COLLOQUIUM MATHEMATICUM

VOL. 88

GIBBS MEASURES IN A MARKOVIAN CONTEXT AND DIMENSION

L. FARHANE (Monastir) and G. MICHON (Dijon)

Abstract

The main goal is to use Gibbs measures in a markovian matrices context and in a more general context, to compute the Hausdorff dimension of subsets of $[0,1[$ and $\left[0,1\left[^{2}\right.\right.$. We introduce a parameter t which could be interpreted within thermodynamic framework as the variable conjugate to energy. In some particular cases we recover the Shannon-McMillan-Breiman and Eggleston theorems. Our proofs are deeply rooted in the properties of non-negative irreducible matrices and large deviations techniques as introduced by Ellis.

Introduction. We consider a finite Markov chain with $\left(p_{i j}\right)$ as the matrix of transition probabilities and a family $\left(M_{t}\right)$ indexed by a real parameter t, which may be interpreted within thermodynamic framework as the variable conjugate to energy, defined by $\left(M_{t}\right)=\left(p_{i j}^{t}\right)$ (here t is naturally an exponent). Let $c(t)$ be the logarithm of the Perron-Frobenius eigenvalue of the matrix $\left(p_{i j}^{t}\right)$. We are going to deal with the paths $\left(i_{0}, i_{1}, \ldots\right)$ of the chain for which the limit of $n^{-1} \log p_{i_{0} i_{1}} \ldots p_{i_{n-2} i_{n-1}}$ is finite. The function c^{\prime} establishes a one-to-one mapping between \mathbb{R} and the set of the above limits.

We give a family of Gibbs measures γ_{t} supported for each t by the set of chain's paths whose limit is $c^{\prime}(t)$. As an application, we compute the Hausdorff dimension of some subsets of $\left[0,1\left[\right.\right.$ and $\left[0,1\left[^{2}\right.\right.$ and we extend the results to a multivariate setting. In some particular cases, we recover the theorems of Shannon [6] and Eggleston [3].

Statements of results. Let b be an integer greater than or equal to 2 and $E=\{0,1, \ldots, b-1\} . E^{\mathbb{N}}$ is the set of sequences of elements belonging to E, endowed with the product topology. For each $n \geq 1$ let π_{n} be the projection

$$
E^{\mathbb{N}} \rightarrow E^{n}, \quad\left(a_{0}, a_{1}, \ldots\right) \mapsto\left(a_{0}, \ldots, a_{n-1}\right) .
$$

[^0]The topology in $E^{\mathbb{N}}$ is generated by the cylinders $\pi_{n}^{-1}\left(a_{0}, \ldots, a_{n-1}\right)$ which we sometimes denote by $a=\left(a_{0}, \ldots, a_{n-1}\right)$ for simplicity.

Let $M=\left(p_{i j}\right)_{i, j=0, \ldots, b-1}$ be an irreducible markovian matrix. We define a family $\left(M_{t}\right)_{t \in \mathbb{R}}$ of matrices where

$$
\left(M_{t}\right)_{i, j}= \begin{cases}p_{i j}^{t} & \text { if } p_{i j}>0 \\ 0 & \text { if } p_{i j}=0\end{cases}
$$

If $\varrho(t)$ is the Perron-Frobenius eigenvalue of the matrix M_{t} then the function $c(t)=\log \varrho(t)$ is convex, non-increasing [7] and analytic. (A basic fact is that $\varrho(t)$ is an eigenvalue of multiplicity 1 which ensures the last property.)

We denote by $x(t)$ and $y(t)$ respectively non-negative right and left eigenvectors corresponding to $\varrho(t)$.

We recall that if λ is an eigenvalue of an arbitrary $n \times n$ complex matrix A, then we define a right (respectively left) eigenvector associated with λ as any non-zero (column) vector x in \mathbb{C}^{n} which satisfies $A x=\lambda x$ (respectively $x^{T} A=\lambda x^{T}$, where x^{T} is the transpose of $\left.x\right)$.

It is well known that for non-negative irreducible square matrices, both the left and right Perron-Frobenius eigenvectors are positive. Obviously, we can normalize the vectors $x(t)$ and $y(t)$ so that $\langle x(t), y(t)\rangle=y(t)^{T} x(t)$ will be equal to $\varrho(t)$.

