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M-BASES IN SPACES OF CONTINUOUS
FUNCTIONS ON ORDINALS

BY

ONDREJ F. K. KALENDA (Praha)

Abstract. We prove, among other things, that the space C[0,w2] has no count-
ably norming Markushevich basis. This answers a question asked by G. Alexandrov and
A. Plichko.

1. Introduction. A Markushevich basis (or briefly, an M-basis) in a
Banach space X is an indexed family (z4, fo)aca of pairs from X x X*
satisfying the following three conditions:

(i) fa(xa) =1, foa(mﬁ) =0 for a 7é B;
(ii) span{z, : v € A} = X;
(iii) Vo € X \ {0} Ja € A : fu(x) # 0.

By a classical theorem of Markushevich (see e.g. [HHZ, Theorem 272]) any
separable Banach space admits an M-basis. M-bases with additional proper-
ties are also an important tool in studying the structure of non-separable Ba-
nach spaces and are (obviously) closely related to existence of certain types
of embeddings of the dual. For example, a Banach space X is weakly com-
pactly generated (resp. weakly K-analytic, weakly countably determined,
weakly Lindelof determined) if and only if X admits an M-basis (4, fo)aca
such that the set {0} U {z, : a € A} is weakly compact (resp. weakly K-
analytic, weakly K-countably determined, weakly Lindel6f). Another scale
of M-bases is obtained if we ask in how strong sense condition (iii) holds.
Let us remark that this condition is equivalent to the assumption that

So=span{fo:a€c A} ={fe X" : {a€ A: f(z,) # 0} is finite}

is weak™ dense in X*. If Sy is even norm dense, the M-basis is called shrink-
ing. It is well known [F, Theorem 8.3.3 and following remarks| that X has
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a shrinking M-basis if and only if it is simultaneously weakly compactly
generated and Asplund. The M-basis is called norming (resp. 1-norming) if
So is norming (resp. 1-norming). Recall that a linear subspace ¥ C X* is
called C-norming where C > 1 if

lz]l < Csup{|f(2)]: fe Y, [If] <1}

for all x € X. This is equivalent, due to the Hahn—Banach separation theo-

rem, to w* 1
Bx-NY D EBX*'

Further, Y is called norming if it is C-norming for some C' > 1.

A weakening of (1-)norming M-bases are countably (1-)norming ones,
studied for example by A. Plichko [P1], [P2]. An M-basis (Za, fo)aca is
called countably norming (resp. countably 1-norming) if the subspace

S={feX":{aeA: f(x,) # 0} is countable}

is norming (resp. 1-norming). A. Plichko [P1] proved that any Banach space
X with a countably norming M-basis admits a bounded projectional resolu-
tion of the identity (briefly BPR), i.e. a long sequence (P, : 0 < a < k) of
linear projections on X, where x = dens X, with the following properties:

(1) P0:Oand PH:Idx;

(i) supy < [ Pall < o0
(iii) PoPg = P3Py = P, for 0 < a < 8 < k;
(iv) dens P, X < Ng - carda for 0 < o < k;
(V) PoX = Uz, PsX if a < £ is limit.

There are several interesting problems on relations between various types
of M-bases. Such an open problem is, for example, whether any weakly com-
pactly generated space has a norming M-basis. There are also some known
results. A recent result of G. Alexandrov and A. Plichko [AP, Theorem 1]
says that any space with a countably norming M-basis has a strong M-basis,
i.e. an M-basis (4, fa)aca such that

x € span{x,, : fo(z) # 0}

for any x € X. This is done by transfinite induction, using the above men-
tioned result on BPR and a theorem of Terenczi [T] saying that any sepa-
rable Banach space has a strong M-basis. They also show [AP, Theorem 2]
that the space C[0,w1] has no norming M-basis while the canonical M-basis
is countably 1-norming and strong. An example of a Banach space with a
strong M-basis but without a countably norming one is given by A. Plichko
and D. Yost [PY, Section 7]. This space even does not admit any BPR.

In the present paper we show that the space C[0,ws]| has no countably
norming M-basis. Notice that the canonical M-basis of this space is strong
and that this space admits a BPR. This answers a question posed in [AP].
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We will also use an alternative description of the spaces having a count-
ably norming M-basis using the notion of a X'-subspace. A subspace S C X*
is called a X'-subspace of X* if there is a linear one-to-one weak* continuous
mapping 7 : X* — R such that S = T~1(X(I")), where

() ={z € R" : {y € I': 2(7) # 0} is countable}.
A space X is called a Plichko (resp. C-Plichko) space if X* admits a norm-

ing (C-norming, respectively) X-subspace. By [K1, Theorem 4.16], X is a
Plichko space if and only if it has a countably norming M-basis.

