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FORCING FOR hL AND hd

BY

ANDRZEJ ROSŁANOWSKI (Omaha, NE, and Wrocław) and

SAHARON SHELAH (Jerusalem and New Brunswick, NJ)

Abstract. The present paper addresses the problem of attainment of the supremums
in various equivalent definitions of the hereditary density hd and hereditary Lindelöf
degree hL of Boolean algebras. We partially answer two problems of J. Donald Monk [13,
Problems 50, 54], showing consistency of different attainment behaviour and proving that
(for the variants considered) this is the best result we can expect.

0. Introduction. We deal with the attainment problem in various defi-
nitions of two cardinal functions on Boolean algebras: the hereditary density
hd and the hereditary Lindelöf degree hL. These two cardinal functions are
closely related, as is transparent when we pick the right variants of (equiv-
alent) definitions. Also they are both somewhat related to the spread s of
Boolean algebras. So, for a Boolean algebra B, we define

s(B) = sup{κ : there is an ideal-independent sequence of length κ},

hd(B) = sup{κ : there is a left-separated sequence of length κ},

hL(B) = sup{κ : there is a right-separated sequence of length κ}.

Let us recall that a sequence 〈aξ : ξ < κ〉 of elements of a Boolean algebra is:

• ideal-independent if

aξ �
∨

ζ∈w

aζ for each ξ < κ and a finite set w ⊆ κ \ {ξ},

• left-separated if
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aξ �
∨

ζ∈w

aζ for each ξ < κ and a finite set w ⊆ κ \ (ξ + 1),

• right-separated if

aξ �
∨

ζ∈w

aζ for each ξ < κ and a finite set w ⊆ ξ.

The above definitions of the three cardinal functions are of special use
(see e.g. [15, §1]). However, these definitions do not explain the names of the
functions, nor are they good enough justifications for the interest in them.
But all three functions originate in the cardinal functions of the topological
space Ult(B) (of ultrafilters on B). And thus, for a Boolean algebra B, we
may define (or prove that the following equalities hold true):

s(B) = sup{|X| : X ⊆ Ult(B) is discrete in the relative topology},

hd(B) = sup{d(X) : X ⊆ Ult(B)}, where

d(X) = min{|Y | : Y ⊆ X is dense in X},

hd(B) = sup{L(X) : X ⊆ Ult(B)}, where

L(X) = min{κ : every open cover of X has a subcover of size ≤ κ}.

The respective pairs of cardinal numbers are defined using sup, so even if we
know that they are equal we still may expect different attainment properties:
one of the families of cardinals may have the largest member while the other
not. Also we may ask if the sup has to be attained. Situation may seem even
more complicated if one notices that there are more than just two equivalent
definitions of the cardinal functions s, hd, hL: Monk [13] lists six equivalent
definitions for spread (see [13, Theorem 13.1]), nine definitions for hd, and
nine for hL (see [13, Theorems 16.1, 15.1]). Fortunately, there are a number
of dependencies here.

First, all of the equivalents of spread have the same attainment proper-
ties. Moreover, the spread is always attained for singular strong limit cardi-
nals and for singular cardinals of countable cofinality (for these and related
results see Hajnal and Juhász [3]–[5], Juhász [8], [9], Roitman [14], Kunen
and Roitman [11], Juhász and Shelah [10]). Then Shelah [20] proved that
2cf(s(B)) < s(B) implies that the spread is attained (see 1.3 here). Finally, it
is shown in Shelah [18, §4] that, e.g., if µ is a singular strong limit cardinal
such that µ < cf(λ) < λ ≤ 2µ, then there is a Boolean algebra B such that
|B| = s(B) = λ and the spread is not attained. Thus, to some extent, the
problem of attainment for spread is settled.

Many of the results mentioned above can be carried over to (some) vari-
ants of hd and hL. However, the difference between these two cases and the
case of the spread is that the various equivalent definitions of the relevant
cardinal functions might have different attainment properties.
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Let us introduce some of the equivalents of hL, hd. They will be called
hL(n), hd(n), with the integer n referring to the cardinal κn as used in the

proofs of [13, 15.1 and 16.1], respectively. Also, we will have hd+(n) and hL
+
(n)

to have proper language to deal with the attainment questions.

Let us start with the hereditary Lindelöf degree hL. First, for a topolog-
ical space X we define the Lindelöf degree L(X) of the space X as

L(X) = min{λ : every open cover of X has a subcover of size ≤ λ}.

Definition 0.1. Let B be an infinite Boolean algebra. For an ideal I in
a Boolean algebra B we let

cof(I) = min{|A| : A ⊆ I and (∀b ∈ I)(∃a ∈ A)(b ≤ a)}.

Now we define

hL
(+)
(0) (B) = sup{L(X)

(+) : X is a subspace of Ult(B)},

hL
(+)
(1) (B) = sup{cof(I)

(+) : I is an ideal of B},

hL
(+)
(7) (B) = sup{κ

(+) : there is a right-separated sequence

〈aξ : ξ < κ〉 in B}.

The superscript “(+)” in the above definitions means that each of the for-
mulas has two versions: one with “+” and one without it.

The cardinals mentioned in 0.1 are among those listed in [13, Theo-
rem 15.1], and so hL(0)(B) = hL(1)(B) = hL(8)(B). The attainment prop-
erties can be described using the versions with “+”: hL+(i)(B) = hL(i)(B)

means that the supremum is not attained; hL+(i)(B) = hL
+
(j)(B) means that

the two definitions of hL have the same attainment behaviour for B. It is
not difficult to note that

hL+(7)(B) = hL(7)(B) ⇒ hL
+
(1)(B) = hL(1)(B)

and

hL(0)(B) = hL
+
(0)(B) is a regular cardinal ⇒ hL

+
(7)(B) = hL(7)(B)

(and the attainment of hL in senses not listed in 0.1 can be reduced to those
three; see [13, pp. 190, 191] for details). Also, if hL(B) is a strong limit car-
dinal or if it has countable cofinality, then hL(7)(B) < hL

+
(7)(B) (see Juhász

[9, 4.2, 4.3]).

In 1.4 we will show that if hL(B) is a singular cardinal such that 2cf(hL(B))

< hL(B), then hL+(0)(B) = hL
+
(1)(B) = hL

+
(7)(B) = (hL(B))

+. Thus, e.g., un-
der GCH, the sups in all equivalent definitions of hL are attained at singular
cardinals. Next, in Section 3, we use forcing to show that, consistently, there
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is a Boolean algebra B such that

hL(7)(B) < hL
+
(7)(B) and hL

+
(1)(B) = hL(1)(B)

(see 3.7). This still leaves some aspects of [13, Problem 50] open: are there
any implications between attainment in the hL(0) and hL(1) senses? Between
the hL(0) and hL(7) senses?

We also carry out the parallel work for the hereditary density. Let us
introduce the relevant definitions. The density d(X) of a topological space
X is defined as the minimal size of a dense subset of X. The topological
density d(B) of a Boolean algebra B is the density of the space Ult(B) of
ultrafilters on B. The algebraic density (sometimes also called the π-weight)
of a Boolean algebra B is

π(B) = min{|A| : A ⊆ B \ {0} and (∀b ∈ B \ {0})(∃a ∈ A)(a ≤ b)}.

Definition 0.2. For an infinite Boolean algebra B we let

hd
(+)
(0) (B) = sup{d(X)

(+) : X is a subspace of Ult(B)},

hd
(+)
(5) (B) = sup{κ

(+) : there is a left-separated sequence of length κ},

hd
(+)
(7) (B) = sup{π(B

∗)(+) : B∗ is a homomorphic image of B},

hd
(+)
(8) (B) = sup{d(B

∗)(+) : B∗ is a homomorphic image of B}.

(Again, the superscripts “(+)” mean that we have two variants for each
cardinal: with and without “+”.)

As before, the cardinals mentioned in 0.2 correspond to those listed in
[13, Theorem 16.1], and the variants with “+” reflect the attainment prop-
erties. The known dependencies here are

hd+(5)(B) = hd(5)(B) ⇒ hd
+
(7)(B) = hd(7)(B)

⇒ hd+(0)(B) = hd(0)(B) ⇒ hd
+
(8)(B) = hd(8)(B)

and

hd(0)(B) = hd
+
(0)(B) is a regular cardinal ⇒ hd(5) = hd

+
(5)(B)

(and Monk [13, Problem 54] asked for a complete description of dependen-
cies). As for hL, if hd(B) is a strong limit cardinal or if it has countable
cofinality, then hd(5)(B) < hd

+
(5)(B) (see Juhász [9, 4.2, 4.3]).

In 1.5 we note that if hd(B) is a singular cardinal such that 2cf(hd(B)) <
hd(B), then hd+(8)(B) = hd

+
(7)(B) = hd

+
(5)(B) = hd

+
(0)(B) = (hd(B))

+. Con-
sequently, GCH implies that the sups in all equivalent definitions of hd are
attained at singular cardinals. Then, in Section 4, we show that, consistently,
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there is a Boolean algebra B such that

hd(5)(B) < hd
+
(5)(B) and hd

+
(7)(B) = hd(7)(B)

(see 4.5). This still leaves several aspects of [13, Problem 54] open.
Finally, in the last section of the paper we show that (if we start with the

right cardinals µ, λ, cf(λ) < λ), adding a µ-Cohen real produces a Boolean
algebra B such that hL+(7)(B) = hd

+
(5)(B) = s

+(B) = λ (put 5.4, 5.6 to-
gether). This result is of interest as it shows how easily we may have algebras
in which the three cardinal functions do not attain their supremums. (But
of course there is the semi-ZFC result of [18, Theorem 4.2].)

Notation. Our notation is standard and compatible with that of clas-
sical textbooks on set theory (like Jech [7]) and Boolean algebras (like Monk
[12], [13]). However in forcing considerations we keep the older tradition that

the stronger condition is the greater one.

Let us list some of our notation and conventions.

1. A name for an object in a forcing extension is denoted with a dot
above (like Ẋ) with one exception: the canonical name for a generic filter
in a forcing notion P will be ΓP. For a P-name Ẋ and a P-generic filter G
over V, the interpretation of the name Ẋ by G is denoted by ẊG.
2. i, j, α, β, γ, δ, . . . will denote ordinals and κ, µ, λ, θ will stand for

(always infinite) cardinals.
3. For a set X and a cardinal λ, [X]<λ stands for the family of all subsets

of X of size less than λ. If X is a set of ordinals then its order type is denoted
by otp(X).
4. Sequences of ordinals will be typically called σ, ̺, η, ν; the length of a

sequence ̺ is lh(̺); ν ⊳ η means that the sequence ν in an initial segment
of η. The set of all sequences of length µ with values in κ will be denoted
by µκ. The lexicographic order on sequences of ordinals will be called <lex.
5. In Boolean algebras we use ∨ (and

∨

), ∧ (and
∧

) and − for the
Boolean operations. If B is a Boolean algebra and x ∈ B then x0 = x,
x1 = −x. The Stone space of the algebra B (the space of ultrafilters) is
called Ult(B). When working in the Stone space, we identify the algebra B
with the field of clopen subsets of Ult(B).
6. For a subset Y of an algebra B, the subalgebra of B generated by Y

is denoted by 〈Y 〉B and the ideal generated by Y is called idB(Y ).

Acknowledgements. We would like to thank the referee for valuable
comments and suggestions.

1. Golden Oldies: the use of [20]. In this section we recall how [20]
applies to the attainment problems. The proofs of 1.2 and 1.3 were presented
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in [20], but we recall them here, as we have an impression that those beautiful
results went somehow unnoticed. Also, as the results of Sections 3 and 4
complement the consequences of [20, Lemma 5.1] presented here, it may be
convenient for the reader to have all the proofs presented as well.

Hypothesis 1.1. Let µ, λ be cardinals, and χ = 〈χi : i < cf(λ)〉 be an
increasing sequence of regular cardinals such that

cf(λ) < µ = (2cf(λ))+ < λ = sup
i<cf(λ)

χi and µ < χ0.

Theorem 1.2 (see [20, Lemma 5.1]). Let X be a topological space with
a basis B consisting of clopen sets. Suppose that Φ is a function assigning
cardinal numbers to subsets of X such that Φ(X) ≥ λ and :

(i) Φ(A) ≤ Φ(A ∪B) ≤ Φ(A) + Φ(B) + ℵ0 for A,B ⊆ X,
(ii) for each closed set Y ⊆ X such that Φ(Y ) ≥ λ and for i < cf(λ),

there are 〈uα : α < µ〉 ⊆ B and 〈yα : α < µ〉 ⊆ Y such that :

(a) yα ∈ uα ∩ Y ,
(b) (∀v ∈ B)(yα ∈ v ⇒ Φ(v ∩ Y ) ≥ χi),
(c) (∀g : µ→ 2cf(λ))(∃α, β < µ)(g(α) = g(β) & yα 6∈ uβ),

(iii) if 〈Aα : α < µ〉 is a sequence of subsets of X such that Φ(Aα) ≤ χi
(for α < µ) then Φ(

⋃

α<µAα) ≤ χi.

Then there is a sequence 〈vi : i < cf(λ)〉 ⊆ B such that

(∀i < cf(λ))
(

Φ
(

vi \
⋃

j 6=i

vj

)

≥ χi
)

.

Proof. First, by induction on i < cf(λ), we choose families Ki of clopen
subsets of X, and sets Di ⊆ X such that |Ki| = |Di| = µ. So suppose that
Kj , Dj have been defined for j < i. For each U ∈ [

⋃

j<iKj ]
<cf(λ) such that

Φ(X \
⋃

U) ≥ λ pick 〈yUα : α < µ〉 ⊆ X \ U and 〈u
U
α : α < µ〉 ⊆ B as

guaranteed by (ii) (for i and Y = X \
⋃

U). Let Di consist of all y
U
α (for U

as above and α < µ); note that |Di| = µ. Let Ki be a family of clopen sets
such that |Ki| = µ and for each U as above:

• uUα ∈ Ki for all α < µ,
• if yUα ∈ u

U
α \ u

U
β , α, β < µ, then there is u ∈ Ki ∩B such that y

U
α ∈ u ⊆

uUα \ u
U
β ,

• if u ∈ Ki then X \ u ∈ Ki.

Let K =
⋃

i<cf(λ)Ki (clearly |K| = µ) and let Zi = {x ∈ X : if {vξ :

ξ < cf(λ)} ⊆ K and x ∈
⋂

ξ<cf(λ) vξ then Φ(
⋂

ξ<cf(λ) vξ) ≥ χi}.

