
COLLOQU IUM MATHEMAT ICUM
VOL. 92 2002 NO. 2

ON THE ORBIT OF THE CENTRALIZER OF A MATRIX

BY

CHING-I HSIN (Hsinchu County, Taiwan)

Abstract. Let A be a complex n× n matrix. Let {A}′ be its commutant in Mn(C),
and C(A) be its centralizer in GL(n,C). Consider the standard C(A)-action on C

n. We
describe the C(A)-orbits via invariant subspaces of {A}′. For example, we count the
number of C(A)-orbits as well as that of invariant subspaces of {A}′.

1. Introduction. Let Mn×m(C) be the n ×m complex matrices, and
Mn(C) =Mn×n(C). Let GL(n,C) be the invertible matrices in Mn(C). Fix
A ∈Mn(C), and let

C(A) = {T ∈ GL(n,C) : TA = AT}

denote the centralizer of A. For any vector x ∈ C
n,

Ox = {Tx : T ∈ C(A)} ⊂ C
n

is the orbit of the standard action of C(A) on C
n. The purpose of this paper

is to study the number of C(A)-orbits in C
n.

Consider the orbit space

OC(A) = {Ox : x ∈ C
n}.

It is clear that OC(A) is a partition of the whole vector space C
n. As men-

tioned above, this article studies the number of elements in OC(A).
We show that the problem of studying the number of C(A)-orbits for an

arbitrary square matrix A reduces to the case where A is nilpotent. First,
we study the properties of Ox. Let

{A}′ = {T ∈Mn(C) : TA = AT}.

For a vector x, let
Mx = {Tx : T ∈ {A}

′}.

The linear spaceMx is closed in C
n. Also, let Ox ⊂ C

n denote the closure
of Ox in C

n.

Lemma 1.1. For any vector x, Ox =Mx.

2000 Mathematics Subject Classification: 47A15, 15A21.
Key words and phrases: centralizer, commutant, lattice, Jordan form.

[243]



244 C. HSIN

Proof. Since Ox ⊂Mx andMx is closed, it follows that Ox ⊂Mx. On
the other hand, for any T ∈ {A}′, there exists a sequence {Tn}∞n=1 ⊂ C(A)
with Tn → T . HenceMx ⊂ Ox, which completes the proof.

Proposition 1.2. If Ox = Oy, then Ox = Oy.

Proof. Observe that Oy is a disjoint union of C(A)-orbits. So we may
write Oy = Oy ∪

⋃
αOyα , where Oy and all Oyα are distinct. Further, the

dimension of each manifold Oyα is less than the dimension of Oy.
Suppose that Ox 6= Oy. Then from Ox ⊂ Oy, it follows that Ox = Oyα

for some α. Since dimOx < dimOy, the closure Ox cannot contain Oy,
which contradicts Ox = Oy, and the proposition follows.

In view of the previous lemma and proposition, we obtain a partial order
� in the following definition.

Definition 1.3. (a) Let � be the partial order on OC(A) defined by

Ox � Oy if and only if Ox ⊂ Oy, where Ox,Oy ∈ OC(A).
(b) Two orbit spaces OC(A) and OC(B) are said to be isomorphic if there

exists an order-preserving bijection between them.

The following two propositions are easy to prove, yet important.

Proposition 1.4. Let A,B ∈ Mn(C). If A = S−1BS for some S ∈
GL(n,C), then C(A) = {S−1RS : R ∈ C(B)}. Hence OC(A) and OC(B) are
isomorphic.

For any A ∈Mn(C), we use σ(A) to denote the spectrum of A. Also, we
write ♯B for the number of elements in a set B.

Proposition 1.5. Let A ∈Mn(C) and B ∈Mm(C). If σ(A) and σ(B)
are disjoint , then C(A ⊕ B) = {X ⊕ Y : X ∈ C(A) and Y ∈ C(B)}.
Moreover , OC(A⊕B) = {Ox ⊕ Oy : Ox ∈ OC(A) and Oy ∈ OC(B)}. Hence,
♯OC(A⊕B) = ♯OC(A) × ♯OC(B).