2. Main results. Our main result is the following theorem.

THEOREM 1. The space C[0,ws] has no countably norming M-basis, i.e.
it is not a Plichko space.

This theorem answers a question posed by G. Alexandrov and A. Plichko
[AP]. In fact we prove something more.

THEOREM 2. Let k > wso be a reqular cardinal and n an ordinal such
that k <n < k-w. Then C[0,7n] is not a Plichko space.

However, we do not know whether Theorem 2 can be generalized to
arbitrary ordinals n > ws. We discuss related questions in the final section
of the paper.

3. Auxiliary results. Let us fix an uncountable ordinal i and put
X ={x € C[0,n] : (0) = 0}.

Then X is isometric to C[0,n] and the dual X* can be represented as the
space of all finite signed Radon measures on [0, 7] vanishing at 0, equipped
with the total variation norm. For a € [0,7] and x € X put

_Jz(v), 7<o
(Paz)(v) = {x(oz), v > a.
Then Py = 0 and P, is a norm one projection for o > 0.
The following lemma is an analogue of [AP, Proposition 2].

LEMMA 1. Let (ay : 0 < v < wy -w) be a family of ordinals with the
following properties:
(i) a0 =0, a0 <1
(ii) oy < a5 whenever 0 <y <6 < wi - w;
(iii) ax = sup, <y oy if A <wi -w is a limit ordinal.
Then the subspace
S={peX" :{y<w - -w:ul(P,

Ay 41

— P, )X # 0} is countable}

1S mot norming.
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Proof. Let us first remark that
(%) peS neN = play, ., =0.

Indeed, suppose pi[a,.n, 1] # 0. Then, as u is supported by a countable set,
there is 0 < au,.n such that p[(5, ay,.n) = 0. By (iii) there is 6 < wy - n
such that as > . Let v € [0,w; - n) be arbitrary. Then

(s X ey ) = pay 0] = vy, Aoy n) + prla,n, 1) = B, s ) # 0,
and thus p[(Pa,,, — Pa,)X # 0 (since X(a, n € (Pa,.; — Pa,)X), therefore

pweés.
Further, for n € N put

2n—1 om — k

Z X(O‘wl ks Qwy (k1)) + Z n X(O‘wl kyQuwy (1))
k=n-+1

Then z,, € X, ||,|| =1 and for every u € S we have

n 2n—1
k 2n — k
<M7 .’L‘n> - Z E M(awl'lﬁ awl'(kJrl)] + Z n M(awl'kv awl'(k+1)]
k=1 k=n+1
Ly
=2 (1w, ks M) — @y -(k11)5 1))
k=1
2n—1
2n — k
+ Z n (N(awl-kﬂ]] - :u’(awr(k-f-l)?n])
k=n+1
"k
=2 law, gn}) — n{aw &}))
k=1
2n—1
2n — k
+ > —— ({awg+n}) = p{aw, k1))
k=n+1
n+1 n
k—1 k
:ZTM{awlk} Zglu’{awlk}
k=2 k=1
2n 2n—1
2n n+1-k 1-— 2n — k
+ ) p{ow ) — D —— nl{aw,x})
k=n-+2 k=n+1
1 n 1 2n 1
= 2 wlowa )+ S ifowsd) < -l
k=1 k=n+1

and so S is not norming. m

Next we give a generalization of [K3, Lemma 2|. Let us recall that a
subset A of a topological space X is countably closed if C C A whenever
C C A is countable.
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LEMMA 2. Let E be a Banach space, S C E* a X -subspace and Z C E*
a weak™ countably closed linear subspace. If Z NS is norming, then S C Z.

Proof. Suppose that Z NS is norming. Then there is ¢ > 0 Such that
cBg« C ZﬂSﬂBE* . Let £ € SNcBg~. Since £ € ZﬂSﬂBE* there

is a sequence &, € Z NS N Bg- such that &, N ¢ (see [K1, Lemma 1.6]).
As 7 is weak™ countably closed we get £ € Z. Hence SN¢Bg+ C ZNcBg-,
and thus S C Z. =

LEMMA 3. Let E be a Plichko Banach space and Z C E* be a weak*
dense weak® countably closed linear subspace of finite codimension. Then
there is a norming X-subspace S of E* satisfying S C Z.