Claim 1.2.1. If Y ⊆ X is a closed set such that Φ(Y ) ≥ χi, then
Zi ∩ Y 6= ∅.
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Proof. Suppose that for each x ∈ Y we have a sequence 〈vxξ :
ξ < cf(λ)〉 ⊆ K such that x ∈

⋂

ξ<cf(λ) v
x
ξ and Φ(

⋂

ξ<cf(λ) v
x
ξ ) < χi. There

are at most µ possibilities for such sequences, so we get a set W ∈ [Y ]≤µ

such that

Y ⊆
⋃

x∈W

⋂

ξ<cf(λ)

vxξ .

Use (iii) to conclude that Φ(
⋃

x∈W

⋂

ξ<cf(λ) v
x
ξ ) ≤ χi, and next (i) to get a

contradiction with Φ(Y ) ≥ λ.

For each i < cf(λ) fix zi ∈ Zi.

Now, by induction on i < cf(λ), choose vi ∈ Ki and xi ∈ Zi such that:

(α) xi ∈ vi \
⋃

j<i vj , vi ∈ B,

(β) xj 6∈ vi for j < i,

(γ) zε 6∈ vi for i < ε < cf(λ).

Suppose that xj , vj have been defined for j < i. Let U = {vj : j < i} and
Y = X \

⋃

U (so it is a closed subset of X). By (γ), for ε > i we have zε ∈ Y
and thus Φ(Y ) ≥ χε (just look at the definition of Zε; rememberX\vj ∈ K),
and hence Φ(Y ) ≥ λ. Consequently, we have sequences 〈yUα : α < µ〉 ⊆ Di
and 〈uUα : α < µ〉 ⊆ Ki as chosen before (so they are as in (ii)). Consider a
function g defined on µ such that

g(α) = uUα ∩ ({zε : ε < cf(λ)} ∪ {xj : j < i}).

So by (ii)(c) we find distinct α, β < µ such that g(α) = g(β) and yUα 6∈ u
U
β .

Then, by the definition ofKi, we find vi ∈ Ki∩B such that y
U
α ∈ vi ⊆ u

U
α\u

U
β .

It follows from (ii)(b) that Φ(vi ∩Y ) = Φ(vi \
⋃

j<i vj) ≥ χi. By Claim 1.2.1
we may pick xi ∈ Zi ∩ vi ∩ Y = Zi ∩ vi \

⋃

j<i vj . Since, by our choices, vi is

disjoint from {zε : ε < cf(λ)} ∪ {xj : j < i}, the inductive step is complete.

After the inductive construction is carried out, look at the sequence
〈vi : i < cf(λ)〉. Since xi ∈ Zi ∩ vi \

⋃

j 6=i vj we easily conclude that
Φ(vi \

⋃

j 6=i vj) ≥ χi.

Corollary 1.3 (see [20, 3.3, 5.4]). If B is a Boolean algebra such that
s(B) = λ, then s+(B) = λ+.

Proof. For each i < cf(λ) we may pick a discrete set Ai ⊆ Ult(B) of
size χi. Let X =

⋃

i<cf(λ)Ai (and the topology of X is the one inherited

from Ult(B)) and let B = {b∩X : b ∈ B}. Finally let Φ(A) = |A| for A ⊆ X.
Note that X, B, Φ clearly satisfy clauses 1.2(i,iii). Suppose that the demand
in 1.2(ii) fails for i < cf(λ) and a closed set Y ⊆ X (so |Y | = λ). Let

Y ∗i = {y ∈ Y : (∀v ∈ B)(y ∈ v ⇒ |v ∩ Y | ≥ χi)}.
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Case 1: |Y ∗i | < µ. Then |Y \ Y
∗
i | = λ. For each y ∈ Y \ Y

∗
i pick v

y ∈ B
such that y ∈ vy and |vy ∩ Y | < χi. Consider the function

F : Y \ Y ∗i → P(Y \ Y
∗
i ) : y 7→ v

y ∩ Y \ Y ∗i .

By the Hajnal Free Set Theorem (see Hajnal [2]) there is an F -free set
S ⊆ Y \ Y ∗i of size λ. Then y 6∈ F (y

′) for distinct y, y′ ∈ S, and thus
vy ∩ S = {y} for y ∈ S. Consequently, S is discrete and s+(B) > λ.

Case 2: |Y ∗i | ≥ µ. For some j < cf(λ) we have |Y
∗
i ∩Aj | ≥ µ, so we may

choose distinct yα ∈ Y
∗
i ∩Aj for α < µ. The set {yα : α < µ} is discrete (as

so is Aj), so we may pick uα ∈ B such that (∀α, β < µ)(yα ∈ uβ ⇔ α = β).
Then 〈yα, uα : α < µ〉 is as required in 1.2(ii), contradicting our assumption
that this clause fails.

So we may assume that the assumptions of 1.2 are satisfied, and therefore
we may find 〈vi : i < cf(λ)〉 ⊆ B such that |vi \

⋃

j 6=i vj | ≥ χi for each

i < cf(λ). Then, for every i < cf(λ), there is ξ(i) < cf(λ) such that
∣

∣

∣
Aξ(i) ∩ vi \

⋃

j 6=i

vj

∣

∣

∣
≥ χi.

Let

A =
⋃

i<cf(λ)

(

Aξ(i) ∩ vi \
⋃

j 6=i

vj

)

.

Clearly |A| = λ and A is discrete.

Theorem 1.4. If B is a Boolean algebra satisfying hL(B) = λ then

hL+(0)(B) = hL
+
(1)(B) = hL

+
(7)(B) = λ

+.

Proof. If s+(B) > λ, that is, if B has an ideal independent sequence of
length λ, then clearly all sups in the equivalent definitions of hL are attained.
So we may assume

(⊛) s+(B) ≤ λ and thus, by 1.3, s+(B) < λ. We may also assume that
s+(B) < χ0.

Let X = Ult(B), B = B, and for Y ⊆ X let

Φ(Y ) = sup{κ : there is a right-separated sequence in Y of length κ}.

(Recall that in a topological space Y , a sequence 〈yξ : ξ < κ〉 is right-
separated whenever all initial segments of the sequence are open in the rel-
ative topology.) We are going to apply 1.2 to X, B, Φ, and for that we
need to check the assumptions there. Clauses (i) and (iii) are obvious; let us
verify 1.2(ii).
Let i < cf(λ) and let Y ⊆ Ult(B) be a closed set such that Φ(Y ) = λ.

Let 〈xξ : ξ < χ
+
i 〉 ⊆ Y be a right-separated sequence, and let bξ ∈ B be such
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that xξ ∈ bξ and xζ 6∈ bξ for ξ < ζ < χ
+
i . Let

Z = {ξ < χ+i : cf(ξ) = χi & (∃a ∈ B)(xξ ∈ a & Φ(a ∩ Y ) < χi)}.

Claim 1.4.1. Z is not stationary in χ+i .

Proof. Assume Z is stationary. For ξ ∈ Z pick aξ ∈ B such that xξ ∈ aξ
and Φ(aξ ∩ Y ) < χi. Note that then for some ζ(ξ) < ξ we have

(∀ε < ξ)(xε ∈ aξ ⇒ ε < ζ(ξ)).

By the Fodor lemma, for some ζ∗ the set Z∗ = {ξ ∈ Z : ζ(ξ) = ζ∗} is
stationary. Now look at the set Y ∗ = {xξ : ξ ∈ Z

∗ & ξ > ζ∗}: we have

(∀ξ ∈ Z∗ \ (ζ∗ + 1))((aξ ∩ bξ) ∩ Y
∗ = {xξ}).

Consequently, Y ∗ is a discrete set of size χ+i , contradicting (⊛).

Thus we may pick an increasing sequence 〈ξ(α) : α < µ〉 of ordinals
below χ+i such that cf(ξ(α)) = χi and ξ(α) 6∈ Z (for α < µ). Let yα = xξ(α)
and uα = bξ(α). Then 〈yα, uα : α < µ〉 is as required in 1.2(ii) (for Y, i).
Consequently we may apply 1.2 to choose a sequence 〈vi : i < cf(λ)〉 ⊆ B

such that
(∀i < cf(λ))

(

Φ
(

vi \
⋃

j 6=i

vj

)

≥ χi
)

.

For i < cf(λ) choose a right-separated sequence 〈yiξ : ξ < χi〉 ⊆
vi+1 \

⋃

j 6=i+1 vj . Let I consist of those b ∈ B such that for some finite
set W ⊆ cf(λ) and a sequence 〈ζ(i) : i ∈W 〉 ∈

∏

i∈W χi we have

(∀i < cf(λ))(∀ξ < χi)(y
i
ξ ∈ b⇒ i ∈W & ξ < ζ(i)).

Claim 1.4.2. I is an ideal in B and cof(I) = λ. Consequently , hL+(1)(B)

= λ+ and hence hL+(7)(B) = λ
+.

Proof. Plainly, I is an ideal in B. Suppose that A ⊆ I is of size less
than λ, and for b ∈ A let Wb ∈ [cf(λ)]

<ω, 〈ζb(i) : i ∈ Wb〉 ∈
∏

i∈Wb
χi

witness b ∈ I. Let i < cf(λ) be such that χi > |A| and let sup{ζb(i) :
(∃b ∈A)(i ∈Wb)}< ξ < χi. Take b ∈ B such that yiξ ∈ b and (∀ζ < χi)(ξ < ζ
⇒ yiζ 6∈ b). Then

yjε ∈ b ∩ vi+1 ⇒ j = i & ε ≤ ξ,

so vi+1 ∧ b ∈ I, but it is not included in any member of Z.

Let Y = {yiζ : i < cf(λ) & ζ < χi}.

Claim 1.4.3. L(Y ) = λ, and consequently hL+(0)(B) = λ
+.

Proof. For i < cf(λ) and ξ < χi, let Ui,ξ be an open subset of vi+1 such
that

(∀ζ < χi)(y
i
ζ ∈ Ui,ξ ⇔ ζ ≤ ξ).
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Put Ui = {Ui,ξ : ξ < χi}, U =
⋃

i<cf(λ) Ui. It should be clear that if U
′ ⊆ Ui

is of size less than χi then Y ∩
⋃

U ′ 6= Y ∩
⋃

Ui. Also y
i
ξ 6∈
⋃

Uj ⊆ vj
for i 6= j, so we may conclude that no subfamily of U of size less than λ
covers Y , showing the claim.

Theorem 1.5. If hd(B) = λ then hd+(8)(B) = λ
+ (and thus also hd+(0)(B)

= hd+(7)(B) = hd
+
(5)(B) = λ

+).

Proof. We may argue as in 1.4 and use 1.2 to get our conclusion. How-
ever, an alternative way is to use a result of Shapirovskĭı that for every
compact space X, hd(X) ≤ s(X)+ (see Shapirovskĭı [17] or Hodel [6, 7.17]).
Consequently, in our situation, hd(B) = s(B) and by 1.3 we conclude that
s+(B) = λ+. But this implies that there is a homomorphic image B∗ of
B with cellularity c(B∗) = λ (see [13, Theorem 3.25 and p. 175]). Clearly
d(B∗) ≥ c(B∗), so we get our conclusion.

2. Some combinatorics. Arguments based on the ∆-lemma are very
important in forcing considerations. The result quoted below is a variant of
the ∆-lemma and in various forms was presented, proved and developed in
[21, §6], [19, §6] and [23, §7].

Lemma 2.1 (see [19, 6.1]). Assume that :

(i) σ, θ are regular cardinals and κ is a cardinal ,
(ii) (∀α < σ)(|α|κ < σ),
(iii) D is a σ-complete filter on θ containing all co-bounded subsets of θ,
(iv) 〈βαε : ε < κ〉 is a sequence of ordinals (for α < θ),
(v) X ⊆ θ is such that X 6= ∅ mod D.

Then there are a sequence 〈β∗ε : ε < κ〉 and a set w ⊆ κ such that :

(a) (∀ε ∈ κ \ w)(σ ≤ cf(β∗ε ) ≤ θ),
(b) the set

B := {α ∈ X : if ε ∈ w then βαε = β
∗
ε ,

if ε ∈ κ \ w then sup{β∗ζ : ζ < κ, β
∗
ζ < β

∗
ε} < β

α
ε < β

∗
ε}

is not ∅ modulo the filter D,
(c) if β′ε < β

∗
ε (for ε ∈ κ \ w) then

{α ∈ B : (∀ε ∈ κ \ w)(β′ε < β
α
ε )} 6= ∅ mod D.

The above version of the ∆-lemma will have multiple use in our proofs in
the next two sections. In particilar, it will be applied to filters given by 2.2,
2.3 below.

Lemma 2.2. Suppose that B is a Boolean algebra generated by 〈xξ :
ξ < χ〉. Let I ⊆ B be an ideal with cof(I) = λ and let ℵ0 < µ < λ.
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Then there are a regular cardinal θ ∈ [µ, λ], a (<θ)-complete filter D on θ
and a sequence 〈aα : α < θ〉 ⊆ I such that :

(∗1) all co-bounded subsets of θ are in the filter D, and for every b ∈ I,

{α < θ : aα ≤ b} = ∅ mod D,

(∗2) for each α < θ, aα 6∈ idB({aβ : β < α}),

(∗3) every aα (for α < θ) is of the form

aα =
∧

l<n

x
t(α,l)
ξ(α,l) (where n < ω, ξ(α, l) < χ, t(α, l) < 2).

Proof. It is basically like [22, 2.2, 2.3], but for the reader’s convenience
we present the proof fully.

Claim 2.2.1. Assume µ0 < λ. Then there are a regular cardinal
θ ∈ [µ0, λ] and a set Y ∈ [I]

θ such that

(∀Z ∈ [I]<θ)(∃b ∈ Y )(∀a ∈ Z)(b 6≤ a).

Proof. Assume not. By induction on |Y | we show that then

(⊛) if Y ∈ [I]≤λ then there is Y ∗ ⊆ I such that |Y ∗| = µ0 and

(∀b ∈ Y )(∃a ∈ Y ∗)(b ≤ a).

