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RIGID PATHS OF GENERIC 2-DISTRIBUTIONS

WITH DEGENERATE POINTS ON 3-MANIFOLDS

BY

JIRO ADACHI (Sapporo and Toyonaka)

Abstract. We study rigid paths of generic 2-distributions with degenerate points on
3-manifolds. A complete description of such paths is obtained. For the proof, we construct
separating surfaces of paths admissible for distributions.

0. Introduction. The purpose of this paper is to give a complete ex-
plicit description of rigid paths of generic 2-distributions, with degenerate
points, on 3-manifolds. By a 2-distribution with degenerate points on a 3-
manifold, we mean what is represented by either of the following objects:

(a) a Pfaffian equation {ω = 0}, where ω is a smooth differential 1-form,
(b) a module 〈X,Y 〉 of vector fields over the ring of smooth functions,

which is generated by smooth vector fields X and Y .

In the following, we call such 2-distributions just “2-distributions” for
convenience. For a usual plane field {Dp ⊂ TpM}p∈M on a 3-manifold M ,
a tangent plane Dp has the constant dimension dimDp = 2 at any point
p ∈M . We note that a 2-distribution E, considered in this paper, may have
a point p ∈M where dimEp is 0, 1 or 3. Such 2-distributions on 3-manifolds
were studied by B. Jakubczyk and M. Ya. Zhitomirskĭı in [JZh]. They gave a
complete description of singularities of such distributions and a list of local
normal forms in each case, (a) and (b).
Let M be a smooth connected manifold and E a 2-distribution on M .

A path γ : [α, β]→M is called admissible for E if it is tangent to E at any
point p ∈ Im γ. Let a, b ∈ M be given two points. We denote the space of
all admissible paths joining a to b by

ΩE(a, b) := {γ : [0, 1]→M admissible | γ(0) = a, γ(1) = b}.
A path γ ∈ ΩE(a, b) is called rigid if any path in ΩE(a, b) C1-close enough
to γ has the same image as γ. This notion was introduced in [BH]. Rigid
paths of generic 2-distributions without degenerate points on 3-manifolds
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were studied by I. Zelenko and M. Ya. Zhitomirskĭı in [ZZh]. They obtained
a complete description of all rigid paths. We obtain a complete description
of all rigid paths of generic 2-distributions with degenerate points on 3-
manifolds. In particular, we study the local geometry near degenerate points.

In order to formulate the main theorem, we recall some fundamental
notions. Throughout this paper, manifolds, distributions, functions etc. are
assumed to be of class C∞, and curves and paths are assumed to be of class
C1, unless mentioned otherwise.

Let E be a 2-distribution on a 3-manifoldM . The dimension of E may be
2, 1, 0 if E is a module of vector fields, and 2, 3 if E is a Pfaffian equation.
A point p ∈ M is called a degenerate point of a 2-distribution E if the
dimension of E at p is not 2, dimEp 6= 2. The set of all degenerate points
is denoted by D = D(E).

A point p ∈M is called a singular point of E if it is a degenerate point
of E or if dimEp = 2 and E is not a contact structure at p. Precisely,
the latter statement means that dim span〈Xp, Yp, [X,Y ]p〉 < 3 if E is a
module of vector fields 〈X,Y 〉, and (ω∧dω)p = 0 if E is a Pfaffian equation
{ω = 0}. We denote the set of all singular points by S = S(E). For generic
2-distributions, S(E) is a smooth surface if it is not empty (see Section 1 for
precise genericity conditions). We sometimes call S(E) theMartinet surface.

Now we define the characteristic vector field on the Martinet surface
S(E), which is determined by the generic 2-distribution E up to multiplica-
tions by non-vanishing functions (see [JZh]). First, we consider the case of
a Pfaffian equation E = {ω = 0}. Let ΩS be a volume form on S = S(E).
(It is local if S is not orientable.) We define a vector field ZE on S by the
relation ZEyΩS = ω|TS. This vector field ZE is called the characteristic
vector field of E = {ω = 0}.
Next, we consider the case of a module of vector fields E = 〈X,Y 〉.

Let Ω be a volume form on M . (In the non-orientable case, we consider
the local construction.) We define a differential 1-form ω corresponding to

E = 〈X,Y 〉 by ω(·) := Ω(X,Y, ·), and define a vector field Z̃ on S by
Z̃yΩS = ω|TS. As the set D(E) of degenerate points is a curve in S(E)
for a generic 2-distribution E, there is a function f on S which defines
D ⊂ S. That is to say, D = {f = 0} and (df)p 6= 0 for all p ∈ D. We
define the characteristic vector field ZE of E = 〈X,Y 〉 by f ·ZE = Z̃. Thus
the characteristic vector field of a generic 2-distribution is defined. Singular
points of ZE are called irregular points. Non-degenerate non-singular points
of ZE are called transversal points of E, and the set of all those points is
denoted by Tr(E).

According to the local behavior of these characteristic vector fields, sin-
gular points are classified into the following types, in [M], [Zh], [JP], and
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[JZh] (see Theorem 1.2):

(a) E is a Pfaffian equation (b) E is a module of vector fields

(0) transversal points (0) transversal points
(1) hyperbolic points (1) hyperbolic points
(2) elliptic points (2) elliptic points
(3) saddle points (3) saddle points
(4) node points (4) node points
(5) focus points (5) focus points

(6) regular degenerate points

In the case of node points, there are two types of invariant manifolds
of the characteristic vector fields. They correspond to the eigenvectors of
linear differential equations for the characteristic vector fields. We call the
invariant manifolds which correspond to the eigenvalues with largest abso-
lute values the rigid axes. This notion is defined precisely for normal forms
in Section 2.2.1.