For each real t, we define a Borel probability measure γ_{t} on $E^{\mathbb{N}}$ by setting for the cylinder $a=\left(a_{0}, \ldots, a_{n-1}\right)$,

$$
\gamma_{t}(a)=\frac{y(t)_{a_{0}} p_{a}^{t} x(t)_{a_{n-1}}}{\varrho(t)^{n}}
$$

where

$$
p_{a}^{t}=p_{a_{0} a_{1}}^{t} \ldots p_{a_{n-2} a_{n-1}}^{t}
$$

Note that the condition of projectivity

$$
\gamma_{t}\left(a_{0}, \ldots, a_{n-1}\right)=\sum_{k \in E} \gamma_{t}\left(a_{0}, \ldots, a_{n-1}, k\right)
$$

is satisfied, which is sufficient to define a measure γ_{t} on $E^{\mathbb{N}}$.
The main result is the following:
Theorem 1. For $t \in \mathbb{R}$ set

$$
E_{c^{\prime}(t)}=\left\{\left(a_{0}, a_{1}, \ldots\right) \in E^{\mathbb{N}} \mid \lim _{n \rightarrow \infty} n^{-1} \log p_{a_{0} a_{1}} \ldots p_{a_{n-2} a_{n-1}}=c^{\prime}(t)\right\}
$$

Then $\gamma_{t}\left(E_{c^{\prime}(t)}\right)=1$.
If we apply this result to compute the Hausdorff dimension of sets of elements from $[0,1$ [defined by their base b expansion we get the following theorem:

Theorem 2. Under the same hypotheses, the Hausdorff dimension of the set

$$
\left\{x=\sum_{j \geq 1} a_{j-1} b^{-1} \in\left[0,1\left[\mid \lim _{n \rightarrow \infty} n^{-1} \log p_{a_{0} a_{1}} \ldots p_{a_{n-2} a_{n-1}}=c^{\prime}(t)\right\}\right.\right.
$$

is equal to

$$
\frac{-t c^{\prime}(t)+c(t)}{\log b}
$$

Example 1. Let $\left(p_{0}, p_{1}, \ldots, p_{b-1}\right)$ be a probability on E. For the probability transitions $p_{i j}=p_{j}$, we get $c(t)=\log \sum_{k \in E} p_{k}^{t}$. In the particular case where $t=1$ we recover the Shannon-McMillan-Breiman theorem [6].

Example 2. Consider the base 3 expansion of elements from $[0,1[$, fix p in $] 0,1[$, let $q=1-p$ and let the markovian matrix

$$
\left(\begin{array}{lll}
0 & p & q \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

give the probability transitions:

$$
p_{00}=0, \quad p_{01}=p, \quad p_{02}=q, \quad p_{10}=1, \quad p_{11}=0, \ldots
$$

The largest eigenvalue of M_{t} is $\varrho(t)=\left(p^{t}+q^{t}\right)^{1 / 2}$ and the relevant Hausdorff dimension is given for each real t by

$$
\frac{-t\left(p^{t} \log p+q^{t} \log q\right)+\left(p^{t}+q^{t}\right) \log \left(p^{t}+q^{t}\right)}{2\left(p^{t}+q^{t}\right) \log 3}
$$

In the particular case where $p=1 / 2$, we get $c^{\prime}(t)=-(\log 2) / 2$ independently of t, and the Hausdorff dimension is $(\log 2) /(2 \log 3)$.

Proof of Theorem 1. Let a be a cylinder of length n. For $n \geq 1$ set

$$
W_{n}: E^{\mathbb{N}} \rightarrow \mathbb{R}, \quad\left(a_{0}, a_{1}, \ldots\right) \mapsto \log p_{a_{0} a_{1}} \ldots p_{a_{n-2} a_{n-1}}
$$

Then

$$
\begin{equation*}
0<\left(\inf _{k, l \in E} y(t)_{k} x(t)_{l}\right) \frac{p_{a}^{t}}{\varrho(t)^{n}} \leq \gamma_{t}(a) \leq \frac{p_{a}^{t}}{\varrho(t)^{n}}\left(\sup _{k, l \in E} y(t)_{k} x(t)_{l}\right) \tag{*}
\end{equation*}
$$

