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Abstract. A subalgebra B of the direct product Hie 1 A; of Boolean algebras is
finitely closed if it contains along with any element f any other member of the product
differing at most at finitely many places from f. Given such a B, let B* be the set of
all members of B which are nonzero at each coordinate. The generalized free product
corresponding to B is the subalgebra of the regular open algebra with the poset topology
on B* generated by the natural basic open sets. Properties of this product are developed.
The full regular open algebra is also treated.

A natural construction in the theory of partially ordered sets, particu-
larly as considered in constructing generic extensions of models of set theory,
is the product construction. If we apply this construction to Boolean alge-
bras, it is natural to delete the zero elements in the factors; we then obtain a
product which is no longer a Boolean algebra, but which can be embedded in
one. When considering two Boolean algebras, this gives the well known and
important construction of the free product. Applied to an infinite system
of Boolean algebras the construction no longer coincides with the infinite
free product. It gives a new construction of Boolean algebras, one that has
evidently not been studied in general. The particular case of products of
copies of (#(w)/fin) \ {0} has been studied; see, e.g., Spinas [96].

The purpose of this article is to develop the elementary properties of this
construction for general Boolean algebras, mainly for incomplete generalized
free products. Beginning the study of cardinal invariants for such generalized
free products, we give some results on cellularity. Complete generalized free
products are also discussed, and a simple application to a Boolean algebraic
formulation of the Easton theorem for sets is given.

1. Definition and simple properties. For any function f, any ele-
ment ¢ of its domain, and any object a, S(f,4,a) is the function ¢ with the
same domain as f such that, for any element x of that domain,

c(a:):{f(x) if o # 1,

a if x = 1.
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Let (A; : i € I) be a system of BAs each with more than one element.
A subalgebra B of [[,.; A is finitely closed provided that the following
condition holds:

(x)  Foreverybe B,i€ I, and a € A;, the function §(b, 1, a) is also in B.

Examples of finitely closed subalgebras of [[,.; A; are [];.; A; itself, the
weak product H;NE 1 A; consisting of all functions which are either 0 except
for finitely many places or 1 except for finitely many places, and, more
generally, for each infinite cardinal k, the subalgebra

{bGHAi:\{ie[:bi#()}]<ﬁ0r\{i€[:bi7é1}]</i}.
icl
It is also clear that any finitely closed subalgebra of J],.; A; contains

[T;c; Ai- And note that if B is a finitely closed subalgebra of [],.; A;, then
{f1J: f € B} is a finitely closed subalgebra of [, ; A; for any J C I.

Now let B be a finitely closed subalgebra of [];.; A;. We define
B*={beB:Viel (b #0)}.
B* is partially ordered by: b < ¢ iff Vi € I (b; < ¢;). For each b € B* define
Oy ={x € B*: x <b}.
These sets form a base for a topology on B™*.
LEMMA 1.1. Oy is regular open for every b € B*.

Proof. Note that cl0, = {x € B*: 0, N0y, # 0} = {x € B* : x and
b are compatible}. Now suppose that y € intcl ;. Then for every w < y,
w and b are compatible. Suppose that y £ b. Choose ¢ € I such that y; < b;.
Then S(y,i,y; - —b;) € B*, S(y,i,y;- —b;) <y, but S(y,4,y; - —b;) and b are
not compatible, contradiction. m

Now we define the B-generalized free product of the system (A; : i € I)
to be the subalgebra of RO(B*) generated by all of the sets &), b € B*;
this subalgebra is denoted by @f; ; A;. Suppose that B is a finitely closed
subalgebra of [[,.; Ai, i € I, and a € A;. Then we define
. - Ja ifj=1,
(90, @)); = {1 otherwise.
Thus g(i,a) € B. Now we define fij(a) = Oy ) for a # 0, and f;(0) = 0.

This defines f; : A; — @, A
PROPOSITION 1.2. f; is an isomorphism of A; into @il A;.

Proof. Suppose that ag,a; € A; we show that f;(ao + a1) = fi(ao)
+ fi(ay). If one of ag,a; is 0, this is clear, so assume that both are nonzero.
We want to show that Oy(; ag+a,) = it l(Ty(i a0) U Oy(i,a1))- Clearly Oy a0)
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U ﬁg(i,al) - ﬁg(i,a0+a1)7 and hence int Cl(ﬁg(i,ao) U ﬁg(i,al)) - ﬁg(i7a0+al).
Now suppose that © € Oy(; 4y44,) and y < x; we want to show that &, N
(Og(isa0) Y Og(irary) 7 0. Suppose that &, N Oy ; 4.) = 0. Clearly then y; - ag
= 0. Since y < = € Oy(5,a9+a,), it follows that y; < ag + a1, so y; < ay.
So y € Oy(i,ay), as desired. Thus f; preserves +.