Proof. As F is a Plichko space, there is a norming X-subspace Sy C E*.
Let Ty : E* — R be a linear one-to-one weak™ continuous mapping such
that Sy = T, H(2(I)).

First* let us show that Sp N Z is relatively weak* closed in Sy. Put YV =
SoNZ" . Then Y has finite codimension. Indeed, as Sy is norming, for any
¢ € E* there is a bounded net &, € Sy weak* converging to £. Further,
So N Z is a norm closed subspace of Sy with finite codimension, so it is
complemented in Sy; let @) denote a bounded projection of Sy onto Sy N Zp.
The net (Ids, —Q)&a is a bounded net in the finite-dimensional space Ker @,
so passing to a subnet, we can suppose it is norm convergent. Denote the

limit by 6. Then 6 € Ker Q. Moreover, Q&, w &—0, hence £ —0 €Y.
Therefore E* =Y 4 Ker (), and so Y is of finite codimension.

The space Y can be canonically identified with (E/(So N Z)_1)*, hence
we can consider it as a dual space. By the previous paragraph (SN Z)
has finite dimension, so SyNY is a norming X-subspace of Y by [K1, Theo-
rem 4.36(iii)]. Further, Sy N Z is weak* dense in Y and of finite codimension
in Sp NY, so it is norming by [K3, Lemma 1]. Now it follows by Lemma 2
that S NY C Z, in other words Sy N Z is weak* closed in Sp.

Let n denote the codimension of Y in E*. Then there are e1,...,e, € E
linearly independent such that Y =span{ey,...,e,}*. The vectors e1, ..., e,
are linearly independent and weak* continuous as functionals on E*. Fur-
ther, Sy is weak™ dense, hence e([Sp,...,e,[Sy are also linearly indepen-
dent. Thus we can choose &1,...,§, € Sy such that &(e;) = 0 for ¢ # j
and &;(e;) = 1. In the same way we can choose 61,...,0, € Z such that
0i(ej) =0 for i # j and 6;(e;) = 1.

Let T : B* — RIVY{Ln} be defined by

7(6)() = ZTO feeh vel

(€,e4), y=1,...,n,



184 O. F. K. KALENDA

and put S =T HX(I"U{l,...,n})). As T is linear, weak* continuous and
one-to-one, S is a X-subspace of E*. Further, S contains Sy NY = Sy NZ
and 61,...,60,. Next we will show that S N Z is weak* dense in E*. Let
xe(SNZ),. Puty = x—zgzl(fj,@ej. Then y € (SyNZ) and &(y) =0
for every j. Hence y € (Sp) 1 (as clearly Sy = span((So N Z) U {&1,...,&n})
and so y = 0. It follows that 0 = (0;,y) = ({;, z). Therefore z = 0.

So, SN Z is weak™ dense and has finite codimension in (SN Z)+Sy. The
latter is norming and hence also S N Z is norming by [K3, Lemma 1]. Now
clearly S is norming and, by Lemma 2, S C Z. =

LEMMA 4. Let E be a Banach space, and k = dens E' be an uncountable
reqular cardinal. Suppose that (Q,: 0 < a < k), i=1,2, are two BPR’s on
E. Put S; =, (QL)*E*. If S1 NSy is norming, then Sy = S.

Proof. Let M, be a dense subset of (Q%, ; — Q% )E of cardinality at most
card . Put M* = Ua<s M. Then M is linearly dense in E and it can be
easily checked that

S; ={¢ € E*:card{m € M": (£,m) # 0} < K},
so S; is a X;-subspace of E*, in terms of [K1, Remark 4.12]. As S; NSy is
norming, there is ¢ > 0 such that cBg+ C 57 NS2NBg~ . Let £ € S1NcBgx.
Since £ € S; NS, N B~ there is C C S1 NS, N B~ with cardC' < &

and € € C° (see [K1, Lemma 1.19(ii)]). Further, C C S, so C C S,
(see [K1, Lemma 1.19(i)]), and so & € So. Hence S; N¢Bg- C S N cBg-.
By interchanging the roles of S7 and S; we get the inverse inclusion, hence
Sl = SQ. |

The following lemma is a generalization of [P, Lemmas 1 and 2].

LEMMA 5. Let E be a Banach space, and k = dens E' be an uncountable
reqular cardinal. Suppose that (Q,: 0 < a < k), i = 1,2, are two BPR’s on
E such that U, ..(Q8)*E* = Uy (Q2)*E*. Then {a < k: Q4 = Q2} is

a closed unbounded subset of [0, k).

