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GIBBS MEASURES IN A MARKOVIAN CONTEXT AND DIMENSION

BY

L. FARHANE (Monastir) and G. MICHON (Dijon)

Abstract. The main goal is to use Gibbs measures in a markovian matrices context
and in a more general context, to compute the Hausdorff dimension of subsets of [0,1]
and [0, 1[2. We introduce a parameter ¢ which could be interpreted within thermodynamic
framework as the variable conjugate to energy. In some particular cases we recover the
Shannon-McMillan—-Breiman and Eggleston theorems. Our proofs are deeply rooted in
the properties of non-negative irreducible matrices and large deviations techniques as
introduced by Ellis.

Introduction. We consider a finite Markov chain with (p;;) as the ma-
trix of transition probabilities and a family (M) indexed by a real parameter
t, which may be interpreted within thermodynamic framework as the vari-
able conjugate to energy, defined by (M;) = (pﬁj) (here t is naturally an
exponent). Let ¢(t) be the logarithm of the Perron-Frobenius eigenvalue
of the matrix (pﬁy) We are going to deal with the paths (ig,41,...) of the
chain for which the limit of n=!log ps,i, - - - Pi,,_ni,_, is finite. The function ¢/
establishes a one-to-one mapping between R and the set of the above limits.

We give a family of Gibbs measures ~; supported for each ¢ by the set
of chain’s paths whose limit is ¢/(¢). As an application, we compute the
Hausdorff dimension of some subsets of [0, 1] and [0, 1[? and we extend the
results to a multivariate setting. In some particular cases, we recover the
theorems of Shannon [6] and Eggleston [3].

Statements of results. Let b be an integer greater than or equal to 2
and £ = {0,1,...,b—1}. EN is the set of sequences of elements belonging
to F, endowed with the product topology. For each n > 1 let m, be the
projection

EN — E™, (ag,a1,...)— (agy .-, Qn_-1).
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The topology in EY is generated by the cylinders 7, '(ag,...,an_1)
which we sometimes denote by a = (aq, ..., a,—1) for simplicity.

Let M = (pij)i,j=o0,...p—1 be an irreducible markovian matrix. We define
a family (M;)icr of matrices where

_ Pl ifpi >0,
(Mt)i’j N { 0 ! if Dij = 0.
If o(t) is the Perron—Frobenius eigenvalue of the matrix M, then the function
c(t) = log p(t) is convex, non-increasing [7] and analytic. (A basic fact is that
o(t) is an eigenvalue of multiplicity 1 which ensures the last property.)

We denote by z(t) and y(t) respectively non-negative right and left eigen-
vectors corresponding to o(t).

We recall that if A is an eigenvalue of an arbitrary n x n complex matrix
A, then we define a right (respectively left) eigenvector associated with A as
any non-zero (column) vector z in C™ which satisfies Az = Az (respectively
2T A = \xT, where 27 is the transpose of z).

It is well known that for non-negative irreducible square matrices, both
the left and right Perron—Frobenius eigenvectors are positive. Obviously, we
can normalize the vectors z(t) and y(t) so that (z(t),y(t)) = y(t)Tz(t) will
be equal to o(t).

For each real ¢, we define a Borel probability measure v, on EN by setting
for the cylinder a = (ag,...,an—1),

Y(t)aoDb®(t)a,_,
o(t)”

Ye(a) =

where

t __ 1 t
Pa = Pagay ***Payp_san_1-

Note that the condition of projectivity

Ye(ag, ..., an_1) = Z velao, .., an—1,k)
ker

is satisfied, which is sufficient to define a measure v, on EV.
The main result is the following:

THEOREM 1. Fort € R set
EC’(t) = {<a07 ai, .. ) € EY ’ nlinéo nt logpaoal ~Pan_san_1 = Cl(t)}'
Then vi(Eq @) = 1.