To show that f; preserves —, note first that f;(1) = 1, and hence it
suffices to take a € A; such that 0 < a < 1 and show that f;(—a) = —fi(a).
Now _fi(a) = _ﬁg(i,a) = int(B* \ ﬁg(i,a))' Clearly fi(_a’) = Ug4(i,—a) -
B*\ Oy(;,a), and hence f;(—a) C —fi(a). Now suppose that x € —f;(a). If
r; - a # 0, then clearly 0, N Oy 4) # 0, contradiction. So x; - @ = 0, hence
r € Oy;,—q) = fi(—a), as desired. So f is a homomorphism. Clearly it is
one-one. m

PROPOSITION 1.3. If b€ B*, then Oy = (\,c; fi(bs) = [1,c; fi(bs).

Proof. Clearly b < g(i,b;), s0 0, C fi(b;), for each i € I. If y € f;(b;) for
all i € I, then y < g(i,b;) for all i € I, hence y < band so y € 0. m

COROLLARY 1.4. (f;i[Ai] : i € I) is an independent system of subalgebras

B

Of ®i61 Az | ]

PROPOSITION 1.5. If B =[], A;, then @1, Ai = @,c; Ai

Proof. By Handbook 11.4 it suffices to show that @f; ; A is generated
by U;cs filAi]. Take any b € B*. Then F := {i € I : b; # 1} is finite.
Hence (;c; fi(bi) = N;cp fi(bi). The desired conclusion now follows from
Proposition 1.3. =

PROPOSITION 1.6. If b # ¢, then Oy # O..

Proof. Say b £ c. Thenbe O, \ U,.

PROPOSITION 1.7. =0y, ={x € B*:3i eI (z; < —b;)}.

Proof. To prove this, first recall that — &}, = int(B*\ 03). If x; < —b; for

some i € I, then 0, N O, = 0, and so = € int(B* \ 0)). Now suppose that
x;-b; # 0 for all i € I. Clearly then 0, N0, # 0, and so « & int(B*\ 0}). =

PROPOSITION 1.8. B* is order-isomorphic to a dense generating set of
@fg[ A;. Moreover, b < c iff O, C O..

Proof. The second statement is obvious, and it immediately implies the
first statement. m

ProposITION 1.9. (i) O - O, = O, N O..

(iii) If ﬁb . ﬁc 7é 0, then ﬁb . ﬁc = ﬁb.c. ]

PROPOSITION 1.10. Suppose that m is a positive integer and b,c,. ..
.., ™1 € B*. Then the following conditions are equivalent:
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(i) Oy, COpw+...+Cmm-1.
(i) Vw € B* (w<b=3i <m (w-c € B*)).

(iii) For all j < m and all i € I, if b;- —c] # 0, then OS5, p0—c)
Zk<m,k7£j O
Proof. Note that Ow + ...+ Oun—1 =intcl(Opo U...U Opm-1). Hence
Oy COw+...40m it Oy Ccl(CoU...UOm-)
iff Ywe B* (w<b =3i<m (w-c € B*)).

)y S

It follows that (i) and (ii) are equivalent.
For (i)=-(iii), suppose that (iii) fails. We then obtain j < m and i € I
such that b; - —c] # 0 and ﬁS(b,i,b?~—cf) Z > k<m, kzj Ocr- This means by (ii)

that there is an s < S(b,i,b; - —c]) such that O,N O =0 for all k < m for
which k # j. But also clearly 65N 0,; = 0, contradiction.

(iii)=(i). Suppose that O € Oco + ...+ O.m-1. Then by (ii) there is
an s € O, such that 05, N O, = 0 for all j < m. Choose i € I such that
;- ) = 0. Then b; - —c? # 0, so by (iii), Osb,ibi—0) S Dkem, ko Ocr- But
s < S(b,i,b; - —c?), contradiction. m

COROLLARY 1.11. Suppose that m is a natural number, b,c°,...,cm1
eEB*, and O, CCw+ ...+ Cum-1. Then m>0and b<c+...+cm L

Proof. Since 0y, # 0, it follows that m > 0. Now suppose that b £ c®+. ..
...+ ¢™ 1. Choose i such that u := b; - —c? - ... - —clm*l # 0.

Then S(b,i,u) < band Vj < m (S(b,i,u) - ¢ € B*), contradicting Proposi-
tion 1.10. m

PROPOSITION 1.12. Suppose that m is a positive integer and b,c, ...
..,c™ L € B*. For each € € ™I define d° € B by setting, for each i € I,

i =b- [ -
j<m,e(j)=i
Then
OyN—CpN...N—Cpms = U Oe .
cemI, de€B*

Proof. Suppose w € O, N —Op N ... N Oym-1. By Proposition 1.7, for
each j < m choose £(j) € I such that w,(; < —cz_(j). Clearly then w < d°.

Conversely, if w € d°, it is clear that w € O, N —Cpo N...N =COpn-1. m

COROLLARY 1.13. Suppose that m is a positive integer and b,c°,...
., eBY Then Oy < Op + ...+ Opm-1 iff

Vee™ Jiel [big 3 cﬂ.’].

1
j<m,e(j)=i
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So much for the elementary arithmetic of generalized free products. Now
we turn to elementary algebraic results, specifically to universal mapping
properties.

PROPOSITION 1.14. Suppose that B and C are finitely closed subalgebras
of Hlel A;, and B < C. Then @ZE[ A; can be isomorphically embedded in

@z‘el A;. In fact, the mapping f such that f(OF) = OF for all b€ B* can
be extended to an isomorphism into.