In this paper, we consider immersed rigid paths. So by the term “rigid
path”, we mean a rigid path γ : [0, 1] → M whose tangent γ̇(t) is not zero
at any point t ∈ [0, 1]. We note that even at the end points the tangents are
well defined and not zero.

The following is the main theorem of this paper.

Main Theorem. Let E be a generic 2-distribution on a 3-manifold M .
An immersed admissible path γ : [α, β]→M is rigid if and only if
(a) in case E = {ω = 0} is a Pfaffian equation: the restriction of γ to

the open interval (α, β) is a curve in Tr(E) and each of the end points γ(α),
γ(β) is of type (0), (1), (3), (4) of the above table, and at least one of these
ends is (0), (1), (3), or (4) as an end of a rigid axis.

(b) in case E = 〈X,Y 〉 is a module of vector fields: the restriction γ|(α,β)
lies in Tr(E) and the end points are of type (0), (1), (6).

I. Zelenko and M. Ya. Zhitomirskĭı studied in [ZZh] rigid paths of generic
2-distributions on 3-manifolds. They considered generic 2-distributions with-
out degenerate points. Such 2-distributions have singular points of type (a)-
(0),(1),(2) only (or (b)-(0),(1),(2)). The result of this paper is an extension of
their result to the case when generic 2-distributions have degenerate points.

The author would like to thank the referee for useful advice concerning
for the previous version of this paper.

1. Classification of singularities and normal forms. First, we re-
view the genericity condition for 2-distributions. Let E = 〈X,Y 〉 or {ω = 0}
be a 2-distribution on a 3-manifold M . We take a (local) volume form Ω
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on M . A function H for E is defined as follows:

H = Ω(X,Y, [X,Y ]) if E = 〈X,Y 〉,
H ·Ω = ω ∧ dω if E = {ω = 0}.

We introduce the following notion to state the genericity condition. A linear
operator in a 2-dimensional space is non-resonant if its eigenvalues λ1, λ2
satisfy m1λ1 +m2λ2 6= 0 for any integers m1 ≥ −1, m2 ≥ −1.
We assume the following genericity conditions.

(G1) j1pH 6= 0 for any p ∈M .
(G2) The linearization of ZE at p ∈ S(E) is non-degenerate if p is a

singular point of ZE . In addition, if p is a degenerate point of E,
then the linearization is non-resonant.

Condition (G1) guarantees the structural smoothness of S(E) as S(E) is a
level set of H. It is known that 2-distributions which satisfy (G1) and (G2)
are generic (see [JZh]).
Now, we define some types of singular points. Let E be a generic 2-

distribution on a 3-manifold M , and ZE its characteristic vector field. The
following is well known for non-degenerate points.

Proposition 1.1 (Martinet, [M]). Let p ∈ S(E) be a non-degenerate
irregular point. Then the sum of the eigenvalues of the linearization of ZE
at p is 0.

As a consequence, we can distinguish the following three types of non-
degenerate irregular points. A non-degenerate irregular point p ∈ S(E) is
called hyperbolic if the eigenvalues of ZE at p are real and non-zero, elliptic
if they are purely imaginary, and parabolic if both are 0. Parabolic points
cannot appear because of condition (G2). According to Proposition 1.1 and
this fact, any non-degenerate irregular point is hyperbolic or elliptic.
For degenerate singular points, it is known that there is no restriction on

the eigenvalues of ZE (see [JZh]). A degenerate irregular singular point p is
called a node if the eigenvalues of ZE at p are real non-zero and of the same
sign, a saddle if they are real non-zero and of different signs, and a focus if
they are of the form a + b

√
−1, a 6= 0, b 6= 0, a, b ∈ R. By the genericity

condition (G2), any degenerate irregular point is of one of the above three
types.
All singular points are classified and normal forms are given as follows

(see [M], [Zh], [JP], [JZh]):

Theorem 1.2. Any singular point of a generic 2-distribution E on a
3-manifold M is of one of the following types, and is equivalent to one of
the normal forms below , where b, θ, λ are moduli.

(a) E = {ω = 0} is a Pfaffian equation:
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(0) A regular non-degenerate point : {dz + x2·dy = 0}.
(1) A hyperbolic point : {dz + (xz + x2y + bx3y2)·dy = 0}.
(2) An elliptic point : {dz + (xz + x3/3 + xy2 + bx3y2)·dy = 0}.
(3) A saddle point : {z·dz − θx·dx+ (θx+ y)·dy = 0}, θ > 0.
(4) A node point : {z·dz − θx·dx+ (θx+ y)·dy = 0}, θ < −4.
(5) A focus point : {z·dz − θx·dx+ (θx+ y)·dy = 0}, −4 < θ < 0.

(b) E = 〈X,Y 〉 is a module of vector fields:
(0) A regular non-degenerate point : 〈(∂/∂x), (∂/∂y)− x2·(∂/∂z)〉.
(1) A hyperbolic point :

〈(∂/∂x), (∂/∂y)− (xz + x2y + bx3y2)·(∂/∂z)〉.
(2) An elliptic point :

〈(∂/∂x), (∂/∂y)− (xz + x3/3 + xy2 + bx3y2)·(∂/∂z)〉.
(3) A saddle point :

〈(∂/∂x), x·(∂/∂y) + (z + λx2 + y2)·(∂/∂z)〉, λ > 0.
(4) A node point :

〈(∂/∂x), x·(∂/∂y) + (z + λx2 + y2)·(∂/∂z)〉, λ < −4.
(5) A focus point :

〈(∂/∂x), x·(∂/∂y) + (z + λx2 + y2)·(∂/∂z)〉, −4 < λ < 0.
(6) A regular degenerate point : 〈(∂/∂x), x·(∂/∂y) + y·(∂/∂z)〉.