If we apply this result to compute the Hausdorff dimension of sets of
elements from [0, 1] defined by their base b expansion we get the following
theorem:
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THEOREM 2. Under the same hypotheses, the Hausdorff dimension of
the set

{x = Zaj,lb_l €10,1] Jim. 1" 10g Pagay - - - Pan—nay_y = c'(t)}
Jjz1
is equal to
—tc/(t) + ()
logb '
EXAMPLE 1. Let (po,p1,...,ps—1) be a probability on E. For the proba-
bility transitions p;; = p;, we get c(t) = log >", . P}.- In the particular case
where ¢ = 1 we recover the Shannon-McMillan-Breiman theorem [6].

EXAMPLE 2. Consider the base 3 expansion of elements from [0, 1[, fix
p in |0,1[, let ¢ = 1 — p and let the markovian matrix

0 p ¢
1 00
1 0 0
give the probability transitions:

poo =0, por=p, p2=¢, po=1 pnu=0, ...
The largest eigenvalue of M; is o(t) = (p' +¢*)'/? and the relevant Hausdorff
dimension is given for each real ¢ by
—t(p"logp +q'logq) + (p* + ") log(p’ + ¢')
2(pt + q*)log3
In the particular case where p = 1/2, we get ¢/(t) = —(log 2)/2 indepen-
dently of ¢, and the Hausdorff dimension is (log2)/(2log 3).

Proof of Theorem 1. Let a be a cylinder of length n. For n > 1 set
W, :EN =R, (ao,a1,...) — 10gPaga; - - - Pay_say_,-
Then

t

() 0< <k§ln€ny<t>kx<t>z>QZ‘3n < (a) < QZ(SJSPE% y(£)ra(t)).

According to the terminology of Ellis [4] the partition function of the
states (BN, vy, (Wn)n>1) at level n is the function

Zto,n(t) = Z Vto (Q)PZ = Seth(a) dfyto (CL)
acEm

We define the Gibbs measure of parameter t at level n as follows:

Yn,t = Ztom(t)iletwnfyto'
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Using inequality () for ¢ + ¢¢ and the definition of 7;,, it follows that

n

infk,lEE y(t+to)kl‘(t+to)l ng(to)
to (@) =

0< < a
y(to)aol'(to)an71 Q(t + to)n t+t0( )
pho(to)”  supgcp y(t+to)rz(t +to)
Vto (a) n
Q(t + to) y(to)ao$(t0)an_1

Now, it is easily seen by summing over all a € E™ and then taking the
logarithms of all terms that

n~log Zy, n(t) = log o(t + to) — log o(to) + O(1/n).

By analogy with (2.27) of Ellis [4], the function ¢, (t) = logo(t + to) —
log o(to) is called the free energy function of the states (EN, v, (Wn)n>1);
the Legendre-Fenchel transform of ¢;,, the entropy function of the same
states is, by definition, the function
I, (z) = sup(tz — ¢4, (t)).
teR

Using the theorem of Gartner—Ellis [4, I1.6.1], [2, p. 45|, we get the first large
deviations inequality, for a closed subset F' of R:

1 Wh
li —log — F} < —inf I
imsup —log == (7, ){F'} < — inf Iy, (@),
where Y= (v, ) stands for the distribution of Y=
Here the function ¢, is differentiable and Iy, (c}, (t)) = tcy (t) — ¢4, ().
Since ¢4, (0) = 0, I3, (z) > 0 and Iy, (c; (0)) = 0, it follows that I;, attains
its infimum exactly at the point ¢; (0) = ¢/(to). The probability measures
%(Pyto) converge exponentially to ¢/(g), in the sense that for any open set
U containing ¢ (tp), there exist > 0 and ng such that for any n > ny,
Wy _
7(%0){[]0} <e .

The following lemma yields the proof of Theorem 1:

LEMMA 1. Let X, : (2,8, 1) — R? be a sequence of random vectors and
(vn) a sequence of positive numbers tending to infinity such that)_ - e ™"
< oo for each v > 0. If (X, (1)) converges exponentially in a compact set
K, then the set of points w € §2 such that (X, (w))n>1 is bounded and has
all its boundary points in K, is of measure 1.