Proof. Let b°,..., 0™~ 1 c% ... c"~! € B*. It suffices to show that
of-....08._.- 0% ....—05%_, =0

iff ﬁbo-. Ofr =0 - =05, =
We may assume that m > 0 (put b° = 1 otherwise). Now
5B . . B 0 if (0°-...-b™ 1), =0 for some i € I,
b0 bt ﬁg%.”_bm_l otherw1se.

and similarly for ﬁb% e ﬁfm,l, so we may assume that m = 1. Clearly
then n > 0.

Next, using Corollary 1.13 we have
OB .68 .. . —0B_, =0 iff Yee"[Jiel [b?g 3 c]-}

(2
j<n,e(j)=i
iff 05--05%-...-—05% .=0.m
The following proposition abstractly characterizes generalized free prod-
ucts.

THEOREM 1.15. Let (A; : i € I) be a system of BAs, and let B be a
finitely closed subalgebra of [[,c; Ai. Then for any BA C, the following
conditions are equivalent:

(i) C = D, A

(ii) There exist embeddings f; of A; into C with the following properties:
(a) For all b € B*, chel fi(b;) exists and is nonzero;
(b) {Hil fi(b;) : b€ B*} is a dense generating set for C.

Proof. (i)=-(ii) by Propositions 1.2, 1.3.

(ii)=(i). Assume (ii). Define F'(0;) = HZGI b; for any b € B*. It suffices

now to show that if 8°,...,6™~ 1. 0, ..., c"~! € B*, then

ﬁbO'...'ﬁbm—l'_ cO et —Upen— 1:0

L | IO RRR [ FACSo Rl | FACH R | G

i€l i€l i€l i€l
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As in the proof of Proposition 1.14 we may assume that m = 1. Then n > 0.
So what we want to prove is that

Oy C Ot O it [ fi0) <[ F()+. . +]] filer

el el el
We have
[150) <TL A+ +]] filei™
il il i€l
iff L) D> —filed) D> =file ) =0
i€l i€l i€l
if > (Hfi(bi) 11 —feu)(fi(j))) =
eenl el jen
iff Z (Hfz( z Hfa(g) 5(]) ) =0.
eenl i€l JjEN

Now we claim that this last equality is equivalent to saying
(+) veerIgiel [fib) [ fep(=d)=0].
j<n,e(j)=i

In fact, the latter condition clearly implies the indicated equality. Conversely,
suppose that for some ¢ € ™[ it is the case that

viel[fi): [I  fep(—c) #0].
j<n,e(j)=i
Then, since f; is an embedding,
Viel [b I1 —c{;éO}.
J<n,e(j)=i
So if we define a new element e by
€; = bz . H —Cg
j<n,e(j)=t

for all i € I, then e € B*, and so by (a), [[,c; fi(e;) # 0. But this means

that
Hfl( % H fs(]) 5(3) 7é 0

i€l JEN

so that the indicated equality fails. Thus our equivalence is true, and hence
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[L0) <TL A+ + ] file™)

=yl el el
i Vee Jel [b I1 —c?’:o}

1
j<n,e(j)=i

iff ﬁbgﬁco—f—...ﬂ-ﬁcnfL
Here we have used the hypothesis (ii)(a) and Corollary 1.13. =

COROLLARY 1.16. Suppose that B is a finitely closed subalgebra of
[Lic; Ai, and J C I. Let By = {fIJ : f € B} and Bpy = {fI(I\J) :
f € B}. Assume also

() B={u"v:u€ Byandvec By }.
Then 5 5 5
P a=(P a)e( P )
i€l ieJ i€I\J

Proof. For brevity let C' = @ZJ A and D = @ZBEI[\\J 7 Ai. We consider C
and D as subalgebras of £ := C&D. For each ¢ € J let f; be the isomorphism
of A; into C defined before Proposition 1.2, and for each i € T\ J let g; be the
isomorphism of A; into D given there. We intend to check the conditions of
Theorem 1.15 in order to show that £ @f;l A;. To check 1.15(a), suppose
that b € B*. Let ¢y = Hng fi(b;); this product exists and is nonzero by 1.15

for C. Similarly, let ¢; = HiDE[\J gi(b;); it is nonzero. Thus the member ¢y ¢;
of E is nonzero. We claim that it is the product in E of all members of

To check this, first we have cg-c; < ¢o < f;(b;) for all ¢ € I by the definition

of cg. Similarly, ¢ - ¢ < g;(b;) for all i € I'\ J. Now suppose that e € E and
e is a lower bound for all members of the set (xx). Write

e= E Uj * Vi,

where each u; € C and v; € D. From u;-v; < f;(b;) we infer that u; < f;(b;)
by the basic property of free products, for each i < m and each j € J. So u;
is a lower bound for {f;(b;) : j € J}, so u; < ¢o. Similarly, v; < ¢; for each
i < m. Hence e < ¢q - ¢;. This establishes our claim. Hence 1.15(a) holds
for E.

To prove 1.15(b), given a nonzero e € E, choose nonzero dy € C and
dy € D such that dy - d; < e. Then by 1.15(b) for C and D we can find
u € Bj and v € By, ; such that [z, fi(u:) < do and [];2,, gi(v:) < du.