If |Y | ≤ µ0, then there is nothing to do. Suppose now that Y ⊆ I and |Y | >
µ0 is a regular cardinal. Then, using the assumption that the claim fails, we
may find a set Z ⊆ I such that |Z| < |Y | and (∀b ∈ Y )(∃a ∈ Z)(b ≤ a).
Now apply the induction hypothesis to Z and get a set Z∗ ⊆ I of size µ0
such that (∀a ∈ Z)(∃c ∈ Z∗)(a ≤ c)—clearly the set Z∗ works for Y too.

So suppose now that Y ⊆ I and |Y | is a singular cardinal > µ0.
Let Y =

⋃

ξ<cf(|Y |) Yξ, where |Yξ| < |Y | (for ξ < cf(|Y |)). For each

ξ apply the inductive hypothesis to get Y ∗ξ ⊆ I such that |Y
∗
ξ | = µ0 and

(∀b ∈ Yξ)(∃a ∈ Y
∗
ξ )(b ≤ a). Put Y

+ =
⋃

ξ<cf(|Y |) Y
∗
ξ and note that |Y

+| ≤

cf(|Y |) · µ0 < |Y |. Again, apply the inductive hypothesis (⊛), this time
to Y +, to get the corresponding Y ∗ and note that it works for Y too.

To finish the proof of the claim note that the statement in (⊛) contradicts
the assumption that µ0 < λ = cof(I).

If a set Y ⊆ I is given by 2.1.1 for I, µ0, θ then we say that it is tem-
porarily (I, µ0, θ)-good .

Claim 2.2.2. Suppose that Y ⊆ I is temporarily (I, µ, θ)-good , κ < |Y |.
Assume Y =

⋃

ξ<κ Yξ. Then for some ξ < κ the set Yξ is temporarily
(I, µ, θ)-good.
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Proof. Suppose that no Yξ is temporarily (I, µ, θ)-good. For ξ < κ choose
Zξ ⊆ I such that |Zξ| < |Y | = θ and

(∀b ∈ Yξ)(∃a ∈ Zξ)(b ≤ a),

and put Z =
⋃

ξ<κ Zξ. Then Z contradicts Y being temporarily (I, µ, θ)-
good.

Now, let Y ⊆ I be a temporarily (I, µ, θ)-good set, θ = |Y |, and let
Y = {bα : α < θ} be an enumeration. Each bα can be represented as

bα =
∨

j<jα

∧

l<nα

x
t(α,j,l)
ξ(α,j,l).

By 2.2.2 we find n∗, j∗ and A ∈ [θ]θ such that (∀α ∈ A)(jα = j
∗ & nα = n

∗)
and the set Y ∗ = {bα : α ∈ A} is temporarily (I, µ, θ)-good. For j < j

∗ and

α ∈ A let bjα =
∧

l<n∗ x
t(α,j,l)
ξ(α,j,l) and Y

j = {bjα : α ∈ A}. We claim that for

some j < j∗ the set Y j is temporarily (I, µ, θ)-good. If not, then we find
Zj ⊆ I (for j < j

∗) such that |Zj | < θ and (∀α ∈ A)(∃a ∈ Zj)(b
j
α ≤ a).

Put
Z = {a0 ∨ . . . ∨ aj∗−1 : a0 ∈ Z0, . . . , aj∗−1 ∈ Zj∗−1}

and note that this set contradicts “Y ∗ is temporarily (I, µ, θ)-good”.
So let j0 < j

∗ be such that the set Y ∗∗ := {bj0α : α ∈ A} is temporarily
(I, µ, θ)-good and let Y ∗∗ = {aα : α < θ} be an enumeration.
For b ∈ I let Fb = {α < θ : aα 6≤ b} and let D0 be the (<θ)-complete

filter of subsets of θ generated by {Fb : b ∈ I}.
First note that if κ < θ and 〈bξ : ξ < κ〉 ⊆ I then (by the choice of Y

∗∗)
we may find α < θ such that (∀ξ < κ)(aα 6≤ bξ). Consequently,

⋂

ξ<κ Fbξ 6= ∅
and we may conclude that D0 is a proper filter on θ. Since α 6∈ Faα , we see
that D0 extends the filter of co-bounded subsets of θ.

Claim 2.2.3. The set A+ := {α < θ : aα ∈ idB({aβ : β < α})} does not
belong to the filter D0.

Proof. Assume toward contradiction that A+ ∈ D0. Thus we have a
sequence 〈bξ : ξ < κ〉 ⊆ I, κ < θ, such that

⋂

ξ<κ Fbξ ⊆ A
+. It follows

from the choice of Y ∗∗ that Y ∗∗ 6⊆ idB({bξ : ξ < κ}). So let α < θ be the
first such that aα 6∈ idB({bξ : ξ < κ}). This implies that aα ∈

⋂

ξ<κ Fbξ
⊆ A+, and thus aα ∈ idB({aβ : β < α}). By the minimality of α we have
idB({aβ : β < α}) ⊆ idB({bξ : ξ < κ}), and we get a contradiction.

Take the set A+ from 2.2.3 and let D = {X \ A+ : X ∈ D0} . Then the
filter D and 〈aα : α ∈ θ \ A

+〉 satisfy the demands (∗1)–(∗3) (after taking
the increasing enumeration of θ \A+). 2.2

Lemma 2.3 (see [22, 2.2, 2.3]). Suppose cf(λ) < λ, µ < λ. Assume that B
is a Boolean algebra generated by 〈xξ : ξ < χ〉 and I ⊆ B is an ideal such that
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π(B/I) = λ. Then there are a regular cardinal θ ∈ [µ, λ], a (<θ)-complete
filter D on θ and a sequence 〈aα : α < θ〉 ⊆ B \ I such that :

(⊗1) the filter D contains all co-bounded subsets of θ and for every b ∈
B \ I,

{α < θ : b ≤ aα mod I} = ∅ mod D,

(⊗2) if β < α < θ then aβ ∧ (−aα) 6∈ I,
(⊗3) every aα (for α < θ) is of the form

aα =
∧

l<n

x
t(α,l)
ξ(α,l) (where n < ω, ξ(α, l) < χ, t(α, l) < 2).

Proof. It is an easy modification of [22, 2.2, 2.3] (and the proof is fully
parallel to that of Lemma 2.2 here).

One of the ways of describing Boolean algebras is giving a dense set of
ultrafilters (equivalently: homomorphisms from the algebra into 2). This is
useful when we want to force a Boolean algebra by smaller approximations
(see the forcing notions used in [22], [16]).

Definition 2.4. For a set w and a family F ⊆ 2w we define

cl(F ) = {g ∈ 2w : (∀u ∈ [w]<ω)(∃f ∈ F )(f↾u = g↾u)}.

Let B(w,F ) be the Boolean algebra generated freely by {xα : α ∈ w} except
that if u0, u1 ∈ [w]

<ω and there is no f ∈ F such that f↾u0 ≡ 0, f↾u1 ≡ 1
then

∧

α∈u1

xα ∧
∧

α∈u0

(−xα) = 0.

Proposition 2.5 (see [22, 2.6]). Let F ⊆ 2w. Then:

(1) each f ∈ F extends (uniquely) to a homomorphism from B(w,F ) to
{0, 1} (i.e. it preserves the equalities from the definition of B(w,F )),
(2) if τ(y0, . . . , yl) is a Boolean term and α0, . . . , αl ∈ w are distinct

then

B(w,F ) |= τ(xα0 , . . . , xαl) 6= 0

if and only if (∃f ∈ F )({0, 1} |= τ(f(α0), . . . , f(αk)) = 1),

(3) if w ⊆ w∗, F ∗ ⊆ 2w
∗

and

(∀f ∈ F )(∃g ∈ F ∗)(f ⊆ g) and (∀g ∈ F ∗)(g↾w ∈ cl(F ))

then B(w,F ) is a subalgebra of B(w∗,F∗).

Remark 2.6. Let F ⊆ 2w. We will use the same notation for a member
f of F and the homomorphism from B(w,F ) determined by it. Hence, for a
Boolean term τ , a finite set v ⊆ w and f ∈ F , we may write f(τ(xα : α ∈ v))
etc.
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Proposition 2.7. Let B be a Boolean algebra.

(1) A sequence a = 〈aα : α < κ〉 of elements of B is:

• ideal-independent if and only if for each α < κ there is a homo-
morphism fα : B→ {0, 1} such that

fα(aα) = 1 and (∀β < κ)(α 6= β ⇒ fα(aβ) = 0);

• left-separated if and only if for each α < κ there is a homomorphism
fα : B→ {0, 1} such that

fα(aα) = 1 and (∀β < κ)(α < β ⇒ fα(aβ) = 0);

• right-separated if and only if for each α < κ there is a homomor-
phism fα : B→ {0, 1} such that

fα(aα) = 1 and (∀β < α)(fα(aβ) = 0).

(2) If the algebra B is generated by a sequence 〈xξ : ξ < χ〉, and there is
an ideal-independent (left-separated , right-separated , respectively) sequence
of elements of B of length κ, then there is such a sequence with terms of
the form

aα =
∧

k<kα

x
t(α,k)
ξ(α,k)

and where ξ(α, k) < χ, t(α, k) ∈ {0, 1} and ξ(α, k) 6= ξ(α, k′) whenever
k < k′ < kα.

3. Forcing for hL. In this section we show that consistently there is a
Boolean algebra B of size λ in which there is a strictly increasing λ-sequence
of ideals but every ideal in B is generated by less than λ elements. This
answers [12, Problem 43] (and thus part of [13, Problem 50]). The problem
if the relevant example can be constructed just from cardinal arithmetic
assumptions remains open.

Definition 3.1. (1) A good parameter is a tuple S = (µ, λ, χ) such that
µ, λ are cardinals satisfying

µ = µ<µ < cf(λ) < λ and (∀α < cf(λ))(∀ξ < µ)(αξ < cf(λ)),

and χ = 〈χi : i < cf(λ)〉 is a strictly increasing sequence of regular cardinals
such that cf(λ) < χi < λ, (∀i < cf(λ))(χ

<µ
i = χi) and λ = supi<cf(λ) χi.

(2) A good parameter S = (µ, λ, χ) is a convenient parameter if addi-
tionally cf(λ) = µ+.

Definition 3.2. Let S = (µ, λ, χ) be a convenient parameter and let
the set

XS := {(i, ξ) : i < cf(λ) & ξ < χi}
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be equipped with the lexicographic order ≺S (i.e., (i, ξ) ≺S (i
′, ξ′) if and

only if either i < i′, or i = i′ and ξ < ξ′).

(1) We define a forcing notion QS as follows.

A condition is a tuple p = 〈wp, up, 〈fpi,ξ : (i, ξ) ∈ u
p〉〉 such that:

(a) wp ∈ [cf(λ)]<µ, up ∈ [XS]
<µ,

(b) (∀i ∈ wp)((i, 0) ∈ up) and if (i, ξ) ∈ up then i ∈ wp,
(c) for (i, ξ) ∈ up, fpi,ξ : u

p → 2 is a function such that

(j, ζ) ∈ up & (j, ζ) ≺S (i, ξ) ⇒ f
p
i,ξ(j, ζ) = 0,

and fpi,ξ(i, ξ) = 1;

the order is given by: p ≤ q if and only if:

(α) wp ⊆ wq, up ⊆ uq,
(β) (∀(i, ξ) ∈ up)(fpi,ξ ⊆ f

q
i,ξ),

(γ) for each (i, ξ) ∈ uq one of the following occurs:
either fqi,ξ↾u

p = 0up ,

or i ∈ wp and for some ζ, ε ≤ χi we have (i, ζ) ∈ u
p and fqi,ξ↾u

p =

(fpi,ζ)ε, where (f
p
i,ζ)ε : u

p → 2 is defined by

(fpi,ζ)ε(j, γ) =

{

0 if j = i, γ < ε,
fpi,ζ(j, γ) otherwise,

or i 6∈ wp and fqi,ξ↾u
p = (fpj,ζ)ε for some (j, ζ) ∈ u

p and ζ, ε ≤ χj ,

where (fpj,ζ)ε is defined as above.

(2) We say that conditions p, q ∈ QS are isomorphic if the linear orders

(up,≺S↾u
p) and (uq,≺S↾u

q)

are isomorphic, and if H : up → uq is the ≺S-isomorphism then:

(α) H(i, ξ) = (j, 0) if and only if ξ = 0,

(β) fpi,ξ = f
q

H(i,ξ) ◦H (for (i, ξ) ∈ u
p).

In this situation we may call H an isomorphism from p to q.

Remark 3.3. (1) Of course, ≺S is a well ordering of XS in the order
type λ.

(2) The forcing notion QS is a relative of the one used in [16, §7].
(3) There are µ isomorphism types of conditions in QS (remember

µ<µ = µ). A condition p ∈ QS is determined by its isomorphism type
and the set up.

Proposition 3.4. Let S = (µ, λ, χ) be a convenient parameter. Then
QS is a (<µ)-complete µ+-cc forcing notion.
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Proof. First we should check that QS is really a partial order and for
this we have to verify the transitivity of ≤. So suppose that p ≤ q and q ≤ r
and let us justify that p ≤ r. The only perhaps unclear demand is clause
3.2(1)(γ). Assume that (i, ξ) ∈ ur and fri,ξ↾u

p 6= 0up and consider two cases.

Case 1: i ∈ wp. Then i ∈ wq and, by the definition of ≤ (clause (γ)),
we may pick ζ ≤ ε ≤ χi such that (i, ζ) ∈ u

q and fri,ξ↾u
q = (fqi,ζ)ε. Again

by clause (γ), for some ζ ′, ε′ we have (i, ζ ′) ∈ up and fqi,ζ↾u
p = (fpi,ζ′)ε′ .

Now look at the definition of the operation (·)ε—it should be clear that
fri,ξ↾u

p = (fpi,ζ′)ε′′ for some ε
′′.

Case 2: i 6∈ wp. If i ∈ wq then for some ζ, ε we have fri,ξ↾u
q = (fqi,ζ)ε

and fqi,ζ↾u
p = (fpj,ζ′)ε′ for some j, ζ

′, ε′. Now, since i 6∈ wp we may write

fri,ξ↾u
p = (fqi,ζ)ε↾u

p = (fpj,ζ′)ε′ and we are done. Suppose now that i 6∈ w
q.

Then fri,ξ↾u
q = (fqj,ζ)ε (for some j, ζ, ε) and we ask if j ∈ w

p. If so, then

for some ζ ′, ε′ we have fqj,ζ↾u
p = (fpj,ζ′)ε′ and hence f

r
i,ξ↾u

p = (fpj,ζ′)ε′′ (for
some ε′′). If not (i.e., if j 6∈ wp) then as before we easily conclude that
fri,ξ↾u

p = (fqj,ζ)ε↾u
p = fqj,ζ↾u

p = (fpj′,ζ′)ε′ (for some j
′, ζ ′, ε′).