Proof. Let U be an open set containing K. By the hypotheses,

> u(X, €U < oo,
n>0
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Applying the Borel-Cantelli lemma we get
p(lim sup(X,, € U®)) = M( N U e UC)) =0

p>1lnz>p

Equivalently, the following set is of measure 1:

N U N&E.e).

KCcU p>1n>p
U open

It remains to prove the equality

N UN&E.cv

KCU p>1nzp
U open = {w € 2 | the boundary points of X, (w) are still in K}.

Let a be an element of the left-hand side set. If v ¢ K, then there exist
disjoint neighborhoods U and V of K and v respectively; consequently, v
cannot be a boundary point of the sequence X, (a).

Conversely, suppose that there exists an open set U containing K such
that @ & (U,>,,>,(Xn € U), therefore there exists a subsequence of
(Xn(a)) lying in U°®.

Proof of Theorem 2. Let C : [0,1[ — EN be a mapping which assigns
to each ¢ € [0, 1] its digit in the base b expansion. We apply the following
lemma;

LEMMA 2. Let ¢ be a mapping of a set X into EY and ¢=1(B) the inverse
image of the o-algebra B of EN. Then v +— c(v) establishes a one-to-one
mapping between the measures v on (X, c Y(B)) and the subset of measures
w on (EN, B) satisfying u(F) = 0 for each closed subset F of EN such that
Fne(X)=0.

In the present case, the b-adic intervals {c"!(a) | a € E™} generate the
Borel subsets of the interval [0, 1] so that 7; is a measure on [0, 1] if and only
if yi(apar ... (b—1)(b—1)...) =0.

The last equality is indeed true: obviously it is enough to show that
Pp_1p-1 < 0(t). Observe that

Po_1p12(t)p—1 + Z Piq,jff(t)j = o(t)z(t)p—1
J#b-1
and the sum >, | pj_, ;z(t); is positive because the matrix M, is irre-
ducible.
We write 6(a) = 1/b"™ for the length of the b-adic interval ¢~1(a). Using
the theorem of Billingsley [1, p. 129] for the sets

lim logy:(ag, ... an—1) _ c(t) —td(¢)
n—oo logd(ag,...,an-1) log b

B, = {(ao,al,...) e EN
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and
Ay = {(ap,a1,...) € EN | lim n_llogp(ao, cesan_1) = (t)}

yields the Hausdorff dimension in the statement of Theorem 2.

Multivariate case. We wish to extend Theorem 1 to the multivariate
case. We consider a mapping f : E? — R? and introduce a family (M;),cga
of matrices, where

(My)ig = {e“’f“*j” if (i) # 0.
’ 0 otherwise.

We suppose that all these matrices are irreducible; p(t) is the Perron—
Frobenius eigenvalue of M;. Right and left eigenvectors, respectively z(t)
and y(t), corresponding to o(t) satisfy the condition (x(t),y(t)) = o(t). For
t € R4, the function c(t) = log o(t) is convex and analytic.
With the above notations, for each n we set
n—2
Wn : EN —>Rd, Wn(ao,al,...) = Zf(ai,aiﬂ).
i=0

For each t € R? we define a probability measure v, on EN by setting, for a
cylinder a = (ag, ..., an-1),

y(t)aoe<t’wn(a))x(t)a
o(t)"

n—1

Ye(a) =
By the same arguments we get:
THEOREM 3. Set
Ec @y = {(ao,a1,...) € EN | nlinéo n W, (ag,...,an_1) = (t)}.
Then v¢(Ec 1)) = 1.

