah (Theorem 3.22
in Monk [96]):

Let λ = θ+ with θ an infinite cardinal. Then there is a d : [λ]2 → ω such
that for all m,n ∈ ω, if 〈ζi : i < λ〉 is a system of n-tuples of members of λ
such that ζ1i < . . . < ζ

n
i for all i < λ and ζ

n
i < ζ

1
j for i < j < λ, then there

exist i, j ∈ λ with i < j such that d{ζki , ζ
i
j} ≥ m for all k, l = 1, . . . , n.

We now describe the construction of some BAs and their properties found
in the proof of Theorem 3.23 of Monk [96], also due to Shelah. Take λ, θ,
and d as indicated. Also, take any n ∈ ω. Let Cn be freely generated by
〈xnα : α < λ〉. Let In be the ideal in Cn generated by the set {x

n
α · x

n
β : α <

β < λ and d{α, β} ≤ n}. Let Bn = Cn/In, and let y
n
α = x

n
α/In for each

α < λ. It is shown in the indicated proof that each Bn satisfies the λ-cc,
and that each ynα is nonzero.
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We claim that
⊕π

n∈ω Bn has a disjoint subset of size λ. Namely, let
bα = 〈y

n
α : n ∈ ω〉 for each α < λ. Then 〈Obα : α < λ〉 is the desired family.

For, suppose that α < β < λ. With n = d{α, β}, we have ynα · y
n
β = 0, and

hence Obα ∩Obβ = 0, as desired.
Now, taking any infinite cardinal κ and letting θ = 2κ and λ = θ+ in this

construction we get the desired example: each Bn has cellularity at most 2
κ,

hence
∏

n∈ω cBn ≤ 2
κ, while c(

⊕π
n∈ω Bn) ≥ (2

κ)+.

The following question appears to be open:

Problem 1. Is there a system 〈Ai : i ∈ I〉 of BAs such that
∏

i∈I cAi >
c(
⊕π

i∈I Ai)?

With regard to this problem, the above results imply that an example
of such a system would necessarily have infinitely many Ai’s with c(Ai)
not attained (therefore inaccessible by the Erdős–Tarski theorem). In fact,
if the set J := {i ∈ I : c(Ai) is not attained} is finite, then by Proposi-
tion 3.3,

∏

i∈I\J c(Ai) ≤ c(
⊕π

i∈I Ai), and by Corollary 3.5,
∏

i∈J c(Aj) ≤

c(
⊕π

i∈I Ai), so that
∏

i∈I cAi ≤ c(
⊕π

i∈I Ai).

4. Complete generalized free products. We call the algebras
RO(B⋆) complete generalized free products.

Theorem 4.1. If Ai is complete, then the embedding fi defined before
Proposition 1.2 is a complete embedding.

Proof. Let X ⊆ Ai. Obviously
∑

x∈X fi(x) ≤ fi(
∑

X). Suppose that
fi(
∑

X) · −
∑

x∈X fi(x) 6= 0. Choose b ∈ B
⋆ such that Ob ≤ fi(

∑

X) ·
−
∑

x∈X fi(x) 6= 0. Then Ob ⊆ Og(i,
∑

X), so b ≤ g(i,
∑

X), and hence
bi ≤
∑

X. On the other hand, Ob ∩Og(i,x) = 0 for each x ∈ X, so bi · x = 0
for all x ∈ X, contradiction.

Corollary 4.2. Suppose that B and C are finitely closed subalgebras
of
∏

i∈I Ai, and B ≤ C. Then RO(B
⋆) is isomorphicallly embedded into

RO(C⋆) by a mapping extending the one sending each set OBb to OCb . In

case B is a dense subalgebra of C, the embedding is complete.

Proof. It is immediate from Proposition 1.14 and Sikorski’s extension
theorem that the indicated mapping f exists and is an isomorphism into.
Now assume that B is a dense subalgebra of C. Then define f as follows:

for any x ∈ RO(B⋆),

(∗) f(x) =
∑

{OCb : b ∈ B
⋆ and O

B
b ⊆ x}.