Thus QS is a forcing notion. To check that it is (<µ)-complete suppose
that γ < µ and 〈pα : α < γ〉 ⊆ QS is an increasing sequence of conditions.
Put wp =

⋃

α<γ w
pα , up =

⋃

α<γ u
pα and for (i, ξ) ∈ up let

fpi,ξ =
⋃

{fpαi,ξ : (i, ξ) ∈ u
pα , α < γ}.

Plainly, 〈wp, up, 〈fpi,ξ : (i, ξ) ∈ u
p〉〉 ∈ QS is an upper bound for 〈pα : α < γ〉.

Now assume thatA ⊆ QS is of size µ+. Since µ<µ = µ and cf(λ) = µ+ we
may use the ∆-lemma and “standard cleaning” and find conditions p, q ∈ A
such that:

(i) p, q are isomorphic (and let H : up → uq be the isomorphism),

(ii) H↾(up ∩ uq) is the identity on up ∩ uq,

(iii) sup(wp ∩ wq) < min(wp \ wq) ≤ sup(wp \ wq) < min(wq \ wp).

Now we are going to define an upper bound r for p, q. To this end we put
wr = wp ∪ wq, ur = up ∪ uq and for (i, ξ) ∈ ur we define fri,ξ : u

r → 2 as
follows:

• if (i, ξ) ∈ up, i ∈ wp ∩ wq then fri,ξ = f
p
i,ξ ∪ (f

q

H(i,ξ))ξ,

• if (i, ξ) ∈ uq, i ∈ wp ∩ wq then fri,ξ = (f
p

H−1(i,ξ))ξ ∪ f
q
i,ξ,

• if (i, ξ) ∈ up, i ∈ wp \ wq then fri,ξ = f
p
i,ξ ∪ f

q

H(i,ξ),

• if (i, ξ) ∈ uq, i ∈ wq \ wp then fri,ξ = 0up ∪ f
q
i,ξ.

It should be clear that in all cases the functions fri,ξ are well defined and
that they satisfy the demand 3.2(1)(c). Hence r=〈wr, ur, 〈fri,ξ : (i, ξ)⊂nu

r〉〉
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∈ QS and one easily checks that it is a condition stronger than both p and q.
So we may conclude that QS satisfies the µ+-chain condition.

For a condition p ∈ QS let F p = {0up}∪{(f
p
i,ξ)ζ : ξ, ζ ≤ χi, (i, ξ) ∈ u

p},

where (fpi,ξ)ζ : u
p → 2 is defined as in 3.2(1)(γ):

(fpi,ξ)ζ(j, γ) =

{

0 if j = i, γ < ζ,
fpi,ξ(j, γ) otherwise.

Further, let Bp be the Boolean algebra B(up,Fp) (as defined in 2.4). Note

that p ≤ q implies that Bp is a subalgebra of Bq (remember 2.5). Let Ḃ0S be
a QS-name such that QS “ Ḃ0S =

⋃

{Bp : p ∈ ΓQS} ” and for (i, ξ) ∈ XS let

ḟi,ξ be a QS-name such that

QS “ ḟi,ξ =
⋃

{fpi,ξ : (i, ξ) ∈ u
p, p ∈ ΓQS} ”.

Proposition 3.5. Assume that S = (µ, λ, χ) is a convenient parameter.
Then in VQS :

(1) ḟi,ξ : XS → 2 (for (i, ξ) ∈ XS) is such that ḟi,ξ(i, ξ) = 1 and

(∀(j, ζ) ∈ XS)((j, ζ) ≺S (i, ξ)⇒ ḟi,ξ(j, ζ) = 0).

(2) Ḃ0S is the Boolean algebra B(XS ,Ḟ ) (see 2.4), where

Ḟ = {(ḟi,ξ)ζ : (i, ξ) ∈ XS , ξ ≤ ζ ≤ χi}

and (ḟi,ξ)ζ : XS → 2 is such that

(ḟi,ξ)ζ(j, γ) =

{

0 if j = i, γ < ζ,
ḟi,ξ(j, γ) otherwise,

(for (j, γ) ∈ XS).

(3) The sequence 〈xi,ξ : (i, ξ) ∈ XS〉 is right-separated in Ḃ0S (when we
consider XS with the well ordering ≺S).

Proof. Should be clear (for the third clause remember that each ḟi,ξ
extends to a homomorphism from Ḃ0S to {0, 1}, see 2.5; remember 2.7).

Theorem 3.6. Assume S = (µ, λ, χ) is a convenient parameter. Then

QS “ there is no ideal I ⊆ Ḃ0S such that cof(I) = λ ”.

Proof. Let İ be a QS-name for an ideal in Ḃ0S , p ∈ QS , and suppose that
p QS cof(İ) = λ. Fix i < cf(λ) for a moment.

It follows from 2.2 that we may choose pi, θi, ni, Ḋi, ėi and ṫi such that:

(α) pi ∈ QS is a condition stronger than p, θi is a regular cardinal,
χ+i < θi < λ and ni ∈ ω,
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(β) Ḋi is a QS-name for a (<θi)-complete filter on θi extending the filter
of co-bounded subsets of θi,

(γ) QS “ ėi : θi × ni → XS and ṫi : θi × ni → 2 ”; for α < θi let ȧ
i
α be a

QS-name for an element of Ḃ0S such that

QS “ ȧ
i
α =
∧

l<ni

x
ṫi(α,l)
ėi(α,l)

”,

(δ) pi QS “ ȧ
i
α ∈ İ ” for each α < θi,

(ε) pi QS “ if b ∈ İ then {α < θi : ȧ
i
α ≤ b} = ∅ mod Ḋi and ȧ

i
α 6∈

id
Ḃ0S
({ȧiβ : β < α}) for each α < θi ”.

For each α < θi choose an antichain {p
i
α,ζ : ζ < µ} of conditions stronger

than pi, maximal above pi, and such that each p
i
α,ζ decides the values of

ėi(α, ·), ṫi(α, ·). Let

piα,ζ QS “ ėi(α, l) = e
ζ
i (α, l) & ṫi(α, l) = t

ζ
i (α, l) ” (for l < ni).

Plainly, we may demand that i ∈ wp
i
α,ζ and eζi (α, l) ∈ u

piα,ζ (for α < θi,
ζ < µ, l < ni).

Suppose now that G ⊆ QS is a generic filter (over V) such that pi ∈ G
and work in V[G] for a while. Since the filter ḊGi is (<θi)-complete we find
ordinals γ̇Gi < θi and ζ̇

G
i < µ such that the set

ẊGi := {β < θi : γ̇
G
i ≤ β and p

i

γ̇Gi ,ζ̇
G
i

, pi
β,ζ̇Gi
∈ G and w

pi
γ̇G
i
,ζ̇G
i = w

pi
β,ζ̇G
i ,

the conditions pi
γ̇Gi ,ζ̇

G
i

, pi
β,ζ̇Gi
are isomorphic, and

if H : u
pi
γ̇G
i
,ζ̇G
i → u

pi
β,ζ̇G
i is the isomorphism then

(∀l < ni)(H(e
ζ̇Gi
i (γ̇

G
i , l)) = e

ζ̇Gi
i (β, l)

& t
ζ̇Gi
i (γ̇

G
i , l) = t

ζ̇Gi
i (β, l))

and if j ≤ i, (j, ξ) ∈ XS then

(j, ξ) ∈ u
pi
γ̇G
i
,ζ̇G
i ⇔ (j, ξ) ∈ u

pi
β,ζ̇G
i }

is not ∅ modulo ḊGi (remember that in V[G] we still have cf(λ)
<µ = cf(λ)

and χ<µi =χi). Let δ̇
G
i =otp(u

pi
γ̇G
i
,ζ̇G
i ,≺S) and for α∈ Ẋ

G
i let 〈s

α,i
ε : ε < δ̇

G
i 〉

be the ≺S-increasing enumeration of u
pi
α,ζ̇G
i . Apply Lemma 2.1 to µ+, θi,

δ̇Gi , Ḋ
G
i and 〈s

α,i
ε : ε < δ̇

G
i 〉 here standing for σ, θ, κ, D and 〈β

α
ε : ε < κ〉

(respectively) there. (Remember ≺S is a well ordering of XS in the order
type λ.) So we find a sequence 〈s∗,iε : ε < δ̇

G
i 〉 ⊆ XS and a set v̇

G
i ⊆ δ̇

G
i such

that:
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(i) (∀ε ∈ δ̇Gi \ v̇
G
i )(µ

+ ≤ cf({s ∈ XS : s ≺S s
∗,i
ε },≺S) ≤ θi),

(ii) the set

ḂGi := {β ∈ Ẋ
G
i : if ε ∈ v̇

G
i then s

β,i
ε = s

∗,i
ε , and

if ε ∈ δ̇Gi \ v̇
G
i then

sup≺S{s
∗,i
ζ : ζ < δ̇

G
i , s

∗,i
ζ ≺S s

∗,i
ε } ≺S s

β,i
ε ≺S s

∗,i
ε }

is not ∅ modulo the filter ḊGi ,

(iii) if s′ε ≺S s
∗,i
ε for ε ∈ δ̇

G
i \ v̇

G
i then

{β ∈ ḂGi : (∀ε ∈ δ̇
G
i \ v̇

G
i )(s

′
ε ≺S s

β,i
ε )} 6= ∅ mod Ḋ

G
i .

As there was no special role assigned to γ̇Gi (other than determining the
order type of a condition) we may assume that γ̇Gi ∈ Ḃ

G
i .

Now we go back to V and we choose a condition qi ∈ QS , ordinals γi,
ζi, δi, a set vi and a sequence 〈s

∗,i
ε : ε < δi〉 ⊆ XS such that qi ≥ p

i
γi,ζi
and

qi forces that these objects have the properties listed in (i)–(iii) above. Note

that if some condition stronger than qi forces that β ∈ Ḃi, then so does any
condition stronger than both qi and p

i
β,ζi
. Then the conditions piβ,ζi and

piγi,ζi are isomorphic and the isomorphism is the identity on u
piβ,ζi ∩ up

i
γi,ζi ,

and it preserves eζii , t
ζi
i . Also then w

piβ,ζi = wp
i
γi,ζi and up

i
β,ζi ∩ ({j}×χj) =

up
i
γi,ζi ∩ ({j} × χj) for j ≤ i. In this situation we will use 〈s

β,i
ε : ε < δi〉 to

denote the ≺S-increasing enumeration of u
piβ,ζi (and so sβ,iε = s

∗,i
ε for ε ∈ vi,

and sup≺S{s
∗,i
ζ : ζ < δi, s

∗,i
ζ ≺S s

∗,i
ε } ≺S s

β,i
ε ≺S s

∗,i
ε for ε ∈ δ \ vi).

Claim 3.6.1. If j ≤ i < cf(λ), l < ni and e
ζi
i (γi, l) = (j, ε) (for some ε)

then tζii (γi, l) = 1.

Proof. Suppose that the claim fails for some j0 ≤ i, ε0 < χj0 and l0 < ni
(i.e., tζii (γi, l0) = 0 and e

ζi
i (γi, l0) = (j0, ε0)). Choose α with γi < α < θi

such that, letting r1 = p
i
γi,ζi
, r2 = p

i
α,ζi
, we have:

• the conditions r1, r2 are isomorphic and if H is the isomorphism from
r1 to r2 then H(e

ζi
i (γi, l)) = e

ζi
i (α, l) and t

ζi
i (γi, l) = t

ζi
i (α, l) (for l < ni),

• wr1 = wr2 and the isomorphism H is the identity on ur1 ∩ ur2 ,
• (j, ξ) ≺S H(j, ξ) for (j, ξ) ∈ u

r1 \ ur2 ,
• if j ≤ i, (j, ξ) ∈ XS then (j, ξ) ∈ u

r1 ⇔ (j, ξ) ∈ ur2 .

Why is the choice possible? Let G ⊆ QS be generic over V such that
qi ∈ G. It follows from clauses (ii), (iii) that we may find α ∈ Ḃ

G
i \ (γi + 1)

such that (∀ε ∈ δi \ vi)(s
γi,i
ε ≺S s

α,i
ε ). Then the two ordinals γi, α have the

required properties in V[G], and hence clearly in V too.
Next we let wr = wr1 = wr2 , ur = ur1 ∪ur2 and for (j, ξ) ∈ ur we define

frj,ξ : u
r → 2 as follows:
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• if (j, ξ) ∈ ur1 ∩ ur2 then frj,ξ = f
r1
j,ξ ∪ f

r2
j,ξ,

• if (j, ξ) ∈ ur1 \ ur2 then frj,ξ = f
r1
j,ξ ∪ f

r2
H(j,ξ),

• if (j, ξ) ∈ ur2 \ ur1 then frj,ξ = (f
r1
H−1(j,ξ))ξ ∪ f

r2
j,ξ.

Check that the functions frj,ξ are well defined and that

r = 〈wr, ur, 〈frj,ξ : (j, ξ) ∈ u
r〉〉 ∈ QS

is a condition stronger than r1, r2. Let

τ1 =
∧

l<ni

x
t
ζi
i (γi,l)

e
ζi
i (γi,l)

and τ2 =
∧

l<ni

x
t
ζi
i (α,l)

e
ζi
i (α,l)

.

Suppose that (j, ξ) ∈ ur and ξ ≤ ζ < χj . If j ≤ i then ({j} × χj) ∩
ur1 = ({j} × χj) ∩ u

r2 and therefore (frj,ξ)ζ(τ1) = (f
r
j,ξ)ζ(τ2). If j > i then

necessarily (frj,ξ)ζ(j0, ξ0) = 0, so (f
r
j,ξ)ζ(τ1) = (f

r
j,ξ)ζ(τ2) = 0. Consequently,

Br |= τ1 = τ2 and hence r  ȧiγi = ȧ
i
α, contradicting clause (ε) (and so

finishing the proof of the claim).

Take n < ω, δ < µ, v ⊆ δ and an unbounded set Y ⊆ cf(λ) such that for
i, j ∈ Y :

• ni = n, δi = δ, vi = v,
• the conditions piγi,ζi , p

j
γj ,ζj
are isomorphic, and the isomorphism maps

eζii (γi, ·) and t
ζi
i (γi, ·) onto e

ζj
j (γj , ·) and t

ζj
j (γj , ·), respectively.