2. Local behavior of admissible paths. It is well known that rigid
paths exist in S(E) if E is a subbundle of TM (see [LS]). We note that the set
D(E) consists of isolated points if E = {ω = 0} is a Pfaffian equation. On the
other hand, D(E) is a curve in S(E) and D(E) itself is not admissible if E =
〈X,Y 〉 is a module of vector fields (see [JZh]). Therefore, rigid paths exist
in S(E) also for generic 2-distributions. Thus we have only to investigate
admissible paths in S(E).

In this section we study the local existence of rigid paths. As mentioned
above, rigid paths live on the Martinet surface S(E). We consider neighbor-
hoods of singular points of each type by using the normal forms of Theo-
rem 1.2.

2.1. Admissible paths containing non-degenerate singular points. First
we observe that there are no elliptic points on rigid paths. This is shown in
[ZZh]. Near an elliptic point, the characteristic vector field ZE has a weakly
non-degenerate focus (spiral) type phase portrait. Thus admissible paths
containing elliptic points have infinite lengths. As a rigid path is compact,
rigid paths never have elliptic points.

Admissible paths containing hyperbolic points are studied in [ZZh].
There is no rigid path containing hyperbolic points in its interior.
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Proposition 2.1 (Zelenko–Zhitomirskĭı, [ZZh]). Let E be a generic 2-
distribution. Admissible paths in S(E) containing hyperbolic points in their
interior are not rigid.

2.2. Admissible paths containing degenerate points of Pfaffian equations

2.2.1. Saddle and node points. Let E = {ω = 0} be a Pfaffian equation,
and p a saddle or node point of E. First, we choose a proper normal form.
According to Theorem 1.2, there is a coordinate neighborhood (U,ϕ) of p
with the normal form ϕ−1∗ω = z·dz − θx·dx + (θx + y)·dy, with θ < −4
or θ > 0. Applying the coordinate transformation fθ : (x, y, z) 7→ (X,Y, z)
defined by

(2.1)

(
x
y

)
=

(
θ +
√
θ2 + 4θ θ −

√
θ2 + 4θ

2θ 2θ

)(
X
Y

)
,

we obtain the normal form

(2.2) ω := (fθ ◦ ϕ)−1∗ω = z·dz +Θ1Y ·dX +Θ2X·dY,
whereΘ1 := 2θ

2(θ−
√
θ2 + 4θ+4), Θ2 := 2θ

2(θ+
√
θ2 + 4θ+4) are constants.

We note that Θ1 > 0 if θ > 0, Θ1 < 0 if θ < −4, and Θ2 > 0. In these local
coordinates, E = {ω = z·dz + Θ1Y ·dX + Θ2X·dY = 0}, S(E) = {z = 0},
and

(2.3) ZE = Θ2X·(∂/∂X)−Θ1Y ·(∂/∂Y ).
In the case when p is a saddle point (θ > 0), the phase portrait of ZE

(see (2.3)) is of saddle type. The X- and Y -axes are separatrices. Then we
obtain the following.

Proposition 2.2. Let p ∈ S(E) be a saddle point of E, and L ⊂ S(E)
an invariant manifold of ZE containing p. Then one of the following holds.

• There exist local coordinates (X,Y, z) and a constant θ > 0 for which
E is represented as a Pfaffian equation for a 1-form (2.2). In addition, L
lies on the X-axis.
• There exist local coordinates (X ′, Y ′, z′) and a constant θ′ > 0 for which

E is represented as a Pfaffian equation for a 1-form (2.2). In addition, L
lies on the Y -axis.

In the case of node points (θ < −4), the phase portrait of ZE (see (2.3))
is of node type. We note that 0 < Θ2 < −Θ1. Therefore there are many
orbits of ZE C

1-close to the X-axis. We call the X-axis the flexible axis,
and the Y -axis the rigid axis.

Proposition 2.3. Let p ∈ S(E) be a node point of E, and L ⊂ S(E) an
admissible curve of E containing p, whose image consists of orbits of ZE.
Then one of the following holds.
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• There exist local coordinates (X,Y, z) and a constant θ < −4 for which
E is represented as a Pfaffian equation for a 1-form (2.2). In addition, L
lies on the X-axis.

• There exist local coordinates (X ′, Y ′, z′) and a constant θ′ < −4 for
which E is represented as a Pfaffian equation for a 1-form (2.2). In addition,
L lies on the Y -axis.

Proof. Now we consider the case when L is neither the X- nor Y -axis
with respect to the normal form ω in (2.2). As L consists of orbits of ZE =
Θ2X·(∂/∂X)−Θ1Y ·(∂/∂Y ), L lies on the curve {Y = C·X−Θ1/Θ2 , z = 0}
for some constant C. We note that −Θ1/Θ2 > 1. Consider the coordinate
transformation

h : (X,Y, z) 7→ (X̃, Ỹ , z̃) = (X,Y − CX−Θ1/Θ2 , z).
It preserves the 2-distribution E = {ω = 0}, in particular the 1-form ω of
(2.2):

h∗ω = z·dz +Θ1(Y − CX−Θ1/Θ2)·dX +Θ2X·d(Y − CX−Θ1/Θ2)
= z·dz +Θ1(Y − CX−Θ1/Θ2)·dX

+Θ2X ·
(
dY + C

Θ1
Θ2
X−Θ1/Θ2−1·dX

)

= z·dz +Θ1Y ·dX +Θ2X·dY = ω.
The admissible path L, considered now, is mapped onto the X̃-axis {Ỹ = 0,
z̃ = 0} by this transformation.
The purpose of this section is to prove the following.