For any A ∈Mn(C), we use J(A) to denote the Jordan form of A, which
is similar to A, that is, there exists S ∈ GL(n,C) such that S−1AS = J(A).
By Proposition 1.4, OC(J(A)) and OC(A) are isomorphic. Consequently, by
Proposition 1.5, it suffices to consider the case of a one-eigenvalue matrix.
In fact, it may be reduced to the case of nilpotent matrices.
If we view C(A) as a Lie group, then {A}′ is its Lie algebra. In Section 2,

we will prove the following Main Theorem by transforming our setting from
the Lie group C(A) to the Lie algebra {A}′.

Main Theorem. Let Jn be the n× n Jordan block and let

J =
m⊕

i=1

ki⊕

j=1

Jni ∈Mn(C),
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where n1 > . . . > nm ≥ 1. Set nm+1 = 0. Then

♯OC(J) =
m∏

i=1

(ni − ni+1 + 1).

We consider the problem of determining ♯OC(A) for general matrices A
in Corollary 2.14. Finally, we consider the same problem for real matrices
in Section 3.

2. Nilpotent matrices. Let Jn be the standard n × n Jordan block.
That is,

(1) Jn =




0 1

0
. . .
. . . 1
0


 ∈Mn(C).

Let n1 > . . . > nm ≥ 1, k1, . . . , km ∈ N, and

(2) J =
m⊕

i=1

ki⊕

s=1

Jni .

In this section, we want to study OC(J). For a given matrix J , we may
compute C(J) directly, but this may not help to understand OC(J) because
the structure of C(J) is too complex. We provide an example as follows.

Example 2.1. Let J =
[
0 1
0 0

]
⊕
[
0 1
0 0

]
. By direct computation, every ele-

ment in C(J) is of the form 


a e b f

0 a 0 b
c g d h

0 c 0 d




for some complex numbers a, b, . . . , h.

Let J be defined as in (2). The treatment of C(J) can be difficult when
elements in C(J) are not block-upper-triangular. To remedy this, we will

transform J to J̃ via a unitary equivalence such that every element in C(J̃)
is block-upper-triangular. We note that OC(J) and OC(J̃) are isomorphic by

Proposition 1.4.

Lemma 2.2. Let J as in (2) be a matrix with respect to the basis

F = {f(n1, 1, 1), f(n1, 1, 2), . . . , f(n1, 1, n1),

f(n1, 2, 1), f(n1, 2, 2), . . . , f(n1, 2, n1), . . . , f(n1, k1, n1),

f(n2, 1, 1), f(n2, 1, 2), . . . , f(n2, 1, n2),

f(n2, 2, 1), . . . , f(n2, k2, n2),

f(n3, 1, 1), . . . , f(nm, km, 1), . . . , f(nm, km, nm)}.
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Consider the following reordering of F :

E = {f(n1, 1, 1), f(n1, 2, 1), . . . , f(n1, k1, 1),

f(n2, 1, 1), . . . , f(n2, k2, 1), . . . ,

f(nm, 1, 1), . . . , f(nm, km, 1),

f(n1, 1, 2), f(n1, 2, 2), . . . , f(nm, km, 2), . . . ,

f(n1, 1, n1), . . . , f(n1, k1, n1)}.

Then the matrix J written in the basis E is

(3) J̃ =




0u1 T1

0u2
. . .

. . . Tn1−1
0un1



on

n1⊕

j=1

C
uj ,

where

(4) Tj =

[
Iuj+1

0(uj−uj+1)×uj+1

]
∈Muj×uj+1(C),

and

(5)

u1 = . . . = unm = k1 + . . .+ km,

unm+1 = . . . = unm−1= k1 + . . .+ km−1,

...

un2+1 = . . . = un1 = k1.

Instead of considering J as in (2), we consider J̃ as in (3), because every

element in C(J̃) is block-upper-triangular. We explain it more clearly as
follows.

Theorem 2.3. Let J̃ be as in (3). Then for any X ∈ C(J̃) we have
X = [Xi,j ]

n1
i,j=1 on

⊕n1
i=1 C

ui with Xi,j = 0 for i > j, and for i ≤ j,

(6) Xi,j =

[
Xi+1,j+1 Ai,j
0 Bi,j

]
∈Mui×uj (C)

for some Ai,j ∈Mui+1×(uj−uj+1)(C) and Bi,j ∈M(ui−ui+1)×(uj−uj+1)(C).