Let b = v~ v; then b € B* by (x), and by the above the product in E of all
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fi(u;) and g;(v;) for i € J, j € I\ J is < e. So the indicated elements are
dense in E. Clearly they generate F. m

The two most important special cases of @f; ; A; are the one in which
B = [I;c; Ai, where @Z ; A; is isomorphic to the ordinary free product by
Proposition 1.5, and the one in which B = [],.; A;. We denote the latter
by @), A;. It is the notion mainly studied here.

The following universal property of generalized free products generalizes
the one for usual free products.

THEOREM 1.17. Suppose that (A; : i € I) is a system of BAs each with
at least four elements, and B is a finitely closed subalgebra of [];c; As. Let
C be any BA, and suppose that h; : A; — C is a homomorphism for every
i € I such that for any b € B*, the product [],c; hi(b;) exists. Then there

is a homomorphism k : @fel A; — C such that k(Op) = [];c; hi(bi) for all
be B*.
Proof. For any b € B* let k(0)) = H .1 hi(bi). We want to show that

k extends to a homomorphism from @ A; into C'. To this end, suppose

that

el

ﬁbo e e * ﬁbm—l M CO C eeet — CTL—l = 0;
we want to show that
| J RGO R | R R | RZTCH R | f 1 G
el el el el

As in the proof of Proposition 1.14, we may assume that m = 1; so we
drop the superscript © on °. Then it is clear that n > 0. Now suppose
that [T,c; hi(bs) - —[Tes hi(e)) - —TLies hi(c~') # 0. Then there exist
i0y -, in—1 € I such that [T, ; hi(bi) - —hio () - —hi, _, (] ) # 0. We now
define

w; = b; - H{—cfk Sl =1}

for every i € I. Then

[T 7iws) =TT 1 0 (@) —hi, (TN #£0,

i€l icl
and hence w € B*. But by Proposition 1.7 we have w € Oy-—Cpo-. ... —Opn-1,
contradiction.

It follows that k can be extended to a homomorphism. m

PROPOSITION 1.18. Suppose that (A; : i € I) is a system of BAs each
with at least four elements, and B is a finitely closed subalgebra of [];c; As

Then @, Ai is a retract of @iel
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Proof. By 1.14 let g be the isomorphism of €, ; A; into @lel A; such
that g(0,) = OF for all b € C*, where C =[], A Let fit Ai = @i Ai
be as before 1.2.

(1) Ifbe B*and {i € I:b; # 1} is infinite, then [],., fi(b;) = 0.
For, suppose that [],.; fi(b;) # 0. Then there is a ¢ € C* such that 0, C

fi(b;) for all ¢ € I. Choose i € I such that ¢; = 1 and b; # 1. Then

O C fi(bi) = Oy(ip,), so by 1.8, 1 < by, contradiction. Thus (1) holds.

By (1) and 1.17 let k& be a homomorphism from ED 1 Ai into P
such that k(0F) = ;¢ fi(b;) for all b € B*. Then for any b € C*,

k(g(0h) = k(0) =[] fi(b:) = O,

el

ZGI

and so k o g is the identity on €,

e Ai, as desired. =

PROPOSITION 1.19. Suppose that (A; : i € I) is a system of BAs each
with at least four elements, and B is a finitely closed subalgebra of [],c; As
Let (F; : i € I) be a system consisting of an ultrafilter F; on A; for each
1 € I. Then there is a homomorphism k from @f;e[ A; into B such that
(ILic; Fi) N B is a subset of rng(k).

Proof. For each i € I we define h; : A; — er ; A as follows: for any
a€A;and k € 1,

a ifi=k,
(hi(a))r = {1 iti# k and a € Fj,
0 ifi#kandaé¢gkF;.
Clearly h; is a homomorphism from A; into HZVE ; Ay, for each i € 1.

Now we check the condition of Theorem 1.17. Suppose that b € B*.
Define ¢ € [],c; Ax as follows: for any k € I,

or — 0 if —b; € F; for some i # k,
¥~ b, otherwise.

We claim that ¢ = [[,c; hi(b;) in B. First take any 7 € I. To show that
¢ < hi(b;), take any k € I; we want to show that c¢p < (h;(b;))r. This is
clear if —b; € F} for some j # k, so assume that b; € F}; for all j # k. Then
b; ifi=k,
o= {3 Hioh
Since ¢ = by, it follows that ¢, < (h;(b;))k. Thus ¢ is a lower bound for all
of the h;(b;)’s.
Now suppose that d is any lower bound for the h;(b;)’s. To show that
d < c, take any i € I. If by, € F}, for all k # i, then d; < (hi(b;)); = b; = ¢;.
If by, & Fy, for some k # i, then d; < (hi(bg)); =0 < ¢;.