Now apply Lemma 2.1 to find a sequence 〈s∗,ε : ε < δ〉 ⊆ XS∪{(cf(λ), 0)}
and a set v∗ ⊆ δ such that:

(a) (∀ε ∈ δ \ v∗)(cf({s ∈ XS : s ≺S s∗,ε},≺S) = µ
+),

(b) the set

C := {i ∈ Y : if ε ∈ v∗ then s∗,iε = s∗,ε, and

if ε ∈ δ \ v∗ then

sup≺S{s∗,ζ : ζ < δ, s∗,ζ ≺S s∗,ε} ≺S s
∗,i
ε ≺S s∗,ε}

is unbounded in cf(λ),
(c) if s′ε ≺S s∗,ε for ε ∈ δ \ v

∗, then the set

{i ∈ C : (∀ε ∈ δ \ v∗)(s′ε ≺S s
∗,i
ε )}

is unbounded in cf(λ).

[So σ, θ, κ,D and 〈〈βαε : ε < κ〉 : α < θ〉 in 2.1 correspond to cf(λ) = µ
+,

δ∗ and the filter of co-bounded subsets of cf(λ) and 〈〈s∗,iε : ε < δ〉 : i < cf(λ)〉
here.]
Next we use clauses (c), (a) and (iii), (i) to choose inductively a set

C+ ⊆ C of size cf(λ) and ordinals αi < θi (for i ∈ C
+) such that for every

i ∈ C+:
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(d) if ε ∈ δ \ v∗ then for all j ∈ C+ ∩ i and ζ < δ we have

s∗,jζ ≺S s∗,ε ⇒ s
∗,j
ζ ≺S s

∗,i
ε , s

αj ,j

ζ ≺S s∗,ε ⇒ s
αj ,j

ζ ≺S s
∗,i
ε ,

(e) some condition stronger than qi forces that αi ∈ Ḃi (see clause (ii)
earlier),
(f) if ε ∈ δ \ v then for all j ∈ C+ ∩ i and ζ < δ we have

s∗,jζ ≺S s
∗,i
ε ⇒ s

∗,j
ζ ≺S s

αi,i
ε , s

αj ,j

ζ ≺S s
∗,i
ε ⇒ s

αj ,j

ζ ≺S s
αi,i
ε ,

(g) if ε ∈ v∗, s∗,ε = (j, ζ) then j < min(C
+).

Note that then

i, j ∈ C+ & ζ, ε < δ & s
αj ,j

ζ = sαi,iε ⇒ ε = ζ ∈ v ∩ v∗.

So 〈〈sαi,iε : ε < δ〉 : i ∈ C+〉 is a ∆-system of sequences with heart 〈s∗,ε : ε ∈
v ∩ v∗〉. Let u∗ = {s∗,ε : ε ∈ v ∩ v

∗} and w∗ = {j < cf(λ) : (j, 0) ∈ u∗}.
Pick i∗ ∈ C+ such that |C+ ∩ i∗| = µ.

Claim 3.6.2.

qi∗ QS “ (∀α ∈ Ḃi∗)(∃j1, j2 ∈ C
+)(ȧi

∗

α ≤ ȧ
j1
αj1
∨ ȧj2αj2 & pj1 , pj2 ∈ ΓQS ) ”.

Proof. We are going to show that for every condition q ≥ qi∗ and an
ordinal α < θi∗ such that q  α ∈ Ḃi∗ , there are a condition r ≥ q and
ordinals j1, j2 ∈ C

+ such that

r  “ ȧi
∗

α ≤ ȧ
j1
αj1
∨ ȧj2αj2 & pj1 , pj2 ∈ ΓQS ”.

So suppose q ≥ qi∗ and q  α ∈ Ḃi∗ . We may assume that p
i∗

α,ζi∗
≤ q (see

the definition of Ẋi∗ , Ḃi∗). Choose j1 ∈ C
+ ∩ i∗ and j2 ∈ C

+ \ (i∗ + 1) such
that

uq ∩ u
p
j1
αj1

,ζj1 = uq ∩ u
p
j2
αj2

,ζj2 = u∗, sup(wq) < min(w
p
j2
αj2

,ζj2 \ w∗).

(Remember that {u
p
j
αj,ζj : j ∈ C+} forms a ∆-system with heart u∗ and

hence {w
p
j
αj,ζj : j ∈ C+} forms a ∆-system with heart w∗.)

To make the notation somewhat simpler let q0 = pi
∗

α,ζi∗
, q1 = pj1αj1 ,ζj1

and q2 = pj2αj2 ,ζj2
. Note that the conditions q0, q1, q2 are pairwise isomorphic,

and the isomorphisms are the identity on the u∗ (which is the common part

of any two uq
k

’s). Put

τ0 =
∧

l<n

x
t
ζi∗

i∗
(α,l)

e
ζi∗

i∗
(α,l)
, τk =

∧

l<n

x
t
ζjk
jk
(αjk ,l)

e
ζjk
jk
(αjk ,l)

(for k = 1, 2).

Thus τk is an element of the algebra Bqk . Clearly, for k, k
′ < 3, the isomor-

phism Hk,k
′

from qk to qk
′

carries τk to τk′ .



294 A. ROSŁANOWSKI AND S. SHELAH

Now we are going to define a condition r ∈ QS stronger than q, q1 and q2.
For this we put wr = wq ∪ wq

1

∪ wq
2

, ur = uq ∪ uq
1

∪ uq
2

and we define
functions fri,ξ : u

r → 2 considering several cases.

1. If (i, ξ) ∈ uq
1

and i ∈ w∗ then we put fri,ξ = f
q

H1,0(i,ξ) ∪ f
q1

i,ξ ∪ f
q2

H1,2(i,ξ)

(note that this includes the case (i, ξ) ∈ u∗).

2. If (i, ξ) ∈ uq
1

, i 6∈ w∗ then we put fri,ξ = 0uq ∪ f
q1

i,ξ ∪ 0uq2 .

3. If (i, ξ) ∈ uq \ u∗ then we look at fqi,ξ↾u
q0 . If it is 0

uq
0 then we let

fri,ξ = f
q
i,ξ ∪ 0uq1 ∪ 0uq2 . Otherwise we find (j, ζ) ∈ u

q0 and ζ ≤ ε ≤ χj such

that fqi,ξ↾u
q0 = (fq

0

j,ζ)ε and if i ∈ w
q0 then i = j, and we define:

(α) if j ∈ w∗, j < i ≤ sup(w∗) then

fri,ξ = f
q
i,ξ ∪ (f

q1

H0,1(j,ζ))χj ∪ (f
q2

H0,2(j,ζ))χj ,

(β) if i = j ∈ w∗ then fri,ξ = f
q
i,ξ ∪ (f

q1

H0,1(j,ζ))ε∗ ∪ (f
q2

H0,2(j,ζ))ε∗ , where

ε∗ = max{ε, ξ},

(γ) if j ∈ w∗, i < j then fri,ξ = f
q
i,ξ ∪ (f

q1

H0,1(j,ζ))ε ∪ (f
q2

H0,2(j,ζ))ε,

(δ) if either i > sup(w∗) or j 6∈ w∗ then we first choose j′ ∈ wq
2

and

ζ ′ ≤ ε′ ≤ χj′ such that (j
′, ζ ′) ∈ uq

2

and (fq
2

j′,ξ′)ε′(j
′′, ξ′′) = 0

whenever (j′′, ξ′′) ∈ uq
2

, j′′ ∈ w∗, and (fq
2

j′,ξ′)ε′(τ2) = 1 if possible

(under our conditions); next we let fri,ξ = f
q
i,ξ ∪ 0uq1 ∪ (f

q2

j′,ζ′)ε′ .

4. If (i, ξ) ∈ uq
2

\ u∗, i ∈ w∗ then we let

fri,ξ = (f
q

H2,0(i,ξ))ξ ∪ (f
q1

H2,1(i,ξ))ξ ∪ f
q2

i,ξ.

5. If (i, ξ) ∈ uq
2

, i 6∈ w∗ then we put fri,ξ = 0uq ∪ 0uq1 ∪ f
q2

i,ξ.

It should be routine to check that in all cases the function fri,ξ is well
defined and that r = 〈wr, ur, 〈fri,ξ : (i, ξ) ∈ u

r〉〉 ∈ QS is a condition
stronger than q, q1, q2 (and thus stronger than pj1 , pj2). [Remember that

w∗ ⊆ min(C+), so for j ∈ w∗ we have (j, ξ) ∈ uq
0

⇔ (j, ξ) ∈ u
pi
∗

αi∗ ,ζi∗ and
hence, when checking clause 3.2(1)(c) in Case 1, we may use clauses (d),

(f) of the choice of the set C+. They imply that if (i, ξ) ∈ uq
1

, i ∈ w∗ then
(i, ξ) �S H

1,0(i, ξ) �S H
1,2(i, ξ). In Case 3(δ) with j 6∈ w∗, use the fact that

min(wq
0

\ w∗) ≥ sup(w∗) (it follows from our choices). Similarly in Case 2

remember min(wq
1

\ w∗) ≥ sup(w∗).]
We claim that Br |= τ0 ≤ τ1 ∨ τ2 and for this we have to show that there

is no function f ∈ F r with f(τ0) = 1 and f(τ1) = f(τ2) = 0 (see 2.5). So
suppose toward contradiction that f ∈ F r is such a function. Note that f
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cannot be 0ur as then the values given to all the terms would be the same
(remember they are isomorphic). So for some (i, ξ) ∈ ur and ξ ≤ ε ≤ χi
we have f = (fri,ξ)ε. Let us look at all the cases appearing in the definition
of the functions frj,ζ ’s (we keep labeling as there so we do not repeat the
descriptions of the cases).

Case 1: Clearly fri,ξ(τ0) = f
r
i,ξ(τ1). It follows from the demands (d),

(f) of the choice of C+ that if i ∈ w∗, (i, ζ) ∈ uq
0

, (i′, ζ ′) = H0,1(i, ζ),
then i′ = i and ζ ′ ≤ ζ. Consequently, we may use 3.6.1 to conclude that
(fri,ξ)ε(τ0) ≤ (f

r
i,ξ)ε(τ1), which contradicts the choice of f .

Case 2: Plainly (fri,ξ)ε(τ0) = (f
r
i,ξ)ε(τ2).

Case 3(α): Note that fri,ξ(τ0) = f
r
i,ξ(τ1) and, as j < i ≤ sup(w

∗),

necessarily i 6∈ wq
0

∪ wq
1

. Hence clearly (fri,ξ)ε(τ0) = (f
r
i,ξ)ε(τ1).

Cases 3(β), (γ), 4: As in Cases 1, 3(α) we conclude (fri,ξ)ε(τ0) ≤
(fri,ξ)ε(τ1).

Case 3(δ): It follows from the choice of ζ ′, ε′, j′ there that fri,ξ(τ0) ≤

fri,ξ(τ2). If i 6∈ w
q0 then (as also i 6∈ wq2) we have f(τ0) = f

r
i,ξ(τ0) and

f(τ2) = f
r
i,ξ(τ2), so we are done. If i ∈ w

q0 then i = j and we easily finish
by the choice of ζ ′, ε′, j′.

Case 5: Clearly (fri,ξ)ε(τ0) = (f
r
i,ξ)ε(τ1), a contradiction.

Thus we may conclude that r  “ ȧi
∗

α ≤ ȧ
j1
αj1
∨ ȧj2αj2 ”, finishing the proof

of the claim.

Now we may easily finish the proof of the theorem: take a generic filter
G ⊆ QS over V such that qi∗ ∈ G and work in V[G]. Since the filter ḊGi∗ is
(<θi∗)-complete and cf(λ) < θi∗ , we find j1, j2 ∈ C

+ such that pj1 , pj2 ∈ G
and

{α ∈ ḂGi∗ : (ȧ
i∗

α )
G ≤ (ȧj1αj1 )

G ∨ (ȧj2αj2 )
G} 6= ∅ mod ḊGi∗

(remember ḂGi∗ 6= ∅ mod Ḋ
G
i∗ by (ii)). But then also (ȧ

j1
αj1
)G ∨ (ȧj2αj2 )

G ∈ İG,

so we get a contradiction to clause (ε). 3.6

Conclusion 3.7. It is consistent that there is a Boolean algebra B of
size λ such that there is a right-separated sequence of length λ in B (so
hL+(7)(B) = λ

+), but there is no ideal I ⊆ B with generating number λ (and

thus hL+(1)(B) = hL(1)(B) = λ).

Problem 3.8. Does there exist a Boolean algebra B as in 3.7 in semi-
ZFC? That is, can one construct such an algebra for λ from cardinal arith-
metic assumptions?
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4. Forcing for hd. Here we deal with a problem parallel to the one
from the previous section and related to the attainment question for hd.
We introduce a forcing notion PS complementary to QS and we use it to
show that, consistently, there is a Boolean algebra B of size λ in which
there is a strictly decreasing λ-sequence of ideals but every homomorphic
image of B has algebraic density less than λ. This gives a partial answer
to [13, Problem 54]. Again, we do not know if an example like that can be
constructed from cardinal arithmetic assumptions.

Definition 4.1. Let S = (µ, λ, χ) be a good parameter (see 3.1) and let
XS ,≺S be as defined in 3.2.

(1) We define a forcing notion PS as follows.
A condition is a tuple p = 〈wp, up, 〈fpi,ξ : (i, ξ) ∈ u

p〉〉 such that:

(a) wp ∈ [cf(λ)]<µ, up ∈ [XS]
<µ,

(b) (∀i ∈ wp)((i, 0) ∈ up) and if (i, ξ) ∈ up then i ∈ wp,
(c) for (i, ξ) ∈ up, fpi,ξ : u

p → 2 is a function such that

(j, ζ) ∈ up & (i, ξ) ≺S (j, ζ) ⇒ f
p
i,ξ(j, ζ) = 0,

and fpi,ξ(i, ξ) = 1;

the order is given by: p ≤ q if and only if:

(α) wp ⊆ wq, up ⊆ uq,
(β) (∀(i, ξ) ∈ up)(fpi,ξ ⊆ f

q
i,ξ),

(γ) for each (i, ξ) ∈ uq one of the following occurs:
either fqi,ξ↾u

p = 0up ,

or i ∈ wp and for some ζ, ε < χi we have (i, ζ) ∈ u
p and fqi,ξ↾u

p =

(fpi,ζ)
ε, where (fpi,ζ)

ε : up → 2 is defined by

(fpi,ζ)
ε(j, γ) =

{

0 if j = i, ε ≤ γ < χi,
fpi,ζ(j, γ) otherwise,

or i 6∈ wp and either fqi,ξ↾u
p = (fpj,ζ)

ε (defined above) for some

(j, ζ) ∈ up, ε < χj or f
q
i,ξ↾u

p = (fpj,ζ)j′ for some (j, ζ) ∈ u
p and

j′ ≤ j, where (fpj,ζ)j′ : u
p → 2 is defined by

(fpj,ζ)j′(j
∗, γ∗) =

{

0 if j′ ≤ j∗,
fpj,ζ(j

∗, γ∗) otherwise.