Proof. For any X ∈ C(J̃), we know that

(7) XJ̃ = J̃X.

By examining the first column of (7), we see thatX2,1,X3,1, . . . , Xn1,1 are all
zero matrices. Then examining the second column of (7), we see that so are
X3,2, X4,2, . . . , Xn1,2. By induction, Xj+1,j , . . . , Xn1,j are all zero matrices.
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Therefore, Xi,j = 0 whenever i > j and so X is block-upper-triangular with
respect to

⊕n1
j=1 C

uj . Now, we only have to consider Xi,j for i ≤ j. By (7)
again, we have

Xi,jTj = Ti+1Xi+1,j+1.

Therefore, for each 1 ≤ j ≤ n1, X1,j , X2,j+1, . . . , Xn1−j+1,n1 are related and
(6) follows by direct computation.

However, C(J̃) is still too complicated for us to find its orbit space. So
we want to further simplify the setting. We first obtain two corollaries of
Lemma 2.2 and Theorem 2.3.

Corollary 2.4. Let B =
⊕m
i=1 Jni , where n1 > . . . > nm ≥ 1. The

matrix B is with respect to the basis F = {f(n1, 1), f(n1, 2), . . . , f(n1, n1),
f(n2, 1), f(n2, 2) , . . . , f(n2, n2), . . . , f(nm, 1), f(nm, 2) , . . . , f(nm, nm)}.
Consider the following reordering E of F : {f(n1, 1), f(n2, 1), . . . , f(nm, 1),
f(n1, 2), f(n2, 2), . . . , f(nm, 2), . . . , f(n1, n1)}. Then the matrix B written in
the basis E is

(8) B̃ =




0t1 B1

0t2
. . .

. . . Bn1−1
0tn1



on

n1⊕

j=1

C
tj ,

where

(9) Bj =

[
Itj+1

0(tj−tj+1)×tj+1

]
∈Mtj×tj+1(C),

and

(10)

t1 = . . . = tnm =m,

tnm+1 = . . . = tnm−1=m− 1,

...

tn2+1 = . . . = tn1 =1.

Corollary 2.5. If Y ∈ C(B̃), then Y = [Yi,j ]
n1
i,j=1 on

⊕n1
i=1 C

ti with

Yi,j = 0 for i > j, and for i ≤ j,

(11) Yi,j =

[
Yi+1,j+1 Ci,j
0 Di,j

]
∈Mti×tj (C)

for some Ci,j ∈Mti+1×(tj−tj+1)(C) and Di,j ∈M(ti−ti+1))×(tj−tj+1)(C).

We now want to prove that O
C(J̃) and OC(B̃) are isomorphic. Consider

J̃ in (3) as [Ji,j ]
n1
i,j=1 on

⊕n1
i=1 C

ui , and B̃ in (8) as [Bi,j ]
n1
i,j=1 on

⊕n1
i=1 C

ti .
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It is easy to see that [Ji,j ]
n1
i,j=1 and [Bi,j ]

n1
i,j=1 have the following similar

structures:

(1) Only for 1 ≤ i ≤ n1 − 1, Ji,i, Ji,i+1, Bi,i, Bi,i+1, Jn1,n1 and Bn1,n1
could be nonzero matrices. The other entries of [Ji,j ]

n1
i,j=1 and [Bi,j ]

n1
i,j=1 are

all zero matrices.

(2) For each 1 ≤ i ≤ n1, both Ji,i and Bi,i are scalar matrices.

(3) For each 1 ≤ i ≤ n1 − 1, both Ji,i+1 and Bi,i+1 are of the form
[
I
0

]
.

By Theorem 2.3, we have a clear picture of elements in C(J̃). For X ∈

C(J̃), X is block-upper-triangular with respect to
⊕n1
j=1 C

uj . In addition,

if P ∈ O
C(J̃), then P =

⊕n1
j=1 Pj , where each Pj is either 0 or C

kj . Sim-

ilarly, by Corollary 2.5, for Y ∈ C(B̃), Y is upper-triangular with respect

to
⊕n1
j=1 C

tj . By the structure of C(B̃), if Q ∈ O
C(B̃), then Q =

⊕n1
i=1Qi,

where each Qi is either 0 or C. These observations help us to prove the
following lemma. Recall from Definition 1.3 that two orbit spaces are iso-
morphic if and only if there exists an order-preserving bijection between
them.