According to the terminology of Ellis [4] the partition function of the states $\left(E^{\mathbb{N}}, \gamma_{t_{0}},\left(W_{n}\right)_{n \geq 1}\right)$ at level n is the function

$$
Z_{t_{0}, n}(t)=\sum_{a \in E^{n}} \gamma_{t_{0}}(a) p_{a}^{t}=\int e^{t W_{n}(a)} d \gamma_{t_{0}}(a)
$$

We define the Gibbs measure of parameter t at level n as follows:

$$
\gamma_{n, t}=Z_{t_{0}, n}(t)^{-1} e^{t W_{n}} \gamma_{t_{0}}
$$

Using inequality $(*)$ for $t+t_{0}$ and the definition of $\gamma_{t_{0}}$, it follows that

$$
\begin{aligned}
0<\frac{\inf _{k, l \in E} y\left(t+t_{0}\right)_{k} x\left(t+t_{0}\right)_{l}}{y\left(t_{0}\right)_{a_{0}} x\left(t_{0}\right)_{a_{n-1}}} \gamma_{t_{0}}(a) \frac{p_{a}^{t} \varrho\left(t_{0}\right)^{n}}{\varrho\left(t+t_{0}\right)^{n}} \leq \gamma_{t+t_{0}}(a) \\
\gamma_{t_{0}}(a) \frac{p_{a}^{t} \varrho\left(t_{0}\right)^{n}}{\varrho\left(t+t_{0}\right)^{n}} \cdot \frac{\sup _{k, l \in E} y\left(t+t_{0}\right)_{k} x\left(t+t_{0}\right)_{l}}{y\left(t_{0}\right)_{a_{0}} x\left(t_{0}\right)_{a_{n-1}}}
\end{aligned}
$$

Now, it is easily seen by summing over all $a \in E^{n}$ and then taking the logarithms of all terms that

$$
n^{-1} \log Z_{t_{0}, n}(t)=\log \varrho\left(t+t_{0}\right)-\log \varrho\left(t_{0}\right)+O(1 / n)
$$

By analogy with (2.27) of Ellis [4], the function $c_{t_{0}}(t)=\log \varrho\left(t+t_{0}\right)-$ $\log \varrho\left(t_{0}\right)$ is called the free energy function of the states $\left(E^{\mathbb{N}}, \gamma_{t_{0}},\left(W_{n}\right)_{n \geq 1}\right)$; the Legendre-Fenchel transform of $c_{t_{0}}$, the entropy function of the same states is, by definition, the function

$$
I_{t_{0}}(x)=\sup _{t \in \mathbb{R}}\left(t x-c_{t_{0}}(t)\right)
$$

Using the theorem of Gärtner-Ellis [4, II.6.1], [2, p. 45], we get the first large deviations inequality, for a closed subset F of \mathbb{R} :

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \frac{W_{n}}{n}\left(\gamma_{t_{0}}\right)\{F\} \leq-\inf _{x \in F} I_{t_{0}}(x)
$$

where $\frac{W_{n}}{n}\left(\gamma_{t_{0}}\right)$ stands for the distribution of $\frac{W_{n}}{n}$.
Here the function $c_{t_{0}}$ is differentiable and $I_{t_{0}}\left(c_{t_{0}}^{\prime}(t)\right)=t c_{t_{0}}^{\prime}(t)-c_{t_{0}}(t)$. Since $c_{t_{0}}(0)=0, I_{t_{0}}(x) \geq 0$ and $I_{t_{0}}\left(c_{t_{0}}^{\prime}(0)\right)=0$, it follows that $I_{t_{0}}$ attains its infimum exactly at the point $c_{t_{0}}^{\prime}(0)=c^{\prime}\left(t_{0}\right)$. The probability measures $\frac{W_{n}}{n}\left(\gamma_{t_{0}}\right)$ converge exponentially to $c^{\prime}\left(t_{0}\right)$, in the sense that for any open set U containing $c^{\prime}\left(t_{0}\right)$, there exist $r>0$ and n_{0} such that for any $n \geq n_{0}$,

$$
\frac{W_{n}}{n}\left(\gamma_{t_{0}}\right)\left\{U^{\mathrm{c}}\right\} \leq e^{-n r}
$$

The following lemma yields the proof of Theorem 1:
Lemma 1. Let $X_{n}:(\Omega, \mathcal{B}, \mu) \rightarrow \mathbb{R}^{d}$ be a sequence of random vectors and $\left(\nu_{n}\right)$ a sequence of positive numbers tending to infinity such that $\sum_{n \geq 1} e^{-r \nu_{n}}$ $<\infty$ for each $r>0$. If $\left(X_{n}(\mu)\right)$ converges exponentially in a compact set K, then the set of points $w \in \Omega$ such that $\left(X_{n}(w)\right)_{n \geq 1}$ is bounded and has all its boundary points in K, is of measure 1.