(2) Conditions p, q ∈ PS are said to be isomorphic if the well orderings

(up,≺S↾u
p) and (uq,≺S↾u

q)

are isomorphic, and if H : up → uq is the ≺S-isomorphism then:

(α) H(i, ξ) = (j, 0) if and only if ξ = 0,
(β) fpi,ξ = f

q

H(i,ξ) ◦H (for (i, ξ) ∈ u
p).
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Proposition 4.2. Let S = (µ, λ, χ) be a good parameter. Then PS is a
(<µ)-complete µ+-cc forcing notion.

Proof. Plainly PS is a (<µ)-complete forcing notion (compare the proof
of 3.4). To verify the chain condition suppose that A ⊆ PS , |A| = µ+. Ap-
ply the ∆-lemma and “standard cleaning” to choose isomorphic conditions
p, q ∈ A such that if H : up → uq is the isomorphism from p to q then
H↾(up ∩ uq) is the identity on up ∩ uq. Put wr = wp ∪wq, ur = up ∪ uq and
for (i, ξ) ∈ ur define a function fri,ξ : u

r → 2 as follows:

• if (i, ξ) ∈ up, i ∈ wp ∩ wq then fri,ξ = f
p
i,ξ ∪ (f

q

H(i,ξ))
ξ+1,

• if (i, ξ) ∈ uq, i ∈ wp ∩ wq then fri,ξ = (f
p

H−1(i,ξ)
)ξ+1 ∪ fqi,ξ,

• if (i, ξ) ∈ up, i ∈ wp \ wq then fri,ξ = f
p
i,ξ ∪ (f

q

H(i,ξ))i,

• if (i, ξ) ∈ uq, i ∈ wq \ wp then fri,ξ = (f
p

H−1(i,ξ)
)i ∪ f

q
i,ξ.

It is routine to check that the functions fri,ξ are well defined and that they
satisfy the demand 4.1(1)(c). Hence r = 〈wr, ur, 〈fri,ξ : (i, ξ) ∈ u

r〉〉 ∈ PS
and one easily checks that it is an upper bound for both p and q.

For a condition p ∈ PS let

F p = {(fpi,ξ)
ε, (fpi,ξ)j : (i, ξ) ∈ u

p, ε < χi, j ≤ i},

where (fpi,ξ)
ε, (fpi,ξ)j : u

p → 2 are defined as in 4.1(1)(γ):

(fpi,ξ)
ε(i′, ζ ′) =

{

0 if i = i′, ε ≤ ζ ′,
fpi,ξ(i

′, ζ ′) otherwise,

(fpi,ξ)j(i
′, ζ ′) =

{

0 if j ≤ i′,
fpi,ξ(i

′, ζ ′) otherwise.

As in the previous section, Bp is the Boolean algebra B(up,Fp) (see 2.4) (note
that p ≤ q implies that Bp is a subalgebra of Bq). Let Ḃ1S be a PS-name such
that

PS “ Ḃ1S =
⋃

{Bp : p ∈ ΓPS} ”,

and for s ∈ XS let ḟs be a PS-name such that

PS “ ḟs =
⋃

{fps : s ∈ u
p, p ∈ ΓPS} ”.

Proposition 4.3. Assume that S = (µ, λ, χ) is a good parameter. Then
in VPS :

(1) For s ∈ XS , ḟs : XS → 2 is such that ḟs(s) = 1 and

(∀s′ ∈ XS)(s ≺S s
′ ⇒ ḟs(s

′) = 0).
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(2) Ḃ1S is the Boolean algebra B(XS ,Ḟ ) (see 2.4), where

Ḟ = {(ḟi,ξ)
ε, (ḟi,ξ)j : (i, ξ) ∈ XS , ε < χi, j ≤ i},

and (ḟi,ξ)
ε, (ḟi,ξ)j : XS → 2 are such that

(ḟi,ξ)
ε(i′, ζ ′) =

{

0 if i = i′, ε ≤ ζ ′,

ḟi,ξ(i
′, ζ ′) otherwise,

(ḟi,ξ)j(i
′, ζ ′) =

{

0 if j ≤ i′,

ḟi,ξ(i
′, ζ ′) otherwise.

(3) The sequence 〈xs : s ∈ XS〉 is left-separated in Ḃ1S (when we consider
XS with the well ordering ≺S).

Theorem 4.4. Assume S = (µ, λ, χ) is a good parameter. Then

PS “ there is no ideal I ⊆ Ḃ1S such that π(Ḃ
1
S/I) = λ ”.

Proof. Not surprisingly, the proof is similar to the one of 3.6. Let İ be a

PS-name for an ideal in Ḃ1S , p ∈ PS , and suppose that p PS “π(Ḃ
1
S/İ) = λ ”.

Fix i < cf(λ). Use 2.3 to choose pi, θi, ni, Ḋi, ėi and ṫi such that:

(α) pi ∈ PS is a condition stronger than p, θi is a regular cardinal,
χ+i < θi < λ and ni ∈ ω,

(β) Ḋi is a PS-name for a (<θi)-complete filter on θi extending the filter
of co-bounded subsets of θi,

(γ) PS “ ėi : θi × ni → XS and ṫi : θi × ni → 2 ”; for α < θi let ȧ
i
α be a

PS-name for an element of Ḃ1S such that

PS “ ȧ
i
α =
∧

l<ni

x
ṫi(α,l)
ėi(α,l)

”,

(δ) pi PS“ ȧ
i
α ∈ Ḃ1S \ İ ” for each α < θi,

(ε) pi PS“ if b ∈ Ḃ1S \ İ then {α < θi : b ≤ ȧ
i
α mod İ} = ∅ mod Ḋi and

(∀α < θi)(∀β < α)(ȧ
i
β ∧ (−ȧ

i
α) 6∈ İ) ”.

For each α < θi choose a maximal above pi antichain {p
i
α,ζ : ζ < µ} such

that each piα,ζ ≥ pi decides the values of ėi(α, ·), ṫi(α, ·). Let

piα,ζ PS “ ėi(α, l) = e
ζ
i (α, l) & ṫi(α, l) = t

ζ
i (α, l) ” (for l < ni),

and we may assume that (i, 0), eζi (α, l) ∈ u
piα,ζ for α < θi, l < ni and ζ < µ.

Take a generic filter G ⊆ PS such that pi ∈ G and work in V[G]. Choose
ordinals γ̇Gi < θi and ζ̇

G
i < µ such that the set
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ẊGi := {β < θi : γ̇
G
i ≤ β and p

i

γ̇Gi ,ζ̇
G
i

, pi
β,ζ̇Gi
∈ G and w

pi
γ̇G
i
,ζ̇G
i = w

pi
β,ζ̇G
i ,

the conditions pi
γ̇Gi ,ζ̇

G
i

, pi
β,ζ̇Gi
are isomorphic, and

if H : u
pi
γ̇G
i
,ζ̇G
i → u

pi
β,ζ̇G
i is the isomorphism then

(∀l < ni)(H(e
ζ̇Gi
i (γ̇

G
i , l)) = e

ζ̇Gi
i (β, l)

& t
ζ̇Gi
i (γ̇

G
i , l) = t

ζ̇Gi
i (β, l))

and if j ≤ i, (j, ξ) ∈ XS then

(j, ξ) ∈ u
pi
γ̇G
i
,ζ̇G
i ⇔ (j, ξ) ∈ u

pi
β,ζ̇G
i }

is not ∅ modulo ḊGi . Let δ̇
G
i = otp(u

pi
γ̇G
i
,ζ̇G
i ,≺S) and for α ∈ Ẋ

G
i let 〈s

α,i
ε :

ε < δ̇Gi 〉 be the ≺S-increasing enumeration of u
pi
α,ζ̇G
i . Apply Lemma 2.1 to

find a sequence 〈s∗,iε : ε < δ̇
G
i 〉 ⊆ XS and a set v̇

G
i ⊆ δ̇

G
i such that:

(i) (∀ε ∈ δ̇Gi \ v̇
G
i )(χ

+
i ≤ cf({s ∈ XS : s ≺S s

∗,i
ε },≺S) ≤ θi),

(ii) the set

ḂGi := {β ∈ Ẋ
G
i : if ε ∈ v̇

G
i then s

β,i
ε = s

∗,i
ε , and

if ε ∈ δ̇Gi \ v̇
G
i then

sup≺S{s
∗,i
ζ : ζ < δ̇

G
i , s

∗,i
ζ ≺S s

∗,i
ε } ≺S s

β,i
ε ≺S s

∗,i
ε }

is not ∅ modulo the filter ḊGi ,

(iii) if s′ε ≺S s
∗,i
ε for ε ∈ δ̇

G
i \ v̇

G
i then

{β ∈ ḂGi : (∀ε ∈ δ̇
G
i \ v̇

G
i )(s

′
ε ≺S s

β,i
ε )} 6= ∅ mod Ḋ

G
i .

We may assume that γ̇Gi ∈ Ḃ
G
i .

Now, in V, we choose a condition qi ∈ PS , ordinals γi, ζi, δi, a set vi and
a sequence 〈s∗,iε : ε < δi〉 ⊆ XS such that qi ≥ p

i
γi,ζi
, and qi forces that these

objects are as described above. If some condition stronger than qi forces
that α ∈ Ḃi, then we will use 〈s

α,i
ε : ε < δi〉 to denote the ≺S-increasing

enumeration of up
i
α,ζi .

Next, as in the proof of 3.6, we pick an unbounded set Y ⊆ cf(λ) and
n < ω, δ < µ, v ⊆ δ such that for i, j ∈ Y :

• ni = n, δi = δ, vi = v, and

• the conditions piγi,ζi , p
j
γj ,ζj
are isomorphic, and the isomorphism maps

eζii (γi, ·) and t
ζi
i (γi, ·) onto e

ζj
j (γj , ·) and t

ζj
j (γj , ·), respectively.

Now use Lemma 2.1 to find a sequence 〈s∗,ε : ε < δ〉 ⊆ XS ∪ {(cf(λ), 0)}
and a set v∗ ⊆ δ such that:
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(a) (∀ε ∈ δ \ v∗)(cf({s ∈ XS : s ≺S s∗,ε},≺S) = cf(λ)),
(b) the set

C := {i ∈ Y : if ε ∈ v∗ then s∗,iε = s∗,ε, and

if ε ∈ δ \ v∗ then

sup≺S{s∗,ζ : ζ < δ, s∗,ζ ≺S s∗,ε} ≺S s
∗,i
ε ≺S s∗,ε}

is unbounded in cf(λ),
(c) if s′ε ≺S s∗,ε for ε ∈ δ \ v

∗, then the set

{i ∈ C : (∀ε ∈ δ \ v∗)(s′ε ≺S s
∗,i
ε )}

is unbounded in cf(λ).

Next choose a set C+ ∈ [C]cf(λ) and ordinals αi < βi < θi (for i ∈ C
+)

such that for every i ∈ C+:

(d) if ε ∈ δ \ v∗ then for all j ∈ C+ ∩ i and ζ < δ we have

s∗,jζ ≺S s∗,ε ⇒ s
∗,j
ζ ≺S s

∗,i
ε ,

s
αj ,j

ζ ≺S s∗,ε ⇒ s
αj ,j

ζ ≺S s
∗,i
ε ,

s
βj ,j

ζ ≺S s∗,ε ⇒ s
βj ,j

ζ ≺S s
∗,i
ε ,

(e) some condition stronger than qi forces that αi, βi ∈ Ḃi,
(f) if ε ∈ δ \ v and x ∈ {αi, βi}, then for all j ∈ C

+ ∩ i and ζ < δ we
have

s∗,jζ ≺S s
∗,i
ε ⇒ s

∗,j
ζ ≺S s

x,i
ε , s

αj ,j

ζ ≺S s
∗,i
ε ⇒ s

αj ,j

ζ ≺S s
x,i
ε ,

s
βj ,j

ζ ≺S s
∗,i
ε ⇒ s

βj ,j

ζ ≺S s
x,i
ε , sαi,iζ ≺S s

∗,i
ε ⇒ s

αi,i
ζ ≺S s

βi,i
ε ,

(g) if ε ∈ v∗, s∗,ε = (j, ζ) then j < min(C+).

Then 〈〈sαi,iε , s
βi,i
ε : ε < δ〉 : i ∈ C+〉 forms a ∆-system of sequences

with heart 〈s∗,ε : ε ∈ v ∩ v
∗〉; but note that sαi,iε = sβi,iε for ε ∈ v. Let

u∗ = {s∗,ε : ε ∈ v ∩ v
∗} and w∗ = {j < cf(λ) : (j, 0) ∈ u∗}.

Claim 4.4.1. For each i0 ∈ C
+,

qi0 PS “ (∀α ∈ Ḃi0)(∃i
∗ ∈ C+)(ȧi

∗

αi∗
∧ (−ȧi

∗

βi∗
) ≤ ȧi0α & pi∗ ∈ ΓPS ) ”

(where Ḃi0 was defined in (ii)).

Proof. Let i0 ∈ C
+. We will show that for every condition q ≥ qi0 and

an ordinal α < θi0 such that q  α ∈ Ḃi0 , there are i
∗ ∈ C+ and a condition

r stronger than both q and pi∗ , and such that r  “ ȧi
∗

αi∗
∧ (−ȧi

∗

βi∗
) ≤ ȧi0α ”.

So suppose q ≥ qi and q  α ∈ Ḃi0 . We may assume that p
i0
α,ζi0

≤ q.