Lemma 2.6. The orbit spaces O
C(J̃) and OC(B̃) are isomorphic.

Proof. Define φ : O
C(J̃) → OC(B̃) by φ(P) = Q, where P =

⊕n1
i=1 Pi,

Q =
⊕n1
i=1Qi with Qi = C if Pi = C

ki and Qi = 0 if Pi = 0. By Proposi-
tion 1.2, φ is well defined. In addition, it is clear that φ is an order-preserving
bijection. Therefore, O

C(J̃) and OC(B̃) are isomorphic.

By Lemma 2.6, from now on it suffices to consider O
C(B̃). Recall that

{B̃}′ consists of all matrices which commute with B̃. As is often the case

in Lie group theory, we transfer the problem about the Lie group C(B̃) to

one about its Lie algebra {B̃}′. As usual, a linear space M is said to be

invariant for an algebra {B̃}′ if TM ⊂M for any T ∈ {B̃}′. Consider the

lattice of invariant subspaces of {B̃}′:

Lat {B̃}′ = {M ⊆ C
n :M is an invariant subspace of {B̃}′}.

As a side remark, for any matrix A, the study of Lat {A} and Lat {A}′ is
of interest. Brickman and Fillmore [1] study Lat {A} under many different
conditions. [3] considers more general topics in invariant subspaces. In this

paper we focus on Lat {B̃}′.

For a vector x, recall thatMx = {Tx : T ∈ {B̃}′}, which is the smallest

invariant subspace of {B̃}′ containing x. Let A1, . . . ,Am be subsets of a
given vector space. As usual, we use

∨m
i=1Ai to denote the linear span of
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A1, . . . ,Am. In general, it is easy to see that for a square matrix T , and
M∈ Lat {T}′,M is

∨m
i=1Mxi for some vectors x1, . . . , xm.

Recall that B̃ is taken with respect to the basis E which is defined in
Corollary 2.4. For the convenience of computing, we rename the element
f(nk, l) ∈ E as e(l, k) from now on.

By Corollary 2.5, each matrix in {B̃}′ is upper-triangular. For each

M ∈ Lat {B̃}′, M =
∨k
l=1Me(il,jl) for some e(i1, j1), . . . , e(ik, jk) ∈ E.

Since
∨k
l=1Me(il,jl) =M

∑
k
l=1
e(il,jl)

, we conclude thatM =M∑k
l=1
e(il,jl)

.

Note that ♯Lat {B̃}′ is not equal to the number of subsets of E, because
different subsets of E may lead to the same invariant subspace. For example,
Me(1,2) =Me(1,1)+e(1,2).

Lemma 2.7. Let {tl}
n1
l=1 be as in (10). For each M ∈ Lat {B̃}

′, there
exist e(i1, j1), e(i2, j2), . . . , e(ik, jk) ∈ E, with 1 ≤ i1 < . . . < ik ≤ n1, and
e(il−1, jl−1) 6∈ N (il, jl) for each l = 2, . . . , k, such that M =M∑k

l=1
e(il,jl)

.

In addition,

M = (C
tnj1−i1+1 ⊕ 0)⊕ (C

tnj1−i1+2 ⊕ 0)⊕ . . .⊕ (C
tnj1 ⊕ 0)

⊕ (C
tnj2−i2+i1+1 ⊕ 0)⊕ . . .⊕ (C

tnj2 ⊕ 0)⊕ . . .

⊕ (C
tnjk−ik+ik−1+1 ⊕ 0)⊕ . . .⊕ (C

tnjk ⊕ 0)

on
⊕n1
l=1C

tl , and (tnj1−i1+1 , tnj1−i1+2 , . . . , tnjk ) is a subsequence of {tl}
n1
l=1.

Proof. For X ∈ {B̃}′, let X(i, j) be the (i, j)th column of X. By Theo-
rem 2.3, for each 1 ≤ k ≤ m,

(12) X(nk, tnk) = X(nk, k) =

nk⊕

j=1

X(nk, k, j)⊕
n1⊕

j=nk+1

0

on
⊕n1
i=1 C

ti , where each X(nk, k, j) is a tj × 1 complex matrix:

X(nk, k, j) =




a
(j,1)
(nk,k)

...
a
(j,tj)

(nk,k)


 ∈Mtj×1(C).