Proof. Let U be an open set containing K. By the hypotheses,

$$
\sum_{n \geq 0} \mu\left(X_{n} \in U^{\mathrm{c}}\right)<\infty
$$

Applying the Borel-Cantelli lemma we get

$$
\mu\left(\limsup _{n \rightarrow \infty}\left(X_{n} \in U^{\mathrm{c}}\right)\right)=\mu\left(\bigcap_{p \geq 1} \bigcup_{n \geq p}\left(X_{n} \in U^{\mathrm{c}}\right)\right)=0
$$

Equivalently, the following set is of measure 1 :

$$
\bigcap_{\substack{K \subset U \\ U \text { open }}} \bigcup_{p \geq 1} \bigcap_{n \geq p}\left(X_{n} \in U\right)
$$

It remains to prove the equality

$$
\begin{aligned}
\bigcap_{K \subset U} & \bigcup_{p \geq 1} \bigcap_{n \geq p}\left(X_{n} \in U\right) \\
& =\left\{w \in \Omega \mid \text { the boundary points of } X_{n}(w) \text { are still in } K\right\}
\end{aligned}
$$

Let a be an element of the left-hand side set. If $v \notin K$, then there exist disjoint neighborhoods U and V of K and v respectively; consequently, v cannot be a boundary point of the sequence $X_{n}(a)$.

Conversely, suppose that there exists an open set U containing K such that $a \notin \bigcup_{p \geq 1} \bigcap_{n \geq p}\left(X_{n} \in U\right)$, therefore there exists a subsequence of $\left(X_{n}(a)\right)$ lying in $U^{\text {c }}$.

Proof of Theorem 2. Let $C:\left[0,1\left[\rightarrow E^{\mathbb{N}}\right.\right.$ be a mapping which assigns to each $t \in[0,1[$ its digit in the base b expansion. We apply the following lemma:

Lemma 2. Let c be a mapping of a set X into $E^{\mathbb{N}}$ and $c^{-1}(\mathcal{B})$ the inverse image of the σ-algebra \mathcal{B} of $E^{\mathbb{N}}$. Then $\nu \mapsto c(\nu)$ establishes a one-to-one mapping between the measures ν on $\left(X, c^{-1}(\mathcal{B})\right)$ and the subset of measures μ on $\left(E^{\mathbb{N}}, \mathcal{B}\right)$ satisfying $\mu(F)=0$ for each closed subset F of $E^{\mathbb{N}}$ such that $F \cap c(X)=\emptyset$.

In the present case, the b-adic intervals $\left\{c^{-1}(a) \mid a \in E^{n}\right\}$ generate the Borel subsets of the interval $\left[0,1\left[\right.\right.$ so that γ_{t} is a measure on $[0,1[$ if and only if $\gamma_{t}\left(a_{0} a_{1} \ldots(b-1)(b-1) \ldots\right)=0$.

The last equality is indeed true: obviously it is enough to show that $p_{b-1, b-1}^{t}<\varrho(t)$. Observe that

$$
p_{b-1, b-1}^{t} x(t)_{b-1}+\sum_{j \neq b-1} p_{b-1, j}^{t} x(t)_{j}=\varrho(t) x(t)_{b-1}
$$

and the sum $\sum_{j \neq b-1} p_{b-1, j}^{t} x(t)_{j}$ is positive because the matrix M_{t} is irreducible.

We write $\delta(a)=1 / b^{n}$ for the length of the b-adic interval $c^{-1}(a)$. Using the theorem of Billingsley [1, p. 129] for the sets

$$
B_{t}=\left\{\left(a_{0}, a_{1}, \ldots\right) \in E^{\mathbb{N}} \left\lvert\, \lim _{n \rightarrow \infty} \frac{\log \gamma_{t}\left(a_{0}, \ldots, a_{n-1}\right)}{\log \delta\left(a_{0}, \ldots, a_{n-1}\right)}=-\frac{c(t)-t c^{\prime}(t)}{\log b}\right.\right\}
$$

and

$$
A_{t}=\left\{\left(a_{0}, a_{1}, \ldots\right) \in E^{\mathbb{N}} \mid \lim _{n \rightarrow \infty} n^{-1} \log p\left(a_{0}, \ldots, a_{n-1}\right)=c^{\prime}(t)\right\}
$$

yields the Hausdorff dimension in the statement of Theorem 2.