Proposition 2.4. Let E be a generic Pfaffian equation, and p a saddle
or node point of E. Then an immersed admissible path in S(E) is not rigid
if it contains p in its interior.

This proposition is reduced to the following lemma.

Lemma 2.5. Let E be a distribution on R
3 defined by the normal form

(a)-(3), (4) of Theorem 1.2. Consider admissible paths µ± : [−a, a] → R
3

defined by µ±(t) := ((θ±
√
θ2 + 4θ)t, 2θt, 0). Then there exist families {µ±ε }

of admissible paths each of which has the following properties:

(i) the path µ±ε is not a reparametrization of µ
± for any ε,

(ii) the family {µ±ε } is C1-convergent to µ± as ε tends to 0,
(iii) µ±ε (±a) = µ±(±a) = (±(θ ±

√
θ2 + 4θ)a,±2θa, 0) for any ε,

(iv) µ±ε (t)− µ±(t) is a flat function at t = ±a.
A function is called flat at a point if it vanishes at this point together

with all its derivatives.
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We can deduce Proposition 2.4 from Lemma 2.5 as follows. Let p ∈ S(E)
be a saddle or node point, and γ : [α, β] → S(E) an immersed admissible
path with γ(t0) = p for t0 ∈ (α, β). On account of Theorem 1.2 and Propo-
sitions 2.2, 2.3, there exist a neighborhood U and local coordinates (X,Y, z)
on U for which E is defined by the normal form (a)-(3) or (4), p = (0, 0, 0),
and the restriction of γ to a sufficiently small neighborhood of t0 lies on
the X- or Y -axis. We consider the case of the X-axis. We may assume,
by a reparametrization, that γ is defined on [−1, 1] and p = γ(0), and
that γ|[−δ,δ] is a path in U of the form γ(t) = (X(t), Y (t), z(t)) = (t, 0, 0)
for a small δ. Applying the coordinate transformation (2.1), we obtain
γ(t) = (x(t), y(t), z(t)) = ((θ +

√
θ2 + 4θ)t, 2θt, 0). It is sufficient to show

that this γ(t) is not rigid. We set a := δ/2. We apply Lemma 2.5 to γ|[−a,a],
and denote the resulting family of admissible paths by µ+ε . We define a
family of admissible paths γε on [−1, 1] by

γε(t) :=

{
γ(t), −1 ≤ t ≤ −a, a ≤ t ≤ 1,
µ+ε (t), −a ≤ t ≤ a.

It is clear that γε is not a reparametrization of γ for any ε 6= 0, that the
end points of γε coincide with those of γ, and that γε is C

1-convergent to γ.
Therefore, γ is not rigid.

In the case of the Y -axis, we can apply the same argument with µ−ε in
place of µ+ε .

Proof of Lemma 2.5. We show the existence of {µ+ε }. The existence of
{µ−ε } can be proved in the same manner.
Let f : [−a, a]→ R be an odd function flat at ±a. We define a function

g : [−a, a]→ R by

g(t)g′(t) = −2θ2ε{(θ +
√
θ2 + 4θ + 4)tf ′(t) + (θ −

√
θ2 + 4θ + 4)f(t)}

with the initial condition g(−a) = 0. Note that the function ϕ(t) := g(t)g′(t)
is odd as f(t) is odd. Then ∂g(t)2/∂t = 2ϕ(t) is odd, and g(−a)2 = 0. This
implies g(t)2 is even and g(a) = 0. Now we define a family {µ+ε } of admissible
paths by

µ+ε (t) := ((θ +
√
θ2 + 4θ)t+ (θ −

√
θ2 + 4θ)εf(t), 2θ(t+ εf(t)), g(t)).

According to the above argument, it satisfies conditions (i)–(iv). Direct cal-
culations show that µ+ε is admissible for each ε.

2.2.2. Focus points. Let E = {ω = 0} be a Pfaffian equation, and p
a focus point of E. First, we choose a proper normal form. According to
Theorem 1.2, there is a coordinate neighborhood (U,ϕ) of p with the normal
form ϕ−1∗ω = z·dz − θx·dx+ (θx+ y)·dy, with a constant θ, −4 < θ < 0.
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The coordinate transformation gθ : (x, y, z) 7→ (X,Y, z) defined by

(2.4)

(
x
y

)
=

(
2 0
−θ

√
−θ2 − 4θ

)(
X
Y

)

leads to the normal form

(gθ ◦ ϕ)−1∗ω = z·dz + (Θ1X +Θ2Y )·dX + (−Θ2X +Θ1Y )·dY,
where Θ1 := −θ2 − 4θ > 0, Θ2 := −θ

√
−θ2 − 4θ > 0 are constants. Fur-

thermore, in the cylindrical coordinates X = r cosφ, Y = r sinφ, we obtain
the following normal form:

(2.5) ω̃ = z·dz +Θ1r·dr −Θ2r2·dφ.
Then we have E = {z·dz + Θ1r·dr − Θ2r2·dφ = 0}, S(E) = {z = 0},
ZE = Θ2r

2·(∂/∂r) + Θ1r·(∂/∂φ) in these local coordinates. We note that
the orbits of ZE are logarithmic spirals. This normal form is invariant under
rotations around the z-axis. Thus, the following holds.