In addition, by Theorem 2.3 again, for each 1 ≤ i ≤ n1, 1 ≤ j ≤ tni ,

(13) X(i, j) =
( i⊕

l=1

X(nj , j, nj − i+ l)⊕ 0
)
⊕

n1⊕

l=i+1

0

on
⊕n1
i=1 C

ti .
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Let N (i, j) be the column space of X(i, j). That is, by (13),

(14) N (i, j) =
( i⊕

l=1

C
tnj−i+l ⊕ 0

)
⊕

n1⊕

l=i+1

0 ⊂
n1⊕

l=1

C
tl .

Since {B̃}′ is an algebra, N (i, j) ∈ Lat {B̃}′. In fact, N (i, j) = Me(i,j) is

the smallest invariant subspace of {B̃}′ which contains e(i, j). Moreover, by
(14), for each i with 1 ≤ i ≤ n1, N (i, j) ⊂ N (i, k) if 1 ≤ j ≤ k ≤ tni .
Similarly, for each j with 1 ≤ j ≤ n1, N (i, j) ⊂ N (k, j) if i ≤ k. Therefore,

for eachM∈ Lat {B̃}′, there exist e(i1, j1), e(i2, j2), . . . , e(ik, jk) ∈ E, with
1 ≤ i1 < . . . < ik ≤ n1, and e(il−1, jl−1) 6∈ N (il, jl) for each l = 2, . . . , k,
such that

M =
k∨

l=1

N (il, jl) =
k∨

l=1

Me(il,jl) =M
∑
k
l=1
e(il,jl)

.

Moreover, by (14),

M∑k
l=1
e(il,jl)

= (C
tnj1−i1+1 ⊕ 0)⊕ (C

tnj1−i1+2 ⊕ 0)⊕ . . .⊕ (C
tnj1 ⊕ 0)

⊕ (C
tnj2−i2+i1+1 ⊕ 0)⊕ . . .⊕ (C

tnj2 ⊕ 0)⊕ . . .

⊕ (C
tnjk−ik+ik−1+1 ⊕ 0)⊕ . . .⊕ (C

tnjk ⊕ 0)

on
⊕n1
l=1C

tl . Now, it remains to show that (tnj1−i1+1 , tnj1−i1+2 , . . . , tnk) is a
subsequence of {tl}

n1
l=1. That is to say, we should prove that

nj1−i1+1 < nj1−i1+2 < . . . < nj1 < nj2−i2+i1+1 < . . . < nj2

< nj3−i3+i2+1 < . . . < njk .

Since e(i1, j1) 6∈ N (i2, j2), we have tnj1 > tnj2−i2+i1 ≥ tnj2−i2+i1+1. It fol-
lows that nj1 < nj2−i2+i1 < nj2−i2+i1+1 because {ti}

n1
i=1 is a decreasing

sequence. Similarly, njp < njp+1−ip+1+ip+1 for p = 1, . . . , k − 1. This com-
pletes the proof.

The following lemma deals with the converse of Lemma 2.7.

Lemma 2.8. Each subsequence (tl1 , . . . , tlk) of {tl}
n1
l=1 produces an in-

variant space (Ctl1 ⊕ 0)⊕ (Ctl2 ⊕ 0)⊕ . . .⊕ (Ctlk ⊕ 0)⊕ 0⊕ . . .⊕ 0 for {B̃}′

on
⊕n1
l=1C

tl .

Proof. Let A be the collection of all subsequences of {tj}
n1
j=1 and

A(i, j) = {(a1, . . . , ai) ∈ A : ai = j}.

Let

B(i, j) = {M ∈ Lat {B̃}′ : e(i, j) ∈M, e(k, l) 6∈ M if k > i or k = i, l > j}.