Multivariate case. We wish to extend Theorem 1 to the multivariate case. We consider a mapping $f: E^{2} \rightarrow \mathbb{R}^{d}$ and introduce a family $\left(M_{t}\right)_{t \in \mathbb{R}^{d}}$ of matrices, where

$$
\left(M_{t}\right)_{i, j}= \begin{cases}e^{\langle t, f(i, j)\rangle} & \text { if } f(i, j) \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

We suppose that all these matrices are irreducible; $\varrho(t)$ is the PerronFrobenius eigenvalue of M_{t}. Right and left eigenvectors, respectively $x(t)$ and $y(t)$, corresponding to $\varrho(t)$ satisfy the condition $\langle x(t), y(t)\rangle=\varrho(t)$. For $t \in \mathbb{R}^{d}$, the function $c(t)=\log \varrho(t)$ is convex and analytic.

With the above notations, for each n we set

$$
W_{n}: E^{\mathbb{N}} \rightarrow \mathbb{R}^{d}, \quad W_{n}\left(a_{0}, a_{1}, \ldots\right)=\sum_{i=0}^{n-2} f\left(a_{i}, a_{i+1}\right)
$$

For each $t \in \mathbb{R}^{d}$ we define a probability measure γ_{t} on $E^{\mathbb{N}}$ by setting, for a cylinder $a=\left(a_{0}, \ldots, a_{n-1}\right)$,

$$
\gamma_{t}(a)=\frac{y(t)_{a_{0}} e^{\left\langle t, W_{n}(a)\right\rangle} x(t)_{a_{n-1}}}{\varrho(t)^{n}}
$$

By the same arguments we get:
Theorem 3. Set

$$
E_{c^{\prime}(t)}=\left\{\left(a_{0}, a_{1}, \ldots\right) \in E^{\mathbb{N}} \mid \lim _{n \rightarrow \infty} n^{-1} W_{n}\left(a_{0}, \ldots, a_{n-1}\right)=c^{\prime}(t)\right\}
$$

Then $\gamma_{t}\left(E_{c^{\prime}(t)}\right)=1$.
Theorem 4. The Hausdorff dimension of the set

$$
\left\{x=\sum_{j \geq 1} a_{j-1} b^{-j} \in\left[0,1\left[\mid \lim _{n \rightarrow \infty} n^{-1} W_{n}\left(a_{0}, \ldots, a_{n-1}\right)=c^{\prime}(t)\right\}\right.\right.
$$

is equal to

$$
\frac{-\left\langle t, c^{\prime}(t)\right\rangle+c(t)}{\log b}
$$

Example 3. Take for $f(i, j)$ the vector $e_{i}, 0 \leq i \leq b-1$, from the canonical basis of \mathbb{R}^{b}. For $t=\left(t_{0}, \ldots, t_{b-1}\right)$ it is easily seen that $\varrho(t)=$
$\sum_{k=0}^{b-1} e^{t_{k}}, y(t)=(1, \ldots, 1)$ and

$$
x(t)=\left(\begin{array}{c}
e^{t_{0}} \\
\vdots \\
e^{t_{b-1}}
\end{array}\right)
$$

The measure γ_{t} is given, for a cylinder $\left(a_{0}, \ldots, a_{n-1}\right) \in E^{n}$, by

$$
\gamma_{t}\left(a_{0}, \ldots, a_{n-1}\right)=\frac{e^{t_{a_{0}}} \ldots e^{t_{a_{n-1}}}}{\left(\sum_{k=0}^{b-1} e^{t_{k}}\right)^{n}}
$$