184 J. D. MONK

So we have established that ¢ = [];.; R (b ). Hence we can apply Theo-
rem 1.17 to obtain a homomorphism £ : EBZGI A; — B such that k(0}) =
[Lics hi(bi) for all b€ B*. If b € (][,c; Fi) N B, then ¢, as defined above, is
equal to b, and so k(0p) = b. =

PROPOSITION 1.20. (i) If b; is an atom for all i € I, then Oy is an atom

Of @77;6[ Al
(ii) If A; is atomic for all i € I, then @],

ier Ai is atomic. =

2. Duality. Let B be a finitely closed subalgebra of [[,.; A;. Suppose
that FF = (F; : i € I) is a system consisting of an ultrafilter F; on A; for
each ¢ € I. Then

{ﬁb Viel (bz € Fl)} @] {—ﬁb cdiel (bz Q Fl)}
has fip (and hence filter-generates an ultrafilter). In fact, suppose that
ﬁbO ﬂ PPN ﬂ ﬁan—l ﬂ —ﬁco ﬂ . ﬂ _ﬁcn—l - 0,

where f! € F; and ¢ € F; for all ¢ € I. Then b0 - .... ™! € B*. For each
J < n choose i; € I such that C’ZJ ¢ ;. Now define

_ 10 m—1 J
xi=0b; -...-b" - H ¢,

j<n,ij:i
for each 7 € I. Since x; € F; for each i € I, we have x € B*. And
TEOCHN..NOm-—1N—=CpN...NN—=COpn-1,

contradiction. This shows that the indicated set has the fip, and we let Up
be the associated ultrafilter.

Now conversely, let G be an ultrafilter on ®z€ ;1 Ai, and let 7 € I. Clearly,
{a € Af : f(i,a) € G} has fip. We let K& be an ultrafilter containing this
set. Let K¢ = (K& :iel).

Suppose now that F' = (F; : i € I) is a system consisting of an ultrafilter
F; on A; for each i € I. We claim that KYr = F. For, let i € I. We show
that KZUF C F; (hence they are equal). Let a € KZUF Then f(i,a) € Up,
and hence a € F;.

From this it follows that U is one-one.

We claim that U is continuous with respect to the box topology when
B = [l,c; Ai. For, suppose that F € U~'[S(6)]. Thus Up € S(6),
so O, € Up. Hence Vi € I (b; € F;). We claim that F' € [],.; S(b;) C
U~1[S(6y)]. For, suppose that H € [[,c; S(b;). Then Vi € I (b; € H;), so
Oy € Uy and H € U7'[S8(0})], as desired.

It is not true in general that Uxe = G for G an ultrafilter on ®ze I
For example, for each ¢ € w let A; be the free BA on free generators
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20,21,..., and let B = Hiew A;. Then z itself is a member of B*, and
by Proposition 1.7,

-0, ={zxeB*:Ficw(x; <—2z)}

Clearly now {f(i,2;) : i € w}U{—0.} has fip, and so is included in an
ultrafilter G' on @il A;. For any i € w we have z; € K&, s0o 0, € Uga.
This shows that G # Ugkec.

On the other hand, if B = H:VE[ A;, then always Uxe = G, and the Stone
topology on @il A; corresponds to the product topology on []..; Ult(A;),
as one would expect.

i€l

To prove this, suppose that G is an ultrafilter on @f;[ A;. If O € G,
then Vi € I [b; € K], and so 0}, € Ugc. On the other hand, suppose that
-0, € G. Let F ={i €1:b; # 1}. So F is finite. By Proposition 1.3,
Oy = [l,cp fi(bi). It follows that there is an i € F such that f;(b;) € G.
Hence b; ¢ K&. Hence —0, € Ugc. Thus we have shown that Ugc = G.

To finish proving our italicized statement it suffices to show that K is
continuous. To do this it suffices to take any i € I, any a € A;, and any
G € K '[{z € [[;c; Ult(4;) : 2; € S(a)}] and find an open set U in

Ult(@fa A;) such that

GeUCK™! Hm e [Tty : @i € S(Q)}].

jEI
Let U = S(f(i,a)). Now K& € S(a), so a € K& and hence f(i,a) € G and
G € U. Now suppose that H € U. Then f(i,a) € H, a € K, K € S(a),
and hence
HeK! H:E € HUlt(Aj) (X € S(a)H,
jeI

as desired.

Thus these facts do not actually characterize the Stone spaces. We now
give such a characterization. A suitable set is a subset C' of B* with the
following property: for every finite subset F' of C' and every finite subset GG
of B*\ C there is a j € ¢I such that for all i € I,

Hci~ H —bﬁé()

ceEF  beG,j(b)=i

If U is an ultrafilter on EB?GI Aiy let €YV = {b : 0, € U}. Then €Y is
suitable. In fact, suppose that F is a finite subset of €V and G is a finite
subset of B*\ V. Hence 0, € U for allb € F, and —0), € U for all b € G.
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Therefore,
(N () -0 #0.
bEF bea

Choose z in this intersection. Thus x € B*. Moreover, x € O, for allc € F, so
x < cforall ¢ € F. For each b € G choose j(b) € I such that z;) < —bjw),
by Proposition 1.7. Thus for all ¢ € I,

i< [[e [[ -0
ceEF beG, j(b)=i

as desired. So, we have shown that €V is suitable.
Conversely, suppose that C' is suitable. Then clearly the set {0} : b € C'}
U{—0, :bec B*\ C} has fip, and hence determines an ultrafilter V¢,

If C is suitable, clearly %V = C. And if U is an ultrafilter on @i 1A,

clearly V¢ = U. Thus we have a one-one correspondence between ultrafil-
ters on EB;BG ; A; and suitable subsets of B*.