ORBIT OF THE CENTRALIZER 251

It is clear that {A(i, j) : i = 1, . . . , n1, j = 1, . . . , ti} and {B(i, j) : i =

1, . . . , n1, j = 1, . . . , ti} are partitions of A and Lat {B̃}′ respectively. It

suffices to show that for each (a1, . . . aj) ∈ A(i, j), there existsM∈ Lat {B̃}′

such that

M = (Ca1 ⊕ 0)⊕ (Ca2 ⊕ 0)⊕ . . .⊕ (Caj ⊕ 0)⊕ 0⊕ . . .⊕ 0

on
⊕n1
l=1C

tl . We do this by induction.

We first consider the case of i = 1. For each 1 ≤ j ≤ t1 = m, A(1, j) =
(j), andMe(1,j) = (C

j ⊕ 0)⊕ 0⊕ . . .⊕ 0. So we have proved the statement
for i = 1. Assume that it is true for i = 1, . . . , p − 1 and j = 1, . . . , ti. We
now consider the case of i = p and j = q, where 1 ≤ q ≤ tp. Let ap = q and
(a1, . . . , ap) ∈ A(p, q). IfMe(p,q) = (C

a1 ⊕ 0)⊕ (Ca2 ⊕ 0)⊕ . . .⊕ (Caj ⊕ 0)⊕
0⊕ . . .⊕ 0, then we are done. Otherwise, by (14),

Me(p,q) =
( q⊕

l=1

C
tnq−p+l ⊕ 0

)
⊕

n1⊕

l=i+1

0 ⊂
n1⊕

l=1

C
tl .

Since (tnq−p+1, tnq−p+2, . . . , tnq) is the smallest subsequence of {ti}
n1
i=1 with

length p and last term q, there exists l with 1 ≤ l < p such that the
last l terms of (a1, . . . , ap) and (tnq−p+1, tnq−p+2, . . . , tnq) are equal, but
ap−q > tnq−p+l. By assumption, there existsM0 ∈ B(p− l, ap−l) such that
M0 = (Ca1 ⊕ 0)⊕ (Ca2 ⊕ 0)⊕ . . .⊕ (Cap−l ⊕ 0)⊕ 0⊕ . . .⊕ 0. LetM be the
linear span ofM0 andMe(p,q). It follows thatM = (C

a1 ⊕ 0)⊕ (Ca2 ⊕ 0)⊕
. . .⊕ (Caq ⊕ 0)⊕ 0⊕ . . .⊕ 0, which completes the proof.

Let {aj}nj=1 be a sequence of numbers, and let A be the collection of all
subsequences of {aj}nj=1. Note that the empty set is also an element of A.

For any b = {bj}kj=1 and c = {cj}
l
j=1 in A, we define b � c if k < l and

bj ≤ cj for all j. It is obvious that (A,�) is a partially ordered set.

Definition 2.9. Let M,N ∈ Lat {A}′, where A ∈ Mn(C). We define
M� N if and only ifM⊂ N .

Thus Lat {A}′ is also a partially ordered set. Let {tl}
n1
l=1 be defined as

in (10), and let A be the collection of all subsequences of {tl}
n1
l=1. Let B̃

be as in (8). As in Definition 1.3, two partially ordered sets are said to
be isomorphic if there exists an order-preserving bijection between them.
Combining Lemmas 2.7, 2.8, we get the following corollary.

Corollary 2.10. Lat {B̃}′ and A are isomorphic.

Next, we want to prove that Lat {B̃}′ and O
C(B̃) are isomorphic. Recall

that an element in O
C(B̃) is of the form Ox = {Tx : T ∈ C(B̃)} for some

x ∈ C
n.
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Proposition 2.11. The partially ordered sets O
C(B̃) and Lat {B̃}

′ are

isomorphic and so ♯O
C(B̃) = ♯Lat {B̃}

′.

Proof. Define φ : O
C(B̃) → Lat {B̃}

′ by φ(Ox) = Mx for any x ∈ C
n.

If x and y are distinct vectors with Ox = Oy, then by Lemma 1.1, Mx =

Ox = Oy =My. Thus, φ is well defined. Next, for eachM ∈ Lat {B̃}′, by
Lemma 2.7,M =Mx for some vector x. Therefore, φ(Ox) =Mx =M and
so φ is onto. IfMx =My, then Lemma 1.1 and Proposition 1.2 show that
Ox = Oy. Finally, it is clear that φ is order-preserving.

