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ON THE BOFFA ALTERNATIVE

BY

B. BAJORSKA and O. MACEDOŃSKA (Gliwice)

Abstract. Let G∗ denote a nonprincipal ultrapower of a group G. In 1986 M. Boffa
posed a question equivalent to the following one: if G does not satisfy a positive law ,
does G∗ contain a free nonabelian subsemigroup? We give the affirmative answer to this
question in the large class of groups containing all residually finite and all soluble groups,
in fact, all groups considered in traditional textbooks on group theory.

Preliminaries. Let F be a free semigroup generated by x1, x2, . . . We
say that an n-tuple of elements g1, . . . , gn in a group G satisfies a nontriv-
ial positive relation u(x1, . . . , xn) = v(x1, . . . , xn) if u, v are different words
in F and the equality u(g1, . . . , gn) = v(g1, . . . , gn) holds. A group G satis-
fies the law u = v if the equality holds under each substitution of elements
in G for the generators xi. We note that every n-variable positive law im-
plies a nontrivial two-variable positive law if we replace each variable xi
by xyi.

Notation. We say that G is an F -group (respectively an F∗-group) if
G (resp. G∗) contains a free nonabelian subsemigroup; we say that G is
a noF -group (resp. a noF∗-group) if G (resp. G∗) does not contain a free
nonabelian subsemigroup.

Since G∗ is the image of a cartesian power Gω under the congruence
defined by a nonprincipal ultrafilter, the group G is embedded into G∗ via
diagGω. Hence every F -group is an F∗-group. To see that the class of
F∗-groups is wider, we note that in a noF∗-group G every pair of elements
satisfies a two-variable relation from some finite set {ui = vi : i = 1, . . . , n}
(see Lemma 2 below), and hence G satisfies a nontrivial (left-normed) com-
mutator law [u1v

−1
1 , . . . , unv

−1
n ]. So infinite torsion groups are noF -groups,

while by ([12], IV, Thm. 2.6) they do not satisfy any law and hence are
F∗-groups.
Question (Q) in [1] suggests the following

Boffa alternative. A group either satisfies a positive law or is an
F∗-group.
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Since every nilpotent group satisfies a positive law [7], every extension
of a nilpotent group by a group of finite exponent also does, and hence it
trivially satisfies the Boffa alternative. So finitely generated soluble groups
([8], Thms. 4.7, 4.12), elementary amenable groups [3], finitely generated
linear groups over any field [10] satisfy the Boffa alternative, because they
are all nilpotent-by-(finite expotent). Every relatively free group satisfies the
Boffa alternative because every positive relation on free generators provides
a positive law.

It is not known whether every group satisfies the alternative. In this
paper we present a large class of groups satisfying the Boffa alternative. We
need the following

Notation. Let Nc denote the variety of all nilpotent groups of nilpo-
tency class c,Sn the variety of all soluble groups of solubility class n, andBk

the restricted Burnside variety of exponent k, that is, the variety generated
by all finite groups of exponent k. It follows from the positive solution of
the Restricted Burnside Problem (see [11]) that all groups in Bk are locally
finite of exponent dividing k.

To recall the definition of the class C introduced in [2], we denote by
∆1 the class of groups contained in finite products of varieties V1 · · ·Vm,
where Vi is either Sn or Bk for various n, k. Now we define inductively:
∆n+1 = {groups locally in ∆n} ∪ {groups residually in C = ∆n}.

The class C is defined as the union C =
⋃
n
∆n.

Among all laws satisfied in G ∈ NcBk there is a two-variable positive
law of the form uc(x, y) = uc(y, x), where u1(x, y) = x

kyk, and uc(x, y) =
uc−1(x, y)uc−1(y, x) (cf. [7]). For groups with certain properties the param-
eters c, k can be bounded as functions of some n. Then we denote such a
law by Mck(n). We need the following

Lemma 1 (cf. [9], p. 52, Thms. A′, B). Let G be a two-generator resid-
ually finite group, and let there exist n such that for every n-element subset
S ⊆ G, the inequality |Sn| < nn holds. Then G satisfies the law Mck(n),
where c, k depend on n only.

Properties of noF∗-groups. By ([1], Thm. 3), G is a noF∗-group if
and only if there exists a finite set A of nontrivial two-variable positive
relations such that every pair of elements in G satisfies at least one of them.

We denote by Ln the set of all nontrivial two-variable positive relations
of length n, that is,

Ln = {u(x, y) = v(x, y); |u(x, y)| = |v(x, y)| = n},

where |u(x, y)| is the length of the word u(x, y).
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The following is clear: a relation u = v implies both uv = vu and xu =
xv; a relation uvw = w implies uv = vu. Now it can be easily shown that
for any finite set A of nontrivial two-variable positive relations there exists
n such that if every pair of elements in G satisfies at least one relation in A,
then every pair of elements in G satisfies at least one relation in Ln. So we
obtain

Lemma 2 (cf. [1], Thm. 3). A group G is a noF∗-group if and only if
there exists n such that every pair of elements in G satisfies at least one
relation in Ln.

From the above lemma it follows that for N ⊳ H ⊆ G, every pair of
elements in H/N also satisfies at least one relation in Ln and hence H/N is
a noF∗-group.