The function c^{\prime} establishes a one-to-one mapping of \mathbb{R}^{d} into the set of positive probability measures on $E=\{0, \ldots, b-1\}$. If we set $c^{\prime}(t)=$ $\left(p_{0}, \ldots, p_{b-1}\right)$ we can compute the Hausdorff dimension of

$$
E_{c^{\prime}(t)}=\left\{\left(a_{0}, a_{1}, \ldots\right) \in E^{\mathbb{N}} \mid \lim _{n \rightarrow \infty} n^{-1} W_{n}\left(a_{0}, \ldots, a_{n-1}\right)=c^{\prime}(t)\right\}
$$

which is the set of sequences $\left(a_{0}, a_{1}, \ldots\right)$ such that the relative frequency of occurrences of symbols $0, \ldots, b-1$ converges respectively to p_{0}, \ldots, p_{b-1}. This dimension is equal to

$$
\frac{-\left\langle t, c^{\prime}(t)\right\rangle+c(t)}{\log b}=\frac{-\sum_{k=0}^{b-1} p_{k} \log p_{k}}{\log b}
$$

We thus recover the Eggleston theorem.
Example 4. Consider the mapping

$$
c:\left[0,1\left[\rightarrow(E \times E)^{\mathbb{N}}, \quad(x, y) \mapsto\left(\left(\alpha_{0}, \beta_{0}\right),\left(\alpha_{1}, \beta_{1}\right), \ldots\right)\right.\right.
$$

where the sequences $\left(\alpha_{0}, \alpha_{1}, \ldots\right)$ and $\left(\beta_{0}, \beta_{1}, \ldots\right)$ are the base b digits in the expansions of x and y respectively. The inverse image of a cylinder $\left(\left(\alpha_{0}, \beta_{0}\right),\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{n}, \beta_{n}\right)\right)$ is a b-adic square generating the Borel sets of $\left[0,1\left[^{2}\right.\right.$.

Consider a mapping $f:(E \times E)^{2} \rightarrow \mathbb{R}^{d}$ and a family $\left(M_{t}\right)_{t \in \mathbb{R}^{d}}$ of matrices defined as usual by

$$
\left(M_{t}\right)_{(\alpha, \beta),\left(\alpha^{\prime}, \beta^{\prime}\right)}= \begin{cases}e^{\left\langle t, f\left((\alpha, \beta),\left(\alpha^{\prime}, \beta^{\prime}\right)\right)\right\rangle} & \text { if } f\left((\alpha, \beta),\left(\alpha^{\prime}, \beta^{\prime}\right)\right) \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

The aim is to prove that the Hausdorff dimension of the set of points (x, y) in $\left[0,1\left[^{2}\right.\right.$ such that $x=\sum_{j \geq 1} \alpha_{j-1} b^{-j}, y=\sum_{j \geq 1} \beta_{j-1} b^{-j}$ and

$$
\lim _{n \rightarrow \infty} n^{-1} W_{n}\left(\left(\alpha_{0}, \beta_{0}\right),\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{n-1}, \beta_{n-1}\right)\right)=c^{\prime}(t)
$$

is equal to

$$
\frac{-\left\langle t, c^{\prime}(t)\right\rangle+c(t)}{2 \log b}
$$

Obviously, it is enough to show that the measures γ_{t} satisfy the condition of Lemma $2: \gamma_{t}(F)=0$ for each closed set F such that $F \cap c\left(\left[0,1\left[^{2}\right)=\emptyset\right.\right.$.

Lemma 3. If $f\left((b-1, \beta),\left(b-1, \beta^{\prime}\right)\right)=0$ when $\beta \neq \beta^{\prime}$ and $f((\alpha, b-1)$, $\left.\left(\alpha^{\prime}, b-1\right)\right)=0$ when $\alpha \neq \alpha^{\prime}$, then the last condition is satisfied.

Proof. Each closed set F disjoint from $c\left(\left[0,1\left[^{2}\right)\right.\right.$ is contained in a countable union of sets of the form

$$
\begin{aligned}
& \left\{\left(\alpha_{0}, \ldots, \alpha_{k-1}, b-1, b-1, \ldots\right)\right\} \times E^{\mathbb{N}} \quad \text { or } \\
& E^{\mathbb{N}} \times\left\{\left(\beta_{0}, \ldots, \beta_{l-1}, b-1, b-1, \ldots\right)\right\}
\end{aligned}
$$