Let nm+1 = 0. Since ♯A =
∏m
i=1(ni−ni+1+1), it follows that ♯OC(B̃) =∏m

i=1(ni−ni+1+1). By Corollary 2.10 and Proposition 2.11, we obtain the
following theorem.

Theorem 2.12. The three partially ordered sets O
C(B̃), Lat {B̃}

′ and A

are isomorphic. Hence ♯O
C(B̃) =

∏m
i=1(ni − ni+1 + 1).

Proof of the Main Theorem. Recall that J is defined as in (2). By
Lemma 2.2, Proposition 1.4, and Lemma 2.6, we know that OC(J) is iso-

morphic to O
C(B̃). By the previous theorem, OC(B̃), Lat {B̃}

′ and A are

isomorphic. Hence ♯OC(J) =
∏m
i=1(ni−ni+1+1) and so the Main Theorem

is proved.

Corollary 2.13. Let N be a normal matrix with distinct eigenvalues
λ1, . . . , λm. Then ♯Lat {N}′ = 2m.

Proof. Via Jordan form, we may assume that N =
⊕m
i=1Ni, where each

Ni is normal with the only eigenvalue λi. We let n and ni denote the cardi-
nality of Lat {N}′ and Lat {Ni}′ for each i respectively. By Proposition 1.5,
n = n1 . . . nm. By the Main Theorem, ni = 2 for each i. Hence n = 2

m.

We now consider ♯OC(A) for an arbitrary matrix A ∈Mn(C). By Propo-
sition 1.4, we know that ♯OC(A) = ♯OC(J(A)), where J(A) is the Jordan
form of A. That is, there exist distinct complex numbers λ1, . . . , λk such

that J(A) =
⊕k
j=1 J(λj), and each J(λj) =

⊕mj
i=1

⊕kj,i
s=1 Jnj,i(λj), where

Jnj,i(λj) =




λj 1

λj
. . .

. . . 1
λj



∈Mnj,i(C),

with nj,1 > nj,2 > . . . > nj,mj ≥ 1 and each kj,i ∈ N. Set nj,mj+1 = 0.
By Propositions 1.4, 1.5, and the Main Theorem, we obtain the following
corollary.
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Corollary 2.14. For an arbitrary matrix A ∈Mn(C),

♯OC(A) =
k∏

j=1

mj∏

i=1

(nj,i − nj,i+1 + 1).

Finally, we provide an example to illustrate the computation of OC(A)
for a given matrix A.

Example 2.15. Let

Jn =




0 1
0 1
. . .
. . .

0


 ∈Mn(C)

and A = J4 ⊕ J2 ⊕ J1. We will list all the elements in OC(A).
First, we change the order of the basis from {ei}7i=1 to {e1, e5, e7, e2, e6,

e3, e4}. Also, define t1 = 3, t2 = 2, and t3 = t4 = 1. Then the matrix A
written in the new basis is

Ã =




03
I2
02×1

02
1
0

0 1

0




on C
t1 ⊕ C

t2 ⊕ C
t3 ⊕ C

t4 .
It is easy to see that {ti}4i=1 has 12 subsequences: {3, 2, 1, 1}, {3, 2, 1},

{3, 1, 1}, {2, 1, 1}, {3, 2}, {3, 1}, {2, 1}, {1, 1}, {3}, {2}, {1} and the empty

set. By Lemmas 2.7 and 2.8, Lat {Ã}′ has 12 elements. Moreover, every
subsequence {m1,m2,m3,m4} of {ti}4i=1 represents an element (C

m1 ⊕0)⊕

(Cm2⊕0)⊕(Cm3⊕0)⊕(Cm4⊕0) ∈ Lat {Ã}′ with respect to C
3⊕C

2⊕C
1⊕C

1.
By Lemma 1.1, each (Cm1 ⊕ 0)⊕ (Cm2 ⊕ 0)⊕ (Cm3 ⊕ 0)⊕ (Cm4 ⊕ 0) is the
closure of some orbit Ox. We get the 12 orbits of OC(A) as follows:

1. Oe4 = {(x1, x2, x3, x4, x5, x6, x7) : x4 6= 0},
2. Oe3+e6 = {(x1, x2, x3, 0, x5, x6, x7) : x3, x6 6= 0},
3. Oe3+e7 = {(x1, x2, x3, 0, x1, 0, x7) : x3, x7 6= 0},
4. Oe3 = {(x1, x2, x3, 0, x5, 0, 0) : x3 6= 0},
5. Oe6 = {(x1, x2, 0, 0, x5, x6, x7) : x6 6= 0},
6. Oe2+e7 = {(x1, x2, 0, 0, x5, 0, x7) : x2, x7 6= 0},
7. Oe2+e5 = {(x1, x2, 0, 0, x5, 0, 0) : x2, x5 6= 0},
8. Oe2 = {(x1, x2, 0, 0, 0, 0, 0) : x2 6= 0},
9. Oe7 = {(x1, 0, 0, 0, x5, 0, x7) : x7 6= 0},
10. Oe5 = {(x1, 0, 0, 0, x5, 0, 0) : x5 6= 0},
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11. Oe1 = {(x1, 0, 0, 0, 0, 0, 0) : x1 6= 0},

12. O0 = {(0, 0, 0, 0, 0, 0, 0)}.

3. General real square matrix. In this section, the whole setting is
restricted to Mn(R), the set of all real n × n matrices. Let GL(n,R) be
the Lie group of invertible matrices in Mn(R). Given A ∈ Mn(R), we use
C(A) = {T ∈ GL(n,R) : TA = AT} to denote the centralizer of A. For any
x ∈ R

n, Ox = {Tx : T ∈ C(A)} ⊂ R
n is the orbit of the standard action

of C(A) on R
n. Consider the collection of orbits, OC(A) = {Ox : x ∈ R

n}.
We aim to compute ♯OC(A). As in Section 2, it suffices to consider OC(J(A)),
where J(A) is the real Jordan form of A which we now recall.

Let A ∈Mn(R) and J(A) be its real Jordan form. Since A is a real ma-
trix, we may assume that the distinct eigenvalues of A are α1±iβ1, . . . , αk±
iβk, ν1, . . . , νl where each αj , βj , νj ∈ R and βj > 0. Let J(νi) be the direct
sum of all Jordan blocks associated with the eigenvalues νi as explained in
Section 2. Also, let J(αi, βi) be the direct sum of all Jordan blocks associated
with the eigenvalues αi ± iβi. That is, there exist mi ∈ N, ni,1, . . . , ni,mi ,
ki,1, . . . , ki,mi ∈ N with ni,1 > . . . > ni,mi ≥ 1, such that

K =

[
α β

−β α

]
∈M2(R),

and

J(αi, βi) =

mi⊕

l=1

ki,mj⊕

j=1




K I2

K
. . .
. . . I2
K




2ni,l

∈M∑mi
l=1 2ni,l×ki,l

(R).

J(A) is the direct sum of all J(νi) and J(αi, βi):

J(A) =

k⊕

i=1

J(αi, βi)⊕
l⊕

j=1

J(νj).

Propositions 1.4 and 1.5 still hold in Mn(R). So it suffices to consider each
OC(J(νi)) and each OC(J(αi,βi)) in order to understand OC(A). Moreover,
we note that the Main Theorem holds if we consider the whole setting in
Mn(R) in place of Mn(C). So each Lat {J(νi)}′ is well understood. We now
only have to consider each Lat {J(αi, βi)}′. Let α, β ∈ R with β > 0. For
simplicity, we may consider Lat {J(α, β)}′ directly.

Recall that J(α, β) is the direct sum of all Jordan blocks associated
with α ± iβ. That is, there exist m ∈ N, n1, . . . , nm, k1, . . . , km ∈ N with



ORBIT OF THE CENTRALIZER 255

n1 > . . . > nm ≥ 1 such that

K =

[
α β

−β α

]
,

J(α, β) =
m⊕

i=1

ki⊕

j=1




K I2

K
. . .
. . . I2
K




2ni

∈M∑m
i=1
2ni×ki(R).(15)

Using the same approach as in Section 2, we get the following analogue
of the Main Theorem.

Theorem 3.1. Let J(α, β) ∈Mn(R) be as in (15) and nm+1 = 0. Then

♯Lat {J(α, β)}′ =
m∏

i=1

(ni − ni+1 + 1).

Thus, we can also completely solve the lattice structure for the commu-
tant of real matrices.
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