The Stone topology on suitable sets is given by the basis consisting of
the following set for each a € @f; ;1 Ai

S'(a) = {C : C' is suitable and there exist F'C C' and G C B*\ C

such that ﬂ Oy N ﬂ -0y C a}.

beF beG
This is proved as follows: for any suitable set C,

C e¥[S(a)] iff 3U eS(a) (C=%Y)
iff 3U (U is an ultrafilter, a € U, and C = €Y)
iff 3U (U is an ultrafilter, a € U, and V¢ = U)
iff acV®
iff CeS8'(a).

3. Cellularity. Recall that cA is the supremum of cardinalities of dis-
joint subsets of A, while ¢’A is the least infinite cardinal greater than all
such cardinalities. Two related notions are the set PT(A) of cardinalities of
partitions of unity of A, and a(A), the least infinite member of PT(A).

PROPOSITION 3.1. If k; € PT(A;) for each i € I, then [[;c ki €
PT(Dc; Ai)-

Proof. For each ¢ € I let X; be a partition of unity in A; such that
| Xi| = k. It suffices to show that

Y = {ﬁb:bEHXZ}

el
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is a partition of unity in @Zre ; A;. Clearly Y is a collection of nonzero pair-
wise disjoint elements. Suppose that &, is given. For each i € I there is a
b; € X; such that ¢; - b; # 0. Then O, - 0 # 0, as desired. =

PROPOSITION 3.2. Assume that A; has at least four elements for all
i € I, I infinite. Then w € PT(P].; A;), and hence a(@P;, = w.

Proof. Let B = [],.; Ai. Let f be a one-one function mapping w into 1.
For each 7 € I let a; be an element of A; such that 0 < a; < 1. Now for each
i € w we define b’ € B by setting, for each j € I,

b {—aj if j € tg(f) and f~1(j) < 4,

i€l ZEI

a; if j € mg(f) and f~1(j) =4,

1 otherwise.
We also define b>° € B by setting, for each j € I,

b — {—%‘ if j € mg(f),

J 1 otherwise.

Thus b* € B* for each i cw+1. If i < j <w, then b?(') - bjc(i) =ay) - —ar)=0.
Hence O - 03 = 0. And if ¢ < w, then bl i) bf(i) = as@) - —as) = 0,
and hence Oy - Oy = 0. Now suppose that ¢ € B*. If ¢; < —a; for all
j € rng(f), then ¢ < b*, and hence 0, C Op.. Suppose that ¢; - a; # 0

for some j € rng(f). Choose i minimum such that csg;) - ag;) # 0. Then
Go Oy #0. u

Now we begin the discussion of c(@D; A;) itself. If I is finite, so that we
are dealing with the ordinary free product, the situation has been thoroughly
treated by Todorcevié¢ and Shelah; see, e.g., Monk [96]. For example, there
is an atomless BA C such that ¢(C & C) > ¢(C).

For infinite index sets I the situation is different: rather than sup;c;c(4;),

which is the natural thing to compare c(@,.; A;) with, the product
[T, c(A;) turns out to be what should be compared with c(]; A;).

PROPOSITION 3.3. If k; < cA; forall i €I, then [[;c; ki </ (Dje; Ai)-

Proof. For each i € I let Y; be a disjoint subset of A; of size ;. Clearly
{0y : b elc; Vi) is a disjoint subset of @, A;. =

COROLLARY 3.4. If cA; is attained for each i € I, then Hiel cA; <
c(Dics Ai)-

COROLLARY 3.5. ¢(A;) < c(Pjc; Ai) for each jel. m

PROPOSITION 3.6. Suppose that (A; : i € I) is a system of BAs each of
size at least four, with I infinite, and cA; is attained and is at most equal

to |I|, for all i € I. Then c(@c; Ai) = [1;c; ¢(A4i), and it is attained.

Proof. The inequality >, and the fact that there is a disjoint set of size
[1,c; c(A;), are true by Proposition 3.3. Now suppose that X C @, A;,
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X is disjoint, and | X| > [],c; c(A;). Without loss of generality X = {0}, :
be Y}, where Y C B*. Then

[Y]Z = U{{xvy} 1T,y € Yv T 7é Y, Ti - Yi = 0}
el

Note that 2/l < Hie ; ¢A;. Hence by the Erdés-Rado theorem, there exist

Z € [Y]'”+ and ¢ € I such that for any two distinct z,y € Z we have
x; - y; = 0. This gives a disjoint subset of A; of size |I|*, contradiction. m

For the next proposition, recall that for any BA B, the cardinal number
7(B) is the smallest cardinality of a dense subset of B.

PROPOSITION 3.7. Let (A; :i € I) be a system of BAs each with at least
four elements, I infinite. Then c(@jc; Ai) < [;e; 7.