Choose i∗ ∈ C+ \ (i0 + 1) such that

uq ∩ u
pi
∗

αi∗ ,ζi∗ = uq ∩ u
pi
∗

βi∗ ,ζi∗ = u∗ and wq ⊆ i∗.
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Let pi0α,ζi0
= q0, pi

∗

αi∗ ,ζi∗
= q1, pi

∗

βi∗ ,ζi∗
= q2, and

τ0 =
∧

l<n

x
t
ζi0
i0
(α,l)

e
ζi0
i0
(α,l)
, τ1 =

∧

l<n

x
t
ζi∗

i∗
(αi∗ ,l)

e
ζi∗

i∗
(αi∗ ,l)

, τ2 =
∧

l<n

x
t
ζi∗

i∗
(βi∗ ,l)

e
ζi∗

i∗
(βi∗ ,l)

(so q0 ≤ q and τ0 ∈ Bq0 ⊆ Bq, τ1 ∈ Bq1 , τ2 ∈ Bq2). Note that the conditions
q0, q1, q2 are pairwise isomorphic and the isomorphism Hk,k

′

from qk to qk
′

carries τk to τk′ . Moreover, H
k,k′ is the identity on uq

k

∩uq
k′

. Also note that

wq
1

= w
pi
∗

γi∗ ,ζi∗ = wq
2

and, as wq ⊆ i∗, our choices imply Hk,0(i, ξ) �S (i, ξ)

for k = 1, 2, (i, ξ) ∈ uq
k

.

Now we define a condition r stronger than q, q1, q2. We put wr = wq∪wq
1

,
ur = uq ∪ uq

1

∪ uq
2

and we define functions fri,ξ : u
r → 2 as follows.

1. If (i, ξ) ∈ uq
1

∩ uq
2

, i ∈ wq then we let fri,ξ = f
q

H1,0(i,ξ) ∪ f
q1

i,ξ ∪ f
q2

i,ξ.

[Note that by (d)+(ii) we have (i, 0) �S H
1,0(i, ξ) �S (i, ξ).]

2. If (i, ξ) ∈ uq
1

∩uq
2

, i 6∈ wq then we first choose ε∗ such that, if possible,

(fq
0

H1,0(i,ξ))
ε∗(τ0) = 1, and then we let f

r
i,ξ = (f

q

H1,0(i,ξ))
ε∗ ∪ fq

1

i,ξ ∪ f
q2

i,ξ. [Note

that H1,0(i, ξ) ≺S (i, ξ), and thus if H
1,0(i, ξ) = (j, ζ) then j < i, j 6∈ wq

1

.]

3. If (i, ξ) ∈ uq
2

\ uq
1

(so i > i∗ ≥ sup(wq)) then we first choose ε∗ such

that, if possible, (fq
0

H2,0(i,ξ))
ε∗(τ0) = 1, and then we let f

r
i,ξ = (f

q

H2,0(i,ξ))
ε∗ ∪

fq
1

H2,1(i,ξ) ∪ f
q2

i,ξ. [Note that H
2,0(i, ξ) ≺S (i, 0) ≺S H

2,1(i, ξ) ≺S (i, ξ); re-

member wq
1

= wq
2

. Also, if H2,0(i, ξ) = (j, ζ), then j 6∈ wq
1

.]

4. If (i, ξ) ∈ uq
1

\ uq
2

then, as above, we choose ε∗ such that if possible

then (fq
0

H1,0(i,ξ))
ε∗(τ0) = 1, and next we put f

r
i,ξ = (f

q

H1,0(i,ξ))
ε∗ ∪ fq

1

i,ξ ∪

(fq
2

H1,2(i,ξ))
ξ+1.

5. If (i, ξ) ∈ uq \ uq
1

then we look at fqi,ξ↾u
q0 . If it is 0

uq
0 then we let

fri,ξ = f
q
i,ξ ∪ 0uq1 ∪ 0uq2 . Otherwise, we consider the following three cases.

(α) Suppose i ∈ wq
0

. Then for some ε ≤ ζ < χi, ε ≤ ξ + 1 we have

fqi,ξ↾u
q0 = (fq

0

i,ζ)
ε and we let:

• if i ∈ wq
1

then fri,ξ = f
q
i,ξ ∪ (f

q1

H0,1(i,ζ))
ε ∪ (fq

2

H0,2(i,ζ))
ε,

• if i 6∈ wq
1

then fri,ξ = f
q
i,ξ ∪ (f

q1

H0,1(i,ζ))i ∪ (f
q2

H0,2(i,ζ))i.

[Note that if i ∈ wq
1

then (i, ζ) �S H
0,1(i, ζ) = H0,2(i, ζ) ≺S (i+1, 0),

and if i 6∈ wq
1

then (j, 0) �S H
0,1(i, ζ) �S H

0,2(i, ζ) ≺S (j + 1, 0) for
some j > i.]

(β) Suppose i 6∈ wq
0

(so i 6∈ wq
1

) and fqi,ξ↾u
q0 = (fq

0

i′,ζ′)
ε′ , (i′, ζ ′) ∈ uq

0

,
ε′ ≤ ζ ′ < χi′ .
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• If i′ ∈ wq
1

and i′ < i, then put

fri,ξ = f
q
i,ξ ∪ (f

q1

H0,1(i′,ζ′))
ε′ ∪ (fq

2

H0,2(i′,ζ′))
ε′ .

• If i′ ∈ wq
1

and i < i′, then we put

fri,ξ = f
q
i,ξ ∪ (f

q1

H0,1(i′,ζ′))i ∪ (f
q2

H0,2(i′,ζ′))i.

• If i′ 6∈ wq
1

, then let fri,ξ = f
q
i,ξ ∪ (f

q1

H0,1(i′,ζ′))i ∪ (f
q2

H0,2(i′,ζ′))i.

(γ) Suppose i 6∈ wq
0

and fqi,ξ↾u
q0 = (fq

0

i′,ζ′)j′ , j
′ ≤ min{i, i′}, (i′, ζ ′)

∈ uq
0

. Let fri,ξ = f
q
i,ξ ∪ (f

q1

H0,1(i′,ζ′))j′ ∪ (f
q2

H0,2(i′,ζ′))j′ .

Verifying that the functions fri,ξ are well defined and that r = 〈w
r, ur,

〈fri,ξ : (i, ξ) ∈ u
r〉〉 ∈ PS is a condition stronger than q, q1, q2 is left to the

reader. Let us argue that Br |= τ1 ∧ (−τ2) ≤ τ0. If not then we have a
function f ∈ F r such that f(τ0) = f(τ2) = 0 and f(τ1) = 1. Clearly f
cannot be 0ur , so it is either (f

r
i,ξ)
ε or (fri,ξ)j . Let us look at the definition

of the functions fri,ξ and consider each case there separately.

Cases 1, 5(α),(β),(γ): Plainly fri,ξ(τ1) = f
r
i,ξ(τ2) and also (f

r
i,ξ)j(τ1) =

(fri,ξ)j(τ2) (remember w
q1 = wq

2

). As far as the operation (·)ε is concerned,

note that ({i} × χi) ∩ u
q1 = ({i} × χi) ∩ u

q2 , so (in these cases) we easily
get (fri,ξ)

ε(τ1) = (f
r
i,ξ)
ε(τ2), a contradiction.

Case 2: Again, fri,ξ(τ1) = f
r
i,ξ(τ2) and (f

r
i,ξ)j(τ1) = (f

r
i,ξ)j(τ2) (for

each j). So suppose that f = (fri,ξ)
ε for some ε, and look at the choice

of ε∗ in the current case. Since 1 = (fri,ξ)
ε(τ1) = (f

q1

i,ξ)
ε(τ1), we conclude

that 1 = (fq
0

H1,0(i,ξ))
ε∗(τ0) = f

r
i,ξ(τ0) = (f

r
i,ξ)
ε(τ0), a contradiction.

Case 3: Note that fri,ξ(τ1) = f
r
i,ξ(τ2) (and also (f

r
i,ξ)j(τ1) = (f

r
i,ξ)j(τ2)).

Now, if for some ε we have (fri,ξ)
ε(τ1) = 1, then look at the choice of

ε∗—necessarily (fri,ξ)
ε(τ0) = f

r
i,ξ(τ0) = 1 (remember (i, 0) ≺S H

2,1(i, ξ)
≺S (i, ξ)).

Case 4: As above: if for some ε we have (fri,ξ)
ε(τ1) = 1, then necessarily

fri,ξ(τ0) = (f
r
i,ξ)
ε(τ0) = 1. Moreover, (f

r
i,ξ)j(τ1) = (f

r
i,ξ)j(τ2) for all j ≤ i.

In all cases we get a contradiction showing that Br |= τ1 ∧ (−τ2) ≤ τ0,
and hence r  “ ȧi

∗

αi∗
∧ (−ȧi

∗

βi∗
) ≤ ȧi0α ”, finishing the proof of the claim.

Finally we note that 4.4.1 and clauses (β), (ε) give an immediate con-
tradiction, showing the theorem. 4.4

Conclusion 4.5. It is consistent that there is a Boolean algebra B of
size λ such that there is a left-separated sequence of length λ in B (and
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thus hd+(5)(B) = λ
+), but there is no ideal I ⊆ B with π(B/I) = λ (so

hd+(7)(B) = hd(7)(B) = λ).

Problem 4.6. Can one construct a Boolean algebra B as in 4.5 for λ
from any cardinal arithmetic assumptions?

5. More on the attainment problem. In this section we will assume
the following:

Hypothesis 5.1. S = (µ, λ, χ) is such that µ, λ are cardinals satisfying

µ = µ<µ < cf(λ) < λ ≤ 2µ,

and χ = 〈χi : i < cf(λ)〉 is a strictly increasing continuous sequence of
cardinals such that

χ0 = 0, cf(λ) < χ1, cf(χi+1) = χi+1, sup
i<cf(λ)

χi = λ.

For α < λ let j(α) < cf(λ) be such that χj(α) ≤ α < χj(α)+1.

Definition 5.2. (1) A pair (η,A) is a base for S = (µ, λ, χ) if:

(a) A ⊆ µ<µ, η = 〈ηα : α < λ〉 ⊆ µ
µ,

(b) if α < β < λ, j(α) = j(β) then ηα ∩ ηβ 6∈ A,

(c) if Y ∈ [λ]λ then there are distinct α, β ∈ Y such that ηα∩ηβ ∈ A.

(2) (η,A) is called a base+ for S if it satisfies demands (a), (b) (stated
above) and

(c+) if Y ∈ [λ]λ and t ∈ {0, 1}, then there are α, β ∈ Y such that

α < β, ηα ∩ ηβ ∈ A, ηα <lex ηβ iff t = 0.

For a topological space X, a (κ0, κ1)-Lusin set in X is a set L ⊆ X such
that |L| = κ0 and for every meager subset Z of X the intersection Z ∩ L
is of size less than κ1. (See, e.g., Cichoń [1] for a discussion of sets of this
type.) Below, the space µµ is equipped with the topology generated by sets
of the form

[̺] = {η ∈ µµ : ̺ ⊳ η}

for ̺ ∈ µ<µ.

Proposition 5.3. Assume that for some i∗ < cf(λ) there is a (λ, χi∗)-
Lusin set L in µµ. Then there is a base+ for S.

Proof. Choose sequences 〈νi : i < cf(λ)〉 ⊆ µ
µ and 〈̺α : α < λ〉 ⊆ L,

both with no repetitions. For α < λ let ηα ∈ µ
µ be defined by

ηα(2 · ξ) = νj(α)(ξ) and ηα(2 · ξ + 1) = ̺α(ξ)



304 A. ROSŁANOWSKI AND S. SHELAH

(for ξ < µ), and let A =
⋃

ξ<µ µ
2·ξ. We claim that (〈ηα : α < λ〉, A)

is a base+ for S. The conditions 5.2(1)(a,b) should be clear. Let us ver-
ify 5.2(2)(c+). So suppose that Y ∈ [λ]λ and t ∈ {0, 1}. Choose sequences
〈Yi : i < cf(λ)〉 and 〈ji : i < cf(λ)〉 such that:

• Yi ⊆ Y , (∀α ∈ Yi)(j(α) = ji), and |Yi| = χi∗ (so {̺α : α ∈ Yi} is not
meager),
• the sequence 〈ji : i < cf(λ)〉 is strictly increasing.

For each i < cf(λ) pick σi ∈ µ
<µ such that

(∀σ ∈ µ<µ)(σi ⊳ σ ⇒ [σ] ∩ {̺α : α ∈ Yi} 6= ∅).

We may pick i0 < i1 < cf(λ) such that

σi0 = σi1 = σ
∗, νji0 <lex νji1 iff t = 0.

(Remember that, under the assumptions of 5.1, (µµ, <lex) contains no mono-
tonic sequences of length cf(λ).) Let ξ = lh(νji0 ∩ νji1 ) and take σ

′ ∈ µ<µ

such that σ∗ E σ′ and ξ < lh(σ′). Now pick α0 ∈ Yi0 and α1 ∈ Yi1 such that
σ′ ⊳ ̺α0 ∩ ̺α1 (there are such α0, α1 by the choice of σi0 = σi1 = σ

∗). Note
that then necessarily α0 < α1, lh(ηα0 ∩ ηα1) = 2 · ξ (so ηα0 ∩ ηα1 ∈ A) and
ηα0 <lex ηα1 iff t = 0.

Proposition 5.4. Let P = (2<µ,⊳) be the µ-Cohen forcing notion.
Then

P “ there is a base
+ for S (and S is still as in 5.1) ”.

Proof. Pick sequences 〈νi : i < cf(λ)〉 and 〈̺α : α < λ〉 of pairwise
distinct elements of µµ. Let Ȧ∗ be a P-name for the generic subset of µ
(added by P) and let Ȧ be a P-name such that

P “ Ȧ = {ν ∈ µ
<µ : lh(ν) ∈ Ȧ∗} ”.

For α < λ, let η̇α be a P-name for a function in µµ such that

P (∀ξ ∈ Ȧ
∗)(η̇α(ξ) = νj(α)(otp(Ȧ

∗ ∩ ξ)) &

(∀ξ ∈ µ \ Ȧ∗)(η̇α(ξ) = ̺α(otp(ξ \ Ȧ
∗))).

We claim that

P “ (〈η̇α : α < λ〉, A) is a base
+ for S ”.