Proposition 2.6. Let p ∈ S(E) be a focus point of E, and L an admis-
sible curve of E containing p. Then there exist local cylindrical coordinates
(r, φ, z) and a constant θ, −4 < θ < 0, for which E is represented as a
Pfaffian equation for a 1-form (2.5), and L = {φ = (Θ1/Θ2) log r}.

We note that an immersed path is defined as a mapping γ : [0, 1] → M
on a compact interval with nonzero tangents γ̇(t) = 0 at any point t ∈ [0, 1].
At a focus point, a nonzero tangent cannot be defined. Thus any immersed
admissible path in S(E) contains no focus points.

2.3. Admissible paths containing degenerate points of modules of vector

fields

2.3.1. Irregular degenerate points

Proposition 2.7. Let E be a generic module of vector fields and p ∈
S(E) an irregular degenerate point. Then there is no admissible path in S(E)
containing p.

Proof. On account of Theorem 1.2, there are local coordinates (x, y, z)
near p for which E is represented by one of the normal forms (b)-(3), (4), (5).
For this normal form, the Martinet surface is S(E) = {z = λx2 − y2}, and
the characteristic vector field is ZE = −2((λx+ y)·(∂/∂x) + λx·(∂/∂y)).
In the case of focus points (−4 < λ < 0), the integral curves of the

characteristic vector field ZE are logarithmic spirals, by a similar argument
to that in Section 2.2.2. Thus any immersed admissible path contains no
focus points.
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Next, we consider the cases of saddle and node points (λ < −4, λ > 0,
respectively). The invariant manifolds of ZE are

E1 =

〈
(λ+
√
λ2 + 4λ) · ∂

∂x
+ 2λ · ∂

∂y

〉
,

E2 =

〈
(λ−
√
λ2 + 4λ) · ∂

∂x
+ 2λ · ∂

∂y

〉
.

At a degenerate point p = (0, 0, 0), Ep = 〈(∂/∂x)〉 is transversal to E1 and
E2. Thus there is no admissible curve in S(E) containing a saddle or node
point p.

2.3.2. Regular degenerate points. The aim of this section is to show the
following proposition.

Proposition 2.8. Let E be a generic module of vector fields, and p ∈
S(E) a regular degenerate point of E. Then an admissible path in S(E)
which contains p in its interior is not rigid.

There is a local coordinate neighborhood (U ;x, y, z) for which E is de-
fined by the normal form (b)-(6): 〈(∂/∂x), x(∂/∂y) + y(∂/∂z)〉, according
to Theorem 1.2. Then, at the origin, S = {y = 0}, D = {x = 0, y = 0},
ZE = (∂/∂x).

By a similar argument to that in Section 2.2, using the normal form
(b)-(6), the proposition above is reduced to the following lemma.

Lemma 2.9. Let E be a module of vector fields on R
3 defined by the

normal form (b)-(6). Consider an admissible path µ : [−a, a] → R
3 defined

by µ(t) := (t, 0, 0). Then there exists a family {µε} of admissible paths with
the following properties:

(i) the path µε is not a reparametrization of µ for any ε > 0,

(ii) the family {µε} is C1-convergent to µ as ε tends to 0,
(iii) µε(±a) = µ(±a) = (±a, 0, 0) for any ε,
(iv) µε(t)− µ(t) is a flat function at t = ±a.
Proof. Let f : [−a, a] → R be an odd function flat at ±a. We define a

function gε : [−a, a]→ R by the differential equation

d

dt
{gε(t)2} = 2εtf ′

with the initial condition gε(−a) = 0. We note that we can take f so that gε
can be defined. Then we have gε(a) = 0. In fact, gε(t)

2 is an even function
as f is odd.

Now, we define a family {µε(t)} of paths by
µε(t) = (t, gε(t), εf(t)).
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According to the construction of gε above, this family satisfies the conditions
(i)–(iv). These paths are admissible because

(µ′ε(t))µε(t) =

(
∂

∂x

)

µε(t)

+
εf ′(t)

gε(t)

(
x
∂

∂y
+ y
∂

∂z

)

µε(t)

.

3. Separating surfaces. We introduce the notion of the separating
surface defined in [ZZh]. Its existence implies the rigidity of paths.

3.1. Definition of the separating surface. Let Γ be a path defined on an
interval [α, β], and γ a path defined on a subinterval [a, b] ⊂ [α, β]. We set
τ := inf{t ∈ [a, b] | γ(t) 6∈ ImΓ} if Im γ 6⊂ ImΓ , and τ = b if Im γ ⊂ ImΓ .
The image γ((τ, b]) is called the splitting part of γ with respect to Γ and
denoted by SP(γ, Γ ).
Let E be a generic 2-distribution on a 3-manifold M , Γ : [α, β]→M an

admissible path, and U ⊂M a neighborhood of ImΓ . Consider a 2-surface
G in U containing ImΓ , which divides U into two open connected parts U+

and U−.

Definition 3.1. The surface G is called a separating surface of Γ in
U if SP(γ, Γ ) is contained in U+ for any admissible path γ defined on a
subinterval [a, b] ⊂ [α, β], which is C1-close to Γ |[a,b] and starts at a point
of ImΓ . We call the set U+ the positive side of G.

It is clear from this definition that Γ is rigid if it has a separating surface.
Further, we introduce stronger and weaker notions.

Definition 3.2. The surface G is called a strongly separating surface of
Γ in U if G is a separating surface and Im γ ⊂ U+ for any admissible path
γ defined on a subinterval [a, b] ⊂ [α, β], which is C1-close enough to Γ |[a,b]
and starts at a point of U+.