Proof. Suppose that X C @:e ; A; is pairwise disjoint. We may assume
that X = {0} : b € Y}. For each i € I let Z; be a subset of A; \ {0} which
is dense in A;, with |Z;| = mA;. For each b € Y and i € I choose ¢(i) € Z;
such that ¢,(i) < b(i). Now if b,/ € Y and b # V', then &, N O = 0, and
hence there is an ¢ € I such that b; - b, = 0; so ¢,(4) - ¢ (i) = 0 and hence
cy # cy. Bach ¢y is in [];.; Zs, and hence | X| < [[,c; mA;. =

COROLLARY 3.8. Let (A4; :i € I) be a system of atomic BAs each with at
least four elements, I infinite. Then c¢(@c; Ai) = [ 1, cAi, with cellularity
attained. m

i€l

EXAMPLE 3.9. There is a system (A; : i € I) such that J[,.;cA; <
C(@?e[ A;).

This example is just a slight adaptation of an example of Shelah con-
cerning cellularity in ultraproducts. (The example is based on a method of
Todorcevic.) It depends on the following theorem of Shelah (Theorem 3.22
in Monk [96]):

Let X\ = 0% with 0 an infinite cardinal. Then there is a d : [\]* — w such
that for all m,n € w, if (¢;:1 < \) is a system of n-tuples of members of \
such that ¢} < ... <" forall i <X and (I < C} for i < j < A, then there
exist 1,7 € A with 1 < j such that d{(f,{;} >m forall k,l=1,...,n.

We now describe the construction of some BAs and their properties found
in the proof of Theorem 3.23 of Monk [96], also due to Shelah. Take A, 6,
and d as indicated. Also, take any n € w. Let C), be freely generated by
(zy : o < A). Let I, be the ideal in C), generated by the set {zf, - 27 : a <
8 < Xand d{a, B} < n}. Let B, = C,/I,, and let y} = zI/I, for each
a < A. It is shown in the indicated proof that each B, satisfies the A-cc,
and that each ¥y is nonzero.
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We claim that @ZEW B,, has a disjoint subset of size A\. Namely, let
bo = (Y2 : n € w) for each a« < \. Then (0, : o < A) is the desired family.
For, suppose that o < 8 < A. With n = d{«, 8}, we have y7 - y5 = 0, and
hence 0y, N Oy, = 0, as desired.

Now, taking any infinite cardinal x and letting = 2% and A = 67 in this
construction we get the desired example: each B,, has cellularity at most 2~,
hence [], ., ¢Bn < 27, while ¢(P; ., Bn) > (2°)1. =

The following question appears to be open:

PROBLEM 1. Is there a system (A; :i € I) of BAs such that [],c;cA; >
(Bl 4i)?

With regard to this problem, the above results imply that an example
of such a system would necessarily have infinitely many A;’s with c(4;)
not attained (therefore inaccessible by the Erdds—Tarski theorem). In fact,
if the set J := {i € I : ¢(A4;) is not attained} is finite, then by Proposi-
tion 3.3, [[;cp s c(4i) < c(@jer 4i), and by Corollary 3.5, [],c;c(4;) <

c(P;c; Ai), so that [[,.; cAs < (P, As

4. Complete generalized free products. We call the algebras
RO(B*) complete generalized free products.

THEOREM 4.1. If A; is complete, then the embedding f; defined before
Proposition 1.2 is a complete embedding.

Proof. Let X C A;. Obviously > . fi(z) < fi(3>° X). Suppose that
[iQoX) - =2 ,ex fi(x) # 0. Choose b € B* such that 0, < f;(3_X) -
—> wex filx) # 0. Then O, C Oy, x), so b < g(i,> X), and hence
b; <> X. On the other hand, &, N Oy(; ) = 0 for each x € X, s0 b; -z =0
for all z € X, contradiction. m

new

COROLLARY 4.2. Suppose that B and C are finitely closed subalgebras
of Tl;er Ai, and B < C. Then RO(B*) is isomorphicallly embedded into
RO(C*) by a mapping extending the one sending each set OF to ﬁc In
case B is a dense subalgebra of C| the embedding is complete.

Proof. Tt is immediate from Proposition 1.14 and Sikorski’s extension
theorem that the indicated mapping f exists and is an isomorphism into.

Now assume that B is a dense subalgebra of C'. Then define f as follows:
for any x € RO(B*),

(%) f(@)=> {6 :bec B* and 67 C x}.

In fact, for f defined this way, it is clear that f(&F) = OF for all b € B*.
To show that f preserves -, suppose that z,y € RO(B*). Thus

f(:v-y):f(a:ﬂy):Z{ﬁbC:beB* and 6F C Ny}
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and
f(@)- f(y)
= (Z{@? .be B* and OF gm}) : (Z{ﬁbc:beB* and 67 gy})

:Z{ﬁfﬂ@?:b,deB* and O, C x and 04 C y}.

Clearly then f(z-y) C f(x) - f(y). For the converse, it suffices to take any
b,d € B* such that 68 N OY # 0, 0F C z, and 6% C y and show that
08 NOY C f(z-y). Thus b-d € B* and 0F; C x Ny, and hence

Oy NOF =07, C fz-y).

So, f preserves -.