In fact, for f defined this way, it is clear that f(OBb ) = OCb for all b ∈ B
⋆.

To show that f preserves ·, suppose that x, y ∈ RO(B∗). Thus

f(x · y) = f(x ∩ y) =
∑

{OCb : b ∈ B
⋆ and O

B
b ⊆ x ∩ y}
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and

f(x) · f(y)

=
(

∑

{OCb : b ∈ B
⋆ and O

B
b ⊆ x}

)

·
(

∑

{OCb : b ∈ B
⋆ and O

B
b ⊆ y}

)

=
∑

{OCb ∩O
C
d : b, d ∈ B

⋆ and Ob ⊆ x and Od ⊆ y}.

Clearly then f(x · y) ⊆ f(x) · f(y). For the converse, it suffices to take any
b, d ∈ B⋆ such that OCb ∩ OCd 6= 0, O

B
b ⊆ x, and OBd ⊆ y and show that

OCb ∩OCd ⊆ f(x · y). Thus b · d ∈ B
⋆ and OBb·d ⊆ x ∩ y, and hence

O
C
b ∩ O

C
d = O

C
b·d ⊆ f(x · y).

So, f preserves ·.
To show that f preserves −, let x ∈ RO(B⋆). Suppose that OBb ⊆ x,

OBd ⊆ −x, and OCb ∩O
C
d 6= 0. Then b·d ∈ B

⋆ and OBb·d ⊆ x·−x, contradiction.
Hence f(x) ·f(−x) = 0. To show that f(x)+f(−x) = B⋆, it suffices to show
that f(x) ∪ f(−x) is dense in B⋆. To this end, take any OCc .

Case 1: OCc ∩ x 6= 0. Choose d ∈ C
⋆ such that OCd ⊆ OCc ∩ x. By the

denseness, choose b ∈ B⋆ such that b ≤ d. Then OCb ⊆ f(x), and hence
OCc ∩ f(x) 6= 0.

Case 2: OCc ⊆ C
⋆ \ x. Again choose b ∈ B⋆ such that b ≤ c. Then

OBb ⊆ −x, and hence OCc ∩ f(−x) 6= 0. Thus we have proved (∗).

To show that f is a complete embedding, suppose that X ⊆ RO(B).
Clearly

∑

x∈X f(x) ≤ f(
∑

X). Suppose that f(
∑

X) · −
∑

x∈X f(x) 6= 0,
and choose c ∈ C⋆ such that Oc ⊆ f(

∑

X) · −
∑

x∈X f(x). Then there is a
b ∈ B⋆ such that b ≤ c. Since

f
(

∑

X
)

=
∑

{

O
C
b : b ∈ B

⋆ ∧ O
B
b ⊆
∑

X
}

,

there is a b′ ∈ B⋆ such that OCb ∩OCb′ 6= 0 and OBb′ ⊆
∑

X. It follows that b′′,
the pointwise infimum of b and b′, is in B⋆. Thus OBb′′ ⊆ OBb′ ⊆

∑

X. So
there is an x ∈ X such that OBb′′ ∩x 6= 0. Then there is a b

′′′ ∈ B⋆ such that
OBb′′ ∩ OBb′′′ 6= 0 and OBb′′′ ⊆ x. Let b

iv be the pointwise infimum of b′′ and
b′′′. Then OC

biv
⊆ f(x). But OCc ∩ f(x) = 0, and OC

biv
⊆ OCc , contradiction.

Corollary 4.3. Let 〈Ai : i ∈ I〉 be a system of BAs, and let B be
a finitely closed subalgebra of

∏

i∈I Ai. Then for any complete BA C, the
following conditions are equivalent :

(i) C ∼= RO(B⋆).
(ii) There exist embeddings fi of Ai into C with the following properties:

(a) For all b ∈ B⋆,
∏C

i∈I fi(bi) 6= 0;

(b) {
∏C

i∈I fi(bi) : b ∈ B
⋆} is dense in C.
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Proof. By Theorem 1.15.