Definition 3.3. The surface G is called a weakly separating surface of
Γ in U if SP(γ, Γ ) is contained in U+ or S(E) for any admissible path γ
defined on a subinterval [a, b] ⊂ [α, β], which is C1-close to Γ |[a,b] and starts
at a point of ImΓ .

3.2. Local models of separating surfaces. In this section we find local
models of separating surfaces. Normal forms near transversal and hyper-
bolic points are considered in [ZZh]. Here we consider normal forms near
degenerate points.

Lemma 3.4 ([ZZh]). Let E be a distribution on R
3 defined by (a)-(0) or

(b)-(0), and Γ (t) = (x(t), y(t), z(t)) = (0, t, 0) an admissible path defined on
an interval [α, β]. Then the surface G = {z = 0} is a strongly separating
surface of Γ in U = R

3. The positive side is U+ = {z < 0}.
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Lemma 3.5 ([ZZh]). Let E be a distribution on R
3 defined by (a)-(1) or

(b)-(1), and Γ (t) = (x(t), y(t), z(t)) = (0, t, 0) an admissible path defined
on an interval [0, β], β > 0. (Note that the origin is a hyperbolic point.)
Then the surface G = {z = 0} is a separating surface of Γ in U = R

3. The

positive side is U+ = {z < 0}.

In a similar way, we construct a local model near saddle points.

Lemma 3.6. Let E be a distribution on R
3 defined by (a)-(3), and let

Γ1(t) = (x(t), y(t), z(t)) = ((θ +
√
θ2 + 4θ)t, 2θt, 0),

Γ2(t) = (x(t), y(t), z(t)) = ((θ −
√
θ2 + 4θ)t, 2θt, 0)

be admissible paths defined on an interval [0, β], β > 0, for θ > 0. (Note
that the origin is a saddle point.) Then the surface

G1 =

{
z2 +

θ + 4 +
√
θ2 + 4θ

θ + 4
(y2 − θx(x− y)) = 0

}

is a separating surface of Γ1 in U = R
3. The positive side is

U+1 =

{
z2 +

θ + 4 +
√
θ2 + 4θ

θ + 4
(y2 − θx(x− y)) < 0

}
.

The surface

G2 =

{
z2 +

θ + 4−
√
θ2 + 4θ

θ + 4
(y2 − θx(x− y)) = 0

}

is a separating surface of Γ2, and the positive side is

U+2 =

{
z2 +

θ + 4−
√
θ2 + 4θ

θ + 4
(y2 − θx(x− y)) > 0

}
.

Proof. We apply the change of coordinates defined by (2.1). Then we
have

E = {z·dz +Θ1Y ·dX +Θ2X·dY = 0},
Γ1(t) = (X(t), Y (t), z(t)) = (t, 0, 0),

Γ2(t) = (X(t), Y (t), z(t)) = (0, t, 0),

G1 = {z2 + 2Θ2XY = 0}, U+1 = {z2 + 2Θ2XY < 0},
G2 = {z2 + 2Θ1XY = 0}, U+2 = {z2 + 2Θ1XY > 0}.

We note that Θ2 > Θ1 > 0. We prove the lemma by using these coordinates.

(1) First, we consider the X-axis Γ1. Let γ(t) = (X(t), Y (t), z(t)) be an
admissible path defined on a subinterval [a, b] ⊂ [0, β], which is C1-close to
Γ1|[a,b] and starts at γ(a) ∈ ImΓ1. We note that X(t) > 0 for any t ∈ (a, b]
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because of the C1-closeness. On account of the admissibility of γ(t), we have

(3.1) Y ′(t) = − 1

Θ2X(t)
(z(t)z′(t) +Θ1Y (t)X

′(t)).

We define a function

Q(t) := exp

(
Θ1
Θ2

t\
0

X ′(s)

X(s)
ds

)
.

Then, by (3.1), we have

(Q(t)Y (t))′ = − 1
Θ2
· Q(t)
X(t)

z(t)z′(t).

Integrating gives

Q(t)Y (t) =

t\
a

(Q(s)Y (s))′ ds

= − 1
2Θ2

t\
a

Q(s)

X(s)
(z(s)2)′ ds

= − 1
2Θ2

{
Q(t)

X(t)
z(t)2 −

t\
a

(
Q(s)

X(s)

)′
z(s)2 ds

}

= − 1
2Θ2

{
Q(t)

X(t)
z(t)2 +

Θ2 −Θ1
Θ2

t\
a

Q(s)X ′(s)z(s)2

X(s)2
ds

}
.

By the definitions, C1-closeness of γ, and the assumption θ > 0, we have

Q(t) > 0, X(t) > 0, X ′(t) > 0, Θ2 > 0, Θ2 −Θ1 > 0
for t > 0. Then we obtain

Q(t)Y (t) ≤ − 1
2Θ2
· Q(t)
X(t)

z(t)2

for any t ∈ [a, b], and the fact that Q(t0)Y (t0) = −(Q(t0)/(2Θ2X(t0)))z(t0)2
for some t0 ∈ (a, b] is equivalent to z(s) = 0 for any s ≤ t0.
We note that admissible curves in the Martinet surface S(E) = {z = 0}

are orbits of the characteristic vector field ZE=Θ2X·(∂/∂X)−Θ1Y ·(∂/∂Y ).
The origin is a saddle type singular point of ZE , and the invariant manifolds
are the X- and Y -axes. From this fact and the inequality Q(t) > 0, the
statement above implies z(t)2 + 2Θ2X(t)Y (t) ≤ 0 for any t ∈ [a, b], and the
condition that z(t0)

2 + 2Θ2X(t0)Y (t0) = 0 for some t0 ∈ (a, b] is equivalent
to Y (s) = 0 for any s ≤ t0. Therefore, {z2+2Θ2XY = 0} = G is a separating
surface of γ in U = R

3, and the positive side is {z2 + 2Θ2XY < 0}.
(2) Next, we consider the Y -axis Γ2. Let γ̃(t) = (X(t), Y (t), z(t)) be an

admissible path defined on a subinterval [a, b] ⊂ [0, β], which is C1-close to
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Γ2|[a,b] and starts at γ(a) ∈ ImΓ2. We note that Y (t) > 0 for any t ∈ (a, b]
because of the C1-closeness. On account of the admissibility of γ̃(t), we have

X ′(t) = − 1

Θ1Y (t)
(z(t)z′(t) +Θ2X(t)Y

′(t)).