Proof. Let us first remark that

Qo =0 & QuE=QLE & (Q) E" = (Q2)E",

hence the set in question is clearly closed. Further note that for i = 1,2 we
have
(%) Va<k3BE(r): QLEC Q%ﬁiE,
(xx) Va<k3BeE(a,r): (QL)E*C (Q%_Z)*E*

To show (%) let D C Q% E be a dense subset of cardinality at most card a.

For any d € D there is 84 € (o, k) such that d € Q%;ZE (by property (v)
of a BPR). Put § = supycp B4 Then 8 < k as & is regular. And clearly
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QE C Q%_iE . This proves (x). The proof of (xx) is completely analogous,
we only need to use the fact that the weak* density of (Q%)*E* is at most
card @ and the equality from the assumptions instead of property (v) of
a BPR.

Finally, choose a@ < x arbitrary. By an obvious induction we can con-
struct 82 < k,i=1,...,4, n € N, such that 31 > o, QLE C Q%%E and

(a) 67 > Bn, QQB,}LE C Qé2

() 5 > 2, (@) B C (@h)" B
(©) 8 > B, (@) B € (@3B
(d) BL4q > B2, QéﬁbE C Q%HE'

If we put 3 =sup{3% :i=1,...,4, n € N}, then 8 < k and Q,la = Q%. This
completes the proof. m

4. Proof of the main results. Theorem 1 is an immediate consequence
of Theorem 2, so we prove the latter. Fix a regular cardinal k > wsy. If
n € [k, k-w) then there is n € N such that n € [k-n, k- (n+1)). Then clearly
[0, 7] is homeomorphic to [0, x - n]. Hence we can suppose that n = & - n.

Let X = {z € C[0,n] : (0) = 0} and for a € [0,x] and z € X put

~ x(k-k+7), < a,
(Pax)(/i-kjL'y):{xgﬁ_k_’_z)) z>a; k=0,...,n—1,~v € (0,k].

Further put P, = 0. Then the family (P, : 0 < a < ) forms a BPR on X
such that

Z = U PX*={peX* :u{r-k})=0k=1,...,n}
a<k
Let us remark that Z is a 1-norming weak™* countably closed subspace of
X* with finite codimension.
If X is a Plichko space there is, due to Lemma 3, a norming X-subspace

S of X* satisfying S C Z. By [K2, Lemma 5] there is M C X linearly dense
such that

S={ueX":{meM: (um)+0} is countable}.

Further, by [K1, Lemma 4.19] there is a BPR (Q, : a < k) on X such that
M C Uy (Qat1 — Qa)X. Then clearly S C U, ., @5X", and so

Jewx = rx

a<k a<kK

by Lemma 4. It follows from Lemma 5 that there is a family of ordinals
(ay : 0 < v < w; - w) satisfying conditions (i)-(iii) of Lemma 1 such that
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]3% = Qq,, for each v. Put

S ={peX"  {y<w -w: pl(Poyyy — ﬁaw))? # 0} is countable}.

Then clearly S C S’, and so S’ is norming. Let C' > 1 be such that S’ is
C-norming.

Further, put X = {z € C[0, ] : x(0) = 0} and define P, as at the begin-
ning of Section 3 (with x instead of 7). Consider X canonically embedded
to X. Let 2 € X be arbitrary. As S’ is C-norming, there is ¢ € S’ such
that ||¢|| < C + 1 and (¢/,x) = 1. Put £ = ¢'|X. Then ||€|| < C + 1 and
(¢€,x) = 1. Moreover,

teS"={peX*:{y<w-w:pl(Pa,, —Pua,)X #0} is countable}.

Indeed, let £[(Pa., , — Pa,)X # 0, ie. thereisy € (Pa, , — Pa, )X such that

(€,y) #0. Then also y € (P, —ﬁaw))}'. S0 &' [(Pa,,, — Pa,)X # 0. Hence

Qy+1
e S as ¢ €8 Therefore S” is norming, which contradicts Lemma 1. m

5. Open problems. As remarked above, we do not know the answer
to the following question.

PROBLEM 1. Suppose that C[0,n] is a Plichko space. Is then necessarily
N <ws?

One of the reasons why we do not know the answer is that the following
problem is open (cf. [K1, Question 4.45]).

PROBLEM 2. Is any (complemented) subspace of a Plichko space again
Plichko?

A partial answer to Problem 2 is given in [K3]. Another related concrete
question is the following.

PROBLEM 3. Is C[0,ws] isomorphic to a subspace of a Plichko space?
Or even, is there an equivalent norm on C[0,ws] such that the dual unit ball
is a Valdivia compactum?
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