Clauses 5.2(1)(a,b) should be clear, so let us prove 5.2(2)(c+) only. Let
〈α̇γ : γ < λ〉 be a P-name for an increasing λ-sequence of elements of λ, and
let t ∈ {0, 1}, p ∈ P. For each γ < λ pick a condition pγ ≥ p and an ordinal
αγ such that pγ  α̇γ = αγ . Necessarily, there are X ∈ [λ]

λ and p∗ ∈ P such
that p∗ = pγ for γ ∈ X. Then also αγ0 < αγ1 for γ0 < γ1 from X. Shrinking
X a little we may also demand that for some sequences σj ∈ µ

lh(p∗)+2

(for j < cf(λ)) we have
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γ ∈ X & j(αγ) = j ⇒ σj ⊳ ̺αγ .

Now pick γ0 < γ1 from X such that letting j0 = j(αγ0) and j1 = j(αγ1) we
have

j0 < j1, σj0 = σj1 , νj0 <lex νj1 iff t = 0.

Let a condition q ≥ p∗ be such that lh(q) = lh(p∗) + lh(νj0 ∩ νj1) + 2 and
q(ξ) = 1 for all ξ ∈ lh(q) \ lh(p∗). It should be clear that αγ0 < αγ1 and

q  “ η̇αγ0 ∩ η̇αγ1 ∈ Ȧ and η̇αγ0 <lex η̇αγ1 iff t = 0”.

Definition 5.5. Let b = (η,A) be a base for S, η = 〈ηα : α < λ〉. We
define the Boolean algebra Bb determined by b. First, functions fbα : λ→ 2
(for α < λ) are such that

fbα (β) =
{

1 if α = β or α 6= β & ηα ∩ ηβ ∈ A & ηα <lex ηβ ,
0 otherwise.

Next, we let Fb = {fbα : α < λ} and Bb = B(λ,Fb) (see 2.4).

Theorem 5.6. If b is a base for S = (µ, λ, χ), then

hL(Bb) = hd(Bb) = s+(Bb) = λ.

If additionally b is a base+ for S then also

hL+(7)(B
b) = hd+(5)(B

b) = λ.

Proof. Let b = (η,A), η = 〈ηα : α < λ〉. Clearly |Bb| = λ.

Claim 5.6.1. hL(Bb) = hd(Bb) = s(Bb) = λ.

Proof. By 5.2(1)(b), fbα (β) = 0 whenever α 6= β and j(α) = j(β). There-
fore, by 2.7(1), the sequence 〈xα : χi ≤ α < χi+1〉 is ideal-independent
(for each i < cf(λ)).

The main part is to show that s+(Bb) = λ (and/or under the additional
assumption, that hL+(7)(B

b) = hd+(5)(B
b) = λ), and for this we will need the

following technical claim.

Claim 5.6.2. Suppose that k∗, l∗ < ω, αk, αl,k < λ (for k < k
∗, l < l∗)

and σ0, . . . , σk∗−1 ∈ µ
<µ are such that

(α) σ0, . . . , σk∗−1 are pairwise incomparable,
(β) σk ⊳ ηαk , σk ⊳ ηαl,k (for l < l

∗, k < k∗),
(γ) for each k < k∗ one of the following occurs:

(i) αk = αl,k for some l < l
∗, or

(ii) there are l1, l2, l3 < l
∗ such that

• ηαk ∩ ηαl1,k ⊳ ηαk ∩ ηαl2,k ⊳ ηαk ∩ ηαl3,k ,
• ηαk ∩ ηαl1,k , ηαk ∩ ηαl2,k ∈ A,
• ηαl1,k <lex ηαk <lex ηαl2,k .
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Let t(k) ∈ {0, 1} for k < k∗. Then

Bb |=
∧

k<k∗

xt(k)αk ≤
∨

l<l∗

∧

k<k∗

xt(k)αl,k .

Proof. We are going to show that, under our assumptions, for each f ∈
Fb there is l < l∗ such that (∀k < k∗)(f(αk) = f(αl,k)). So fix β < λ, and
consider fbβ . First note that

(⊠k) if σk is not an initial segment of ηβ , then f
b

β (αk) = f
b

β (αl,k) for all
l < l∗.

[Why? Suppose σk ⋪ ηβ . Then clearly αk 6= β 6= αl,k (for l < l∗) and

ηαk ∩ ηβ = ηαl,k ∩ ηβ , ηαk <lex ηβ ⇔ ηαl,k <lex ηβ .

Now look at the definition of fbβ .]

If no σk is an initial segment of ηβ , then (by (⊠k)) we conclude f
b

β (αk) =

fbβ (αl,k) for all l < l
∗, k < k∗. So suppose that σm ⊳ ηβ , m < k

∗. Then

for all k < k∗, k 6= m, we have σk ⋪ ηβ and thus fbβ (αk) = f
b

β (αl,k) (for

all l < l∗). Thus it is enough to find l < l∗ such that fbβ (αm) = f
b

β (αl,m).
If αm = αl,m for some l < l

∗, then this l works. So suppose αm 6= αl,m for
all l < l∗. Then clause (γ)(ii) holds true for m, and let l1, l2, l3 be as there.
If ηαm ∩ ηβ ⊳ ηαm ∩ ηαl3,m , then clearly f

b

β (αm) = f
b

β (αl3,m). Otherwise

ηαm ∩ ηαl3,m E ηαm ∩ ηβ , and f
b

β (αl1,m) 6= f
b

β (αl2,m), so either l1 or l2
works.

Claim 5.6.3. s+(Bb) = λ.

Proof. Suppose that 〈aξ : ξ < λ〉 is an ideal-independent sequence in Bb.

We may assume that aξ =
∧

k<kξ
x
t(ξ,k)
α(ξ,k) and α(ξ, k) 6= α(ξ, k

′) whenever

k < k′ < kξ (remember 2.7(2)). Also we may assume that kξ = k
∗ for all

ξ < λ (as cf(λ) > ω).

Fix i < cf(λ) for a moment.

After possibly renumbering the sequences 〈α(ξ, k) : k < k∗〉, we may find
a set Si ⊆ [χi, χi+1), an ordinal ε

∗
i < µ, a sequence 〈ν

i
k : k < k

∗〉 of pairwise
distinct elements of µε

∗

i , and tik ∈ {0, 1} and j
i
k < cf(λ) (for k < k

∗) such
that:

(i) Si is unbounded in χi+1,

(ii) t(ξ, k) = tik and j(α(ξ, k)) = j
i
k for all ξ ∈ Si and k < k

∗,

(iii) νik ⊳ ηα(ξ,k) for k < k
∗ and ξ ∈ Si,

(iv) 〈〈α(ξ, k) : k < k∗〉 : ξ ∈ Si〉 is a ∆-system of sequences with heart
〈αik : k < k(i)〉,
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(v) the sequence 〈α(ξ, k) : ξ ∈ Si〉 is strictly increasing for k(i) ≤
k < k∗,

(vi) jik ≥ i for k(i) ≤ k < k
∗ (this follows from (ii)+(iv)).

Next pick a set S ⊆ [cf(λ)]cf(λ) such that (possibly after renumberings)

(vii) k(i) = k+, tik = tk, ε
∗
i = ε

∗ and νik = ν
∗
k for k < k

∗, i ∈ S,

(viii) 〈〈αik : k < k
+〉 : i ∈ S〉 is a ∆-system of sequences with heart

〈αk : k < k
∗∗〉,

(ix) 〈〈jik : k < k
∗〉 : i ∈ S〉 is a ∆-system of sequences with heart

〈jk : k ∈ w〉, w ⊆ k
∗.

Note that then k∗∗ ⊆ w ⊆ k+. Also, possibly further shrinking S and
the Si’s (for i ∈ S), we may demand that

(x) if i1 < i2, i1, i2 ∈ S, then j
i1
k < i2 (for k < k

∗),

(xi) if i1, i2 ∈ S are distinct, ξ1 ∈ Si1 and ξ2 ∈ Si2 , then

{α(ξ1, k) : k < k
∗} ∩ {α(ξ2, k) : k < k

∗} = {αk : k < k
∗∗}.

Let S∗ =
⋃

i∈S Si. For ε < µ and k
+ ≤ k < k∗ let

SLε,k = {ξ ∈ S
∗ : (∀ζ ∈ S∗)(ε > lh(ηα(ξ,k) ∩ ηα(ζ,k)) or

ηα(ξ,k) ∩ ηα(ζ,k) 6∈ A or ηα(ξ,k) ≤lex ηα(ζ,k))},

SRε,k = {ξ ∈ S
∗ : (∀ζ ∈ S∗)(ε > lh(ηα(ξ,k) ∩ ηα(ζ,k)) or

ηα(ξ,k) ∩ ηα(ζ,k) 6∈ A or ηα(ζ,k) ≤lex ηα(ξ,k))}.

We claim that both |SLε,k| < λ and |S
R
ε,k| < λ. Why? Assume, e.g.,

|SLε,k| = λ. Note that, by (v)+(vi)+(x), α(ξ, k) < α(ζ, k) for ξ < ζ from S
∗.

Pick ν ∈ µε and a set X ∈ [SLε,k]
λ such that (∀ξ ∈ X)(ν ⊳ ηα(ξ,k)).

By 5.2(1)(c), there are distinct ξ, ζ ∈ X such that ηα(ξ,k) ∩ ηα(ζ,k) ∈ A.
Clearly lh(ηα(ξ,k) ∩ ηα(ζ,k)) ≥ ε and we easily get a contradiction with

ξ, ζ ∈ SLε,k. Similarly for S
R
ε,k.

For k+ ≤ k < k∗ let

S⊗k = {ξ ∈ S
∗ : for all ε < µ there is ζ ∈ S∗ such that ηα(ξ,k) <lex ηα(ζ,k),

ε ≤ lh(ηα(ξ,k) ∩ ηα(ζ,k)), ηα(ξ,k) ∩ ηα(ζ,k) ∈ A, and

for all ε < µ there is ζ ∈ S∗ such that ηα(ζ,k) <lex ηα(ξ,k),

ε ≤ lh(ηα(ξ,k) ∩ ηα(ζ,k)) and ηα(ξ,k) ∩ ηα(ζ,k) ∈ A}.

Note that S∗ \ S⊗k =
⋃

ε<µ(S
L
ε,k ∪ S

R
ε,k), and hence |S

∗ \ S⊗k | < λ for each

k ∈ [k+, k∗).
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Fix distinct ξ∗, ξ∗ ∈
⋂m−1
k=k+ S

⊗
k such that j(ξ

∗) = j(ξ∗). For each k ∈
[k+, k∗) pick ξk1 , ξ

k
2 , ξ
k
3 ∈ S

∗ \ {ξ∗, ξ∗} such that

ν∗k ⊳ ηα(ξ∗,k) ∩ ηα(ξk1 ,k) ⊳ ηα(ξ∗,k) ∩ ηα(ξk2 ,k) ⊳ ηα(ξ∗,k) ∩ ηα(ξk3 ,k),

ηα(ξ∗,k) ∩ ηα(ξk1 ,k), ηα(ξ∗,k) ∩ ηα(ξk2 ,k) ∈ A,

ηα(ξk1 ,k) <lex ηα(ξ∗,k) <lex ηα(ξk2 ,k).

Now look: letting αk = α(ξ
∗, k), {αl,k : l < l

∗} be the suitable enumeration

of {α(ξk
′

n , k) : k
+ ≤ k′ < k∗ & n ∈ {1, 2, 3}} ∪ {α(ξ∗, k)}, and σk = ν

∗
k , we

find that clauses (α)–(γ) of 5.6.2 are satisfied. Hence

aξ∗ =
∧

k<k∗

xtk
α(ξ∗,k) ≤

∧

k<k∗

xtk
α(ξ∗,k)

∨
3
∨

n=1

k∗−1
∨

k′=k+

∧

k<k∗

xtk
α(ξk

′

n ,k)

= aξ∗ ∨
3
∨

n=1

k∗−1
∨

k′=k+

aξk′n .

Since clearly ξ∗ 6∈ {ξ∗} ∪ {ξ
k′

n : k
+ ≤ k′ < k∗, n = 1, 2, 3}, we get a

contradiction.

Claim 5.6.4. If b is a base+ then also hL+(7)(B
b) = hd+(5)(B

b) = λ.

Proof. It is similar to 5.6.3. Suppose that 〈aξ : ξ < λ〉 is a right-separated

sequence in Bb. As before we may assume that aξ =
∧

k<k∗ x
t(ξ,k)
α(ξ,k) and

α(ξ, k) 6= α(ξ, k′) whenever k < k′ < k∗. Next we apply the same “cleaning
procedure” as in 5.6.3 to get S, Si, ε

∗, ν∗k , tk, j
i
k etc. such that clauses (i)–(xi)

are satisfied. We let S∗ =
⋃

i∈S Si and for ε < µ and k
+ ≤ k < k∗ we define

S+ε,k = {ξ ∈ S
∗ : (∀ζ ∈ S∗ ∩ ξ)(ε > lh(ηα(ξ,k) ∩ ηα(ζ,k)) or

ηα(ξ,k) ∩ ηα(ζ,k) 6∈ A or ηα(ξ,k) ≤lex ηα(ζ,k))},

S−ε,k = {ξ ∈ S
∗ : (∀ζ ∈ S∗ ∩ ξ)(ε > lh(ηα(ξ,k) ∩ ηα(ζ,k)) or

ηα(ξ,k) ∩ ηα(ζ,k) 6∈ A or ηα(ζ,k) ≤lex ηα(ξ,k))}.

Then both |S+ε,k| < λ and |S
−
ε,k| < λ. [Just as before: assume, e.g., |S

+
ε,k| = λ.

Pick ν ∈ µε and a set X ∈ [S+ε,k]
λ such that (∀ξ ∈ X)(ν ⊳ ηα(ξ,k)). Note

that α(ζ, k) < α(ξ, k) for ζ < ξ from S∗. Use 5.2(2)(c+) to find ζ < ξ,
both from X, such that ηα(ζ,k) ∩ ηα(ξ,k) ∈ A and ηα(ζ,k) <lex ηα(ξ,k). A clear
contradiction.]

Next for k+ ≤ k < k∗ we let S⊗k = S
∗\
⋃

ε<µ(S
+
ε,k∪S

−
ε,k). Choose ξ∗ < ξ

∗

from
⋂m−1
k=k+ S

⊗
k such that j(ξ

∗) = j(ξ∗). And next for each k ∈ [k
+, k∗) pick

ξk1 , ξ
k
2 , ξ
k
3 ∈ S

∗∩ξ∗ like those in the proof of 5.6.3. Finish in the same way.
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