A similar argument to one above with the function

Q̃(t) := exp

(
Θ2
Θ1

t\
0

Y ′(s)

Y (s)
ds

)

shows that

Q̃(t)X(t) = − 1
2Θ1

{
Q̃(t)

Y (t)
z(t)2 +

Θ1 −Θ2
Θ1

t\
a

Q̃(s)Y ′(s)z(s)2

Y (s)2
ds

}
.

We note Θ1 −Θ2 < 0. Then we have
z(t)2 + 2Θ1X(t)Y (t) ≥ 0,

and if equality holds for some t0, then z(t) = 0 for any t ≤ t0. This implies
that G2 = {z2 + 2Θ1XY = 0} is a separating surface, and U+2 = {z2 +
2Θ1XY ≥ 0} is the positive side.

Next, we consider node points. We note that Θ1 < 0. A similar argu-
ment to one above gives the following. As Γ1 lies on the flexible axis of a
node point, there exist C1-close admissible paths on S(E). Therefore the
separating surface is weak.

Lemma 3.7. Let E be a distribution on R
3 defined by (a)-(4), and let

Γ1(t) = (x(t), y(t), z(t)) = ((θ +
√
θ2 + 4θ)t, 2θt, 0),

Γ2(t) = (x(t), y(t), z(t)) = ((θ −
√
θ2 + 4θ)t, 2θt, 0)

be admissible paths defined on an interval [0, β], β > 0, for θ < −4. (Note
that the origin is a node point.) Then the surface

G1 =

{
z2 +

θ + 4 +
√
θ2 + 4θ

θ + 4
(y2 − θx(x− y)) = 0

}

is a weakly separating surface of Γ1 in U = R
3. The positive side is

U+1 =

{
z2 +

θ + 4 +
√
θ2 + 4θ

θ + 4
(y2 − θx(x− y)) < 0

}
.

The surface

G2 =

{
z2 +

θ + 4−
√
θ2 + 4θ

θ + 4
(y2 − θx(x− y)) = 0

}
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is a (non-weakly) separating surface of Γ2 with positive side

U+2 =

{
z2 +

θ + 4−
√
θ2 + 4θ

θ + 4
(y2 − θx(x− y)) > 0

}
.

Next, we find a normal model of separating surfaces near a regular de-
generate point of modules of vector fields.

Lemma 3.8. Let E be a distribution on R
3 defined by (b)-(6). Take an

admissible path Γ (t) := (x(t), y(t), z(t)) = (t, 0, 0) defined on an interval
[0, β], β > 0. (Note that the origin is a regular degenerate point.) Then the
surface G := {z = 0} is a separating surface of Γ in U = R

3. The positive

side is U+ = {z > 0}.
Proof. Let γ(t) = (X(t), Y (t), z(t)) be an admissible path defined on a

subinterval [a, b] ⊂ [0, β], which is C1-close to Γ |[a,b] and satisfies γ(a) ∈
ImΓ . We note that x(t) > 0 for any t ∈ (a, b] because of C1-closeness. Then
we obtain, from the admissibility of γ(t), z′(t) = y(t)y′(t)/x(t). Integration
gives

z(t) =
1

2

{
y(t)2

x(t)
+

t\
0

x′(s)

x(s)2
y(s)2 ds

}
.

On account of the C1-closeness of γ(t) to Γ (t), we have x(t) > 0 and
x′(t) > 0 for any t ∈ (a, b]. Further, the condition that there exists t0 ∈
(a, b] for which z(t) vanishes is equivalent to y(s) = 0 for any s ≤ t0.
Admissible curves on the Martinet surface S(E) = {y = 0} are orbits
of the characteristic vector field ZE = (∂/∂x). Therefore the statement
above implies z(t) ≥ 0 for any t ∈ [a, b], and the condition that there ex-
ists t0 ∈ (a, b] for which z(t) vanishes is equivalent to z(s) = 0 for any
s ≤ t0.

3.3. Globalization of local separating surfaces. In this section, we present
a method of globalizing local separating surfaces. As a consequence, we
obtain the proof of the Main Theorem.

Global separating surfaces of admissible paths in Tr(E) were constructed
in [ZZh]. Let E be a generic 2-distribution on a 3-manifold M , and γ :
[α, β]→ S(E) an immersed simple non-closed admissible path. We suppose
that Im γ ⊂ Tr(E). Let Γ be an admissible curve in S(E) defined on an
open interval whose image contains that of γ. Take any line subdistribution
L of E which is transversal to S(E) at any point of Im γ. We define G(Γ,L)
as the set which consists of the points of all leaves of L crossing Im γ.

Proposition 3.9 ([ZZh]). (1) There exists a neighborhood U ⊂ M of
Im γ for which G := U ∩G(Γ,L) is a strongly separating surface of γ in U .
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(2) Let U+ be a positive side of G with respect to γ, and γ̃ a reparametri-
zation of γ with the inverse orientation. Then G is also a strongly separating
surface of γ̃, but U+ is a negative side.