Corollary 4.4. Suppose B is a finitely closed subalgebra of
∏

i∈I Ai,
and J ⊆ I. Let BJ = {f↾J : f ∈ B} and BI\J = {f↾(I \ J) : f ∈ B}.
Assume also

(∗) B = {u⌢v : u ∈ BJ and v ∈ BI\J}.

Then RO(B⋆) ∼= RO(B⋆J)⊕ RO(B
⋆
I\J ).

Proof. By 1.16 and 4.3.

Proposition 4.5. Suppose that 〈Ai : i ∈ I〉 is a system of BAs each
with at least four elements, and B is a finitely closed subalgebra of

∏

i∈I Ai.

Then
⊕

i∈I Ai is a retract of RO(B
⋆).

Proof. We use the notation of the proof of Proposition 1.18. By Sikorski’s
extension theorem, let g+ and k+ be extensions of g, k to homomorphisms

from
⊕

i∈I Ai to RO(B
⋆) and from RO(B⋆) to

⊕

i∈I Ai respectively. Then

(∗) a ≤ k+(g+(a)) for any a ∈
⊕

i∈I Ai.

In fact, if Ob ⊆ a with b ∈ C
⋆, then Ob = k(g(Ob)) = k

+(g+(Ob) ≤
k+(g+(a)). Since a =

∑

{Ob : b ∈ C
⋆, Ob ⊆ a}, the condition (∗) follows.

From (∗) we also get −a ≤ k+(g+(−a)) = −k+(g+(a)), so a = k+(g+(a))

for all a ∈
⊕

i∈I Ai.

5. On Easton’s theorem. As an illustration of using the methods of
this paper, we indicate the connection between forcing and complete BAs
connected to Easton’s theorem (for sets, not proper classes). We follow the
notation of Kunen [80].

The basic forcing topology for posets, used in our main definitions, runs
as follows. If P is a poset, the sets {q : q ≤ p}, for p a member of P , form a
base for the topology.

Here we apply this to the sets Fn(κ, λ, µ) defined in Kunen [80], where
the order is reverse inclusion.

Suppose that E is an Easton function, as on page 263 of Kunen’s book.
Let I = dmn(E). For each κ ∈ I let AEκ = RO(Fn(E(κ), 2, κ)). Define

BE =
{

f ∈
∏

κ∈I

AEκ : for every infinite regular λ,

|{κ ∈ λ ∩ I : f(κ) 6= 1}| < λ

or |{κ ∈ λ ∩ I : f(κ) 6= 0}| < λ
}

.

Clearly, BE is a finitely closed subalgebra of
∏

κ∈I AEκ. Let CE = RO(B
⋆
E).
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For any cardinal λ, let

J−λ = {κ ∈ I : κ ≤ λ},

J+λ = {κ ∈ I : λ < κ},

B−Eλ = {f↾J
−
λ : f ∈ BE},

B+Eλ = {f↾J
+
λ : f ∈ BE}.

Then BE ∼= B
−
Eλ×B

+
Eλ via f 7→ (f↾J

−
λ , f↾J

+
λ ). So by Corollary 4.4 we have

RO(B⋆E)
∼= RO((B−Eλ)

⋆)⊕ RO((B+Eλ)
⋆)).

Next, there is an isomorphism of P(E) (defined in Kunen [80]) onto a
dense subset of RO(B⋆E). In fact, for each p ∈ P(E) define f(p) ∈

∏

κ∈I AEκ
by setting f(p)κ = Op(κ). Clearly, f(p)κ ∈ AEκ. Note that 1AEκ = O0. Now
for any κ ∈ λ ∩ I we have f(p)κ 6= 1 iff p(k) 6= 0. It follows that f(p) ∈ B

⋆
E .

Now
p ≤ q iff ∀κ ∈ I (p(κ) ≤ q(κ))

iff ∀κ ∈ I (Op(κ) ⊆ Oq(κ))

iff f(p) ≤ f(q).

Finally, rng(f) is dense, since if b ∈ B⋆E , then we can choose p(κ) ∈
Fn(E(κ), 2, κ) such that Op(κ) ⊆ bk for every κ ∈ I. Clearly, p ∈ P(E),
and f(p) ⊆ Ob.
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