To show that f preserves —, let € RO(B*). Suppose that 0F C z,
OB C —z,and ﬁbcﬂﬁg # 0. Then b-d € B* and 08, C x-—=x, contradiction.
Hence f(z)- f(—z) = 0. To show that f(z)+ f(—z) = B*, it suffices to show
that f(x) U f(—x) is dense in B*. To this end, take any &¢.

CASE 1: 6 Nz # 0. Choose d € C* such that 6 C 0¢ N . By the
denseness, choose b € B* such that b < d. Then ¢ C f(z), and hence
oc N f(z) #0.

CASE 2: ﬁcc C C* \ z. Again choose b € B* such that b < c¢. Then
OB C —x, and hence 0¢ N f(—xz) # 0. Thus we have proved (x).

To show that f is a complete embedding, suppose that X C RO(B).
Clearly > .y f(z) < f(>°X). Suppose that f(3 X)-—> .y f(z) # 0,
and choose ¢ € C* such that 0. C f(>_ X)-—>_ cx f(z). Then there is a
b € B* such that b < ¢. Since

(Xx)=3{ocveBnof cy x},
there is a ' € B* such that 0C NOF # 0 and 0F C > X. It follows that b”,
the pointwise infimum of b and V', is in B*. Thus 65 C 08 C Y X. So
there is an x € X such that &7 Nz # 0. Then there is a " € B* such that
o5 N0, #0 and 0F, C x. Let bV be the pointwise infimum of &’ and

v”. Then OF, C f(z). But 6N f(z) =0, and OF, C OF, contradiction. m

COROLLARY 4.3. Let (A; : i € I) be a system of BAs, and let B be
a finitely closed subalgebra of [[;,c; As. Then for any complete BA C, the
following conditions are equivalent:
(i) C 2 RO(B*).
(ii) There exist embeddings f; of A; into C with the following properties:
(a) For all be B*, T[S, fi(bi) # 0;
(b) {HZ%I fi(b;) : b€ B*} is dense in C.
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Proof. By Theorem 1.15. m

COROLLARY 4.4. Suppose B is a finitely closed subalgebra of [[;c; Ai,
and J C I. Let By = {fIJ : f € B} and Bpy; = {fII\J) : f € B}.

Assume also

(%) B={u"v:ue By and v € Bp s}

Then RO(B*) = RO(B%) @ RO(B I\J)
Proof. By 1.16 and 4.3. =

PROPOSITION 4.5. Suppose that (A; : i € I) is a system of BAs each
with at least four elements, and B is a finitely closed subalgebra of [[;c; A

Then @ie[ A; is a retract of RO(B*).

Proof. We use the notation of the proof of Proposition 1.18. By Sikorski’s
extension theorem, let g7 and k™ be extensions of g, k¥ to homomorphisms
from @161 A; to RO(B*) and from RO(B*) to @lel A; respectively. Then

(%) a<kt(g"(a)) foranyac @iel A;.

In fact, if 0, C a with b € C*, then 0, = k(g9(0h)) = kT (gF(0) <
kT (g"(a)). Since a = > {0 : b e C O C a}, the condition (x) follows.
From (* )wealsoget —a<kT(g (— ) =—kT(g%(a)),s0a=EkT(g"(a))

for all a € P, ; Ai

5. On Easton’s theorem. As an illustration of using the methods of
this paper, we indicate the connection between forcing and complete BAs
connected to Easton’s theorem (for sets, not proper classes). We follow the
notation of Kunen [80].

The basic forcing topology for posets, used in our main definitions, runs
as follows. If P is a poset, the sets {q: ¢ < p}, for p a member of P, form a
base for the topology.

Here we apply this to the sets Fn(k, A, ) defined in Kunen [80], where
the order is reverse inclusion.

Suppose that E is an Easton function, as on page 263 of Kunen’s book.
Let I = dmn(FE). For each x € I let Ag, = RO(Fn(E(k),2,k)). Define

Bg = {f € H Apg, : for every infinite regular A,
S keAnT:f(r) £1} <A
or [{k € XN 1: f(k) £ 0}] < )\}.
Clearly, B is a finitely closed subalgebra of ], .; Agx. Let Cp = RO(BE).
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For any cardinal A, let
Jy ={kel:k <A}, Bg, ={flJ, :fe€Bg}
Jy={kel: X<k}, BL, ={flJS:feBg}
Then Bp = By, x BE, via f — (fIJ5, f1JY). So by Corollary 4.4 we have
RO(Bf) = RO((Bp,)*) & RO((By)*))-

Next, there is an isomorphism of P(F) (defined in Kunen [80]) onto a
dense subset of RO(B%). In fact, for each p € P(E) define f(p) € [],.c; Aex
by setting f(p)x = Op(x)- Clearly, f(p). € Apx. Note that 14,, = 0p. Now
for any k € AN T we have f(p), # 1 iff p(k) # 0. It follows that f(p) € Bj.
Now

p<q iff Vil (p(r)<q(x))
ifft Veel (ﬁp(ﬁ) - ﬁq(ﬁ))

iff - f(p) < f(q)-
Finally, rng(f) is dense, since if b € Bj, then we can choose p(k) €
Fn(E(k),2,rs) such that &) C by for every x € I. Clearly, p € P(E),
and f(p) € Oy.
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