Now we need to show that if every pair of elements in G satisfies at least
one relation in Ln, then every residually finite subgroup in G and every
residually finite quotient of G satisfy the positive law Mck(n), where the
parameters c, k depend on n only.

Lemma 3. Let G be a noF∗-group and N ⊳ H ⊆ G. If H/N is locally
residually finite, then there exists n such that H/N satisfies the law Mck(n).

Proof. If h1, h2 are elements in H/N , then by assumption, the subgroup
gp(h1, h2) is residually finite. By Lemma 2, there exists n such that every
pair of elements in G, and hence in H/N , satisfies a relation in Ln. We
consider any set S = {s1, . . . , sn} in gp(h1, h2). The elements s1, s2 satisfy
some relation u(x, y) = v(x, y) in Ln, so the elements u(s1, s2) and v(s1, s2)
belong to in Sn, and are equal. Thus we have |Sn| < nn, and by Lemma 1,
the group gp(h1, h2) satisfies the law Mck(n). So the whole section H/N
satisfies the law Mck(n), as required.

Corollary 1. If G is a noF∗-group, then there exists n such that every
soluble subgroup H in G satisfies the law Mck(n).

Proof. By Lemma 2, there exists n such that every pair of elements in
G (and hence in H) satisfies a relation in Ln. Let h1, h2 be in H. Then the
subgroup gp(h1, h2) is a finitely generated, soluble noF -group. Now by ([8],
Thms. 4.7, 4.12), gp(h1, h2) is an extension of a nilpotent group by a finite
group, and hence by [4], is residually finite. So by Lemma 3, the elements
h1, h2 satisfyMck(n). Since the same is true for any h1, h2 in H, we conclude
that H satisfies the law Mck(n).

The main result. To show that every group in the class C satisfies the
Boffa alternative, it is enough to prove that every noF∗-group in the class
C satisfies a positive law.
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We start with a noF∗-group in a product of a restricted Burnside variety
and a soluble variety.

Lemma 4. If G is a noF∗-group in BeSd for some e, d, then G satisfies
a positive law and G ∈ NcBk for some c, k.

Proof. By Lemma 2, there exists n such that every pair of elements in
G satisfies a relation in Ln. We show that G satisfies the law Mck(n). If
H is a finitely generated subgroup in G, then H is a noF -group and by
([6], Corollary 3), all its derived subgroups are finitely generated. Since by
assumption H ∈ BeSd, we get H

(d) ∈ Be. So H
(d) is a finitely generated

group inBe and hence is finite. The centralizer Z of the finite subgroupH
(d)

inH must have a finite index inH ([5], 3.1.4), and hence is finitely generated
([5], 14.3.2). Moreover, Z is soluble, because 1 = [H(d), Z] ⊇ [Z(d), Z(d)] =

Z(d+1).
The finitely generated soluble noF -group Z is, by [8], nilpotent-by-finite.

So H, as a finite extension of Z, is also nilpotent-by-finite. Now G is locally
nilpotent-by-finite and hence by [4], locally residually finite. So by Lemma 3,
G satisfies the positive law Mck(n). By ([2], Theorem B) it follows that G
is in NcBk for some c, k, as required.

Theorem 1. If G is in the class C, then either G satisfies a positive
law or G is an F∗-group.

Proof. It is enough to show that if G ∈ C is a noF∗-group then G satisfies
a positive law. By Lemma 2 we assume that there exists n such that every
pair of elements in G ∈ C satisfies a relation in Ln. We shall prove that G
satisfies the law Mck(n).
Let our group G be in ∆1. Then G ∈ V1 · · ·Vm, where each variety Vi is

either Sd or Be for some d, e. Since the product of varieties is associative,
we replace, by Lemma 4, (starting from the right) every pair of the type
BS by some pair of the type NB, and find that G belongs to a soluble-by-
restricted Burnside variety SkBe for some k, e. Then G is a locally soluble-
by-finite noF -group and by [8], is locally nilpotent-by-finite. Hence G is
locally residually finite and then by Lemma 3, satisfies the law Mck(n).

So: If in G ∈ ∆1 every pair of elements satisfies a relation in Ln, then
G satisfies the law Mck(n).

We now consider a group G in ∆2. Since ∆2 = {groups locally in ∆1} ∪
{groups residually in ∆1}, there are two cases.

(i) If G is locally in ∆1, and if K is a finitely generated subgroup in G,
then K ∈ ∆1 and hence, as we have proved above, satisfies the law Mck(n).
Since the same is true for every finitely generated subgroup K ⊆ G, we
conclude that G satisfies the positive law Mck(n).
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(ii) If G is residually in ∆1, then G is a subcartesian product of its finite
quotients G/N ∈ ∆1. By assumption G and hence G/N are noF

∗-groups.
Hence, as we have proved, each G/N satisfies the law Mck(n). So G, as a
subcartesian product of G/N ’s, satisfies the same law.

It follows that every noF∗-group G in ∆2 satisfies a positive law. Then
by ([2], Theorem B), there exist s, t such that G ∈ NsBt, and hence G is
in ∆1, which ends the induction. So if G is an F

∗-group in the class C, then
G is in ∆1 and, as we have proved, satisfies a positive law.

By ([2], Theorem B) it follows that every group G ∈ C either is in NcBk

for some c, k or is an F∗-group.
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