It is enough to show that for each sequence of digits $\left(\alpha_{0}, \ldots, \alpha_{k-1}\right.$, $b-1, b-1, \ldots)$,

$$
\gamma_{t}\left(\left\{\left(\alpha_{0}, \ldots, \alpha_{k-1}, b-1, b-1, \ldots\right)\right\} \times E^{\mathbb{N}}\right)=0
$$

Because

$$
\begin{aligned}
& \gamma_{t}\left(\left\{\left(\alpha_{0}, \ldots, \alpha_{k-1}, b-1, b-1, \ldots\right)\right\} \times E^{\mathbb{N}}\right) \\
&=\inf _{n \geq 0} \gamma_{t}\left(\left\{\left(\alpha_{0}, \ldots, \alpha_{k-1}, b-1, b-1, \ldots\right)\right\} \times E^{n}\right)
\end{aligned}
$$

we have to show that $\gamma_{t}\left(\left\{\left(\alpha_{0}, \ldots, \alpha_{k-1}, b-1, b-1, \ldots\right)\right\} \times E^{n}\right)$ converges to 0 as $n \rightarrow \infty$. But

$$
\begin{aligned}
& \gamma_{t}\left(\left(\alpha_{0}, \ldots, \alpha_{k-1}, b-1, \ldots, b-1\right)\left(\beta_{0}, \ldots, \beta_{n-1}\right)\right) \\
& \quad=\gamma_{t}\left(\left(\alpha_{0}, \beta_{0}\right), \ldots,\left(\alpha_{k-1}, \beta_{k-1}\right),\left(b-1, \beta_{k}\right), \ldots\left(b-1, \beta_{n-1}\right)\right)
\end{aligned}
$$

is zero unless $\beta_{k-1}=\beta_{k}=\ldots=\beta_{n-1}$. Set

$$
C_{k}=\sum_{\left(\beta_{0}, \ldots, \beta_{k-1}\right)} y(t)_{\left(\alpha_{0}, \beta_{0}\right)} e^{\left\langle t, f\left(\left(\alpha_{0}, \beta_{0}\right),\left(\alpha_{1}, \beta_{1}\right)\right)\right\rangle} \ldots e^{\left\langle t, f\left(\left(\alpha_{k-1}, \beta_{k-1}\right),\left(b-1, \beta_{k}\right)\right)\right\rangle}
$$

Then

$$
\begin{aligned}
& \gamma_{t}\left(\left\{\left(\alpha_{0}, \ldots, \alpha_{k-1}, b-1, \ldots, b-1\right)\right\} \times E^{n}\right) \\
& \quad=\varrho(t)^{-k} C_{k} \sum_{\beta \in E} \varrho(t)^{k-n} e^{(n-k)\langle t, f((b-1, \beta),(b-1, \beta))\rangle} x(t)_{\left(b-1, \beta_{n-1}\right)}
\end{aligned}
$$

From the properties of the matrix it follows that $e^{\langle t, f((b-1, \beta),(b-1, \beta))\rangle}<\varrho(t)$ and this completes the proof.

Acknowledgments. We wish to thank the anonymous referee for his/ her helpful suggestions and comments, which have improved the previous version of this paper.

REFERENCES

[1] P. Billingsley, Ergodic Theory and Information, Wiley, New York, 1965.
[2] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Jones and Bartlett, Boston, 1993.
[3] H. G. Eggleston, The fractional dimension of a set defined by decimal properties, Quart. J. Math. Oxford 20 (1949), 31-46.
[4] R. S. Ellis, Entropy, Large Deviations and Statistical Mechanics, Springer, New York, 1985.
[5] G. Michon et J. Peyrière, Thermodynamique des ensembles de Cantor autosimilaires, Chinese Ann. Math. Ser. B 15 (1994), 253-272.
[6] C. Shannon, A mathematical theory of communication, Bell System Tech. J. 27 (1948) 379-423, 623-656.
[7] R. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.

Faculté des sciences de Monastir
5000 Monastir, Tunisie
E-mail: farhane@topolog.u-bourgogne.fr

Laboratoire de topologie UMR 5584
Université de Bourgogne
B.P. 400

21011 Dijon, France
E-mail: michon@topolog.u-bourgogne.fr

[^0]: 2000 Mathematics Subject Classification: 60F10, 60J05, 28A80.
 Key words and phrases: Gibbs measures, Markov matrices, Hausdorff dimension, large deviations.

 Projet de recherche DGRST-CNRS 96/R 1543.