THEOREM 4. The Hausdorff dimension of the set

{ac =Y a4 b7 € [0,1]| lim n 'Walag,. .., an-1) = c'(t)}

‘ n—00
jz1

s equal to

—({t,c(t)) + c(t)
logb ’

ExaMPLE 3. Take for f(i,j) the vector e;, 0 < ¢ < b — 1, from the
canonical basis of R®. For t = (tg,...,t,_1) it is easily seen that o(t) =
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Zk 06 y(t)=(1,...,1) and

eto
x(t) =1
etb71
The measure 7, is given, for a cylinder (ag,...,a,—1) € E™, by
etoo .. elon—

’Vt(aow--,an—l) = W

The function ¢ establishes a one-to-one mapping of R? into the set of

positive probability measures on E = {0,...,b — 1}. If we set ¢/(t) =
(po, - --,pp—1) we can compute the Hausdorff dimension of

Ec @y = {(ao,a1,...) € EN | nlingo n W, (ag, ..., an_1) = c(t)},

which is the set of sequences (ag, a1, ...) such that the relative frequency

of occurrences of symbols 0, ...,b— 1 converges respectively to pg, ..., pp—1.
This dimension is equal to
b—1
—(t, @) +e) = p—oPrlogpe
log b logb ’

We thus recover the Eggleston theorem.
ExAMPLE 4. Consider the mapping

c: [07 1[ - (E X E)N7 (‘Tvy) = ((Ozo,,@g), (a1751)7 o ‘)7

where the sequences (ag,aq,...) and (8o, 31,...) are the base b digits in
the expansions of x and y respectively. The inverse image of a cylinder
((avo, Bo), (1, B1), -+, (n, Br)) is a b-adic square generating the Borel sets
of [0,1[2.

Consider a mapping f : (Ex E)? — R? and a family (M), cga of matrices
defined as usual by

<t,f((0(,ﬁ),(0l/76/))> f / / 0
M) (a.5) (g =3 € if f((a, ), (', 8)) #0,
(M) ). 9) {0 otherwise.

The aim is to prove that the Hausdorff dimension of the set of points (z,y)
in [0,1[* such that x = 3>.o  a;_1b77, y =375, B;-1b77 and
nle n- W (((Xo, 60)7 (ala /81)7 ) (an—la /Bn—l)) - Cl<t)
is equal to
—(t,¢'(®)) +c(t)
2logb '
Obviously, it is enough to show that the measures v; satisfy the condition
of Lemma 2: v;(F) = 0 for each closed set F such that F N ¢([0,1[%) = 0.
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LemmA 3. If f((b—1,0),(b—1,03")) =0 when 8 # 3 and f((a,b—1),
(a/;b—1)) =0 when a # o/, then the last condition is satisfied.

Proof. Each closed set F disjoint from ¢([0, 1[?) is contained in a count-
able union of sets of the form

{(agy ... op_1,b—1,b—1,...)} x BN or

EN < {(Bos---, Bi—1,b—1,b—1,...)}.
It is enough to show that for each sequence of digits («ao,...,ar_1,
b—1,0—1,...),

v ({(ag,y ... 01,0 —1,b—1,...)} x EY) = 0.
Because
v ({(ag, ... o_1,b—1,b—1,...)} x EY)
= ir;foyt({(ao,...,ak_l,b— 1,b—1,..)} x E™),

we have to show that v:({(ag,...,ar—1,06 —1,b—1,...)} x E™) converges
to 0 as n — oo. But

’Yt((a(h .. 'aak—lab - 17 e '7b - 1)(/607 .. 7/871—1))
=7 ((0,B0),- -, (-1, Bk—1), (b—1,8k),...(b—1,5n_1))

is zero unless Bx_1 =P = ... = Bn_1. Set

Ck e Z y(t)(ao’ﬁo)e<t7f((0‘0ﬂ60)7(a17ﬁ1))> .. e<t7f((ak‘71761671)7(1)717616))) .
(Bos--Br—1)

Then

7t({(a0;'--7ak—1;b_1;'--7b_1)} XEn)

— g(t)_ka Z g(t)’“‘"e("_k)<t’f((b_1’3)’(b‘1’5))>x(t)(b_lﬁnfl).
BEE

From the properties of the matrix it follows that et/ (0=18).(=1.5))) < p(¢)
and this completes the proof.
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