I. Zelenko and M. Ya. Zhitomirskĭı also constructed separating surfaces
for admissible paths which may have hyperbolic points as their end points.
They introduced a method of pasting separating surfaces to globalize local
separating surfaces.

Proposition 3.10 ([ZZh]). Let γ : [α, β]→ S(E) be an admissible path.
Take t1, t2 with α < t2 < t1 < β. Set γ1 := γ|[α,t1] and γ2 := γ|[t2,β]. Sup-
pose that γ1 has a (resp. strongly) separating surface G1 in a neighborhood
U1 of Im γ1 with positive side U

+
1 , and that γ2 has a strongly separating sur-

face G2 in a neighborhood U2 of Im γ2 with positive side U
+
2 , which satisfy

G2 ∩ (U1 ∩ U2) = G1 ∩ (U1 ∩ U2). Then G := G1 ∪G2 is a (resp. strongly)
separating surface of γ in U := U1 ∪U2 with positive side U+ := U+1 ∪U+2 .

Remark 3.11. We note that this argument also holds for weakly sepa-
rating surfaces. If local separating surfaces of both ends are weak, then the
resulting separating surface is also weak.

According to the argument in Section 2, to complete the proof of the
Main Theorem, it remains to consider the cases when admissible paths have
as their ends saddle or node points of Pfaffian equations, and regular degen-
erate points of modules of vector fields.

(a-3) Saddle points. Let γ : [0, 1]→ S(E) be an admissible path, one of
whose ends p := γ(0) ∈ S(E) is a saddle point of a Pfaffian equation. There
is a coordinate neighborhood (U1;X,Y, z) of p in which p = (0, 0, 0), E|U1 =
{ω := z·dz +Θ1Y ·dX +Θ2X·dY =0}, where Θ1 := 2θ2(θ −

√
θ2 + 4θ + 4),

Θ2 := 2θ
2(θ +

√
θ2 + 4θ + 4) for θ > 0. According to Proposition 2.2, we

may assume that Im γ ∩ U1 lies on the X-axis {Y=z=0} or the Y -axis
{X=z=0}. In the following, we assume that Im γ ∩ U1 lies on the X-axis
and Im γ̃∩U1 on the Y -axis. We take δ ∈ (0, 1/2) for which γ1 := γ|[0,2δ] and
γ̃1 := γ̃|[0,2δ] are paths in U1. Then, by Lemma 3.6, G1 := {z2+2Θ2XY = 0}
is a separating surface of γ1 in U1 with positive side {z2 + 2Θ2XY < 0},
and G̃1 = {z2 + 2Θ1XY = 0} is a separating surface of γ̃1 with positive
side {z2 + 2Θ1XY > 0}. We set L1 := 〈Θ2X·(∂/∂z) − z·(∂/∂Y )〉 ⊂ E|U1
and L̃1 := 〈Θ1Y ·(∂/∂z) − z·(∂/∂X)〉 ⊂ E|U1 . It is a line subdistribution
of E transverse to the Martinet surface S(E) = {z = 0} at any point q ∈
(Im γ1 \{p})∩U1 or q̃ ∈ (Im γ̃1 \{p})∩U1. We note that G(γ1, L1) ⊂ G1 and
G(γ̃1, L̃1) ⊂ G̃1 are local separating surfaces, by Proposition 3.9. Then, using
Proposition 3.10, we can apply to this neighborhood the same argument as
in [ZZh].
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(a-4) Node points. On account of Proposition 2.3 and Lemma 3.7, we
can apply a similar argument to that above.

Consequently, an admissible path in the Martinet surface of a generic
Pfaffian equation has a separating surface if its interior points are transversal
points and ends are transversal or hyperbolic or saddle or node points.

Remark 3.12. We note that the separating surface obtained is not strong
but weak if both ends are node points as ends of flexible axes, according to
Remark 3.11. Then there exist C1-close admissible paths in S(E), that is,
it is not rigid.

This implies statement (a) of the Main Theorem.

(b-6) Regular degenerate points. Similarly, let γ : [0, 1] → S(E) be an
admissible path, one of whose ends p := γ(0) ∈ S(E) is a regular degener-
ate point of a module of vector fields. There is a coordinate neighborhood
(U3;x, y, z) of p in which p = (0, 0, 0), E|U3 = 〈(∂/∂x), x·(∂/∂y)+y·(∂/∂z)〉.
We take δ ∈ (0, 1/2) for which γ3 := γ|[0,2δ] is a path in U3. In this case γ3 lies
on the x-axis. Then, by Lemma 3.8, G3 := {z = 0} is a separating surface of
γ3 in U3 with positive side {z > 0}. We set L3 := 〈x·(∂/∂y) + y·(∂/∂z)〉 ⊂
E|U3 . It is a line subdistribution which is transversal to the Martinet surface
S(E) = {y = 0} at any point q ∈ (Im γ3 \ {p})∩U3. We note that G(γ3, L3)
is a local separating surface by Proposition 3.9. Moreover, the positive side
of G(γ3, L3) is included in the positive side of G3. Therefore G3 is also a
local separating surface of γ3 \ {p}. Thus, using Proposition 3.10, we can
apply to this neighborhood the same argument as in [ZZh]. Consequently,
an admissible path in the Martinet surface of a generic module of vector
fields has a separating surface if its interior points are transversal points
and ends are transversal or hyperbolic or regular degenerate points.
This completes the proof of the Main Theorem.
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