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Abstract. We present a multidimensional version of the Three Gap Theorem of
Steinhaus, proving that the number of the so-called primitive arcs is bounded in any
dimension.

1. Introduction. Let α be an irrational number and d ≥ 1 an integer.
The distribution of the local spacings between the members of the sequence
ndα (mod1) in the case d = 1 is completely different from the distribution
when d > 1 (see [4] and the references therein). If d > 1 one expects that
for almost all α the distribution is Poissonian, and one knows for instance
that the pair correlation is Poissonian indeed (see [1] and [4]). If d = 1 one
knows that the distribution is not Poissonian, and this is a consequence of
the following Three Gap Theorem of Steinhaus:

Let α be a positive number and N a non-negative integer. Then the
fractional parts {nα}, 0 ≤ n ≤ N, partition the unit interval into N + 1
intervals which have at most 3 different lengths.

Proofs were subsequently provided by several authors (see [3], [5], [6]).
In this paper we are interested in seeing whether such a phenomenon also
holds in a multidimensional setting. A two-dimensional Steinhaus theorem
was proved in [2]. Thus, if α1, α2 are real numbers and N1, N2 are non-
negative integers, then the set {{n1α1 + n2α2} : 0 ≤ ni ≤ Ni, 1 ≤ i ≤ 2}
partitions the unit interval into subintervals having at most N1+4 different
lengths and this bound can be attained. Hence, in the two-dimensional case
the number of different lengths is unbounded as N1 →∞ and therefore the
same thing will happen in higher dimensions. We say that a gap is primitive
if its length is not a sum of shorter lengths (not necessarily distinct) of
other intervals in the partition. Returning to the one-dimensional Three
Gap Theorem, we mention that it has a second part, which states that in
case there are 3 different lengths, one of them equals the sum of the other
two. Thus in dimension one there are at most two primitive gaps. This is
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the statement which will be generalized in the present paper. In Section 2
we prove that the number of primitive gaps is bounded in any dimension k
by 2k. It might be that this bound is best possible for any k ≥ 1, but this
remains an open problem. In the last section we give examples for k = 2
and k = 3 with respectively 4 and 8 primitive gaps.

2. Primitive gaps. Let α = (α1, . . . , αk) be a vector with positive
entries and for any positive integers N1, . . . , Nk we consider the set of k-
vectors

N = {n = (n1, . . . , nk) : 0 ≤ ni ≤ Ni for 1 ≤ i ≤ k}.

We investigate the spacings between consecutive members of the sequence

M = {{n ·α} : n ∈ N
}

⊂ [0, 1),

where the dot product is defined as usual by n · α = n1α1 + . . .+ nkαk. It
is convenient to view M on the circle C = C(0, 1/(2π)), with center at the
origin and circumference equal to 1. Thus any vector n ∈ N corresponds
to a point 1

2π
e({n · α}) = 1

2π
e2πi{n·α} ∈ C. ThenM might be seen as a set

of “footprints” of a walk on the circle C. The gap (or spacing) between two
footprints 1

2π
e({m · α}), 1

2π
e({n · α}) ∈ M is the length l(m,n) of the arc

(

1

2π
e({m ·α}), 1

2π
e({n ·α})

)

. Let

A =

{(

1

2π
e({m ·α}),

1

2π
e({n ·α})

)

:m,n ∈ N

}

(1)

be the set of all arcs determined by M. With no danger of confusion, we
will briefly write any element of A as (m,n). In what follows all the arcs
are oriented in the counterclockwise direction. Given an arc (m,n), we call
m the initial point of (m,n), and n the endpoint of (m,n). Note that

l(m,n) = 1− l(n,m).

For any m ∈ N and i ∈ {1, . . . , k} we write

m(mi → u) := (m1, . . . , u, . . . ,mk)

for the point obtained from m by replacing the component mi by u.

A set B ⊂ A of arcs is called invariant under translations if for ev-
ery arc (m,n) ∈ B, for any 1 ≤ i ≤ k, and for any integers u, v with 0 ≤ u
≤ min{mi, ni} and max(mi, ni) ≤ max(mi, ni) + v ≤ Ni, both arcs
(m(mi − u),n(ni − u)) and (m(mi + v),n(ni + v)) are in B. Note that
all those arcs have the same length, equal to l(m,n).

Let B ⊂ A be a set of arcs. We say that an arc (m,n) ∈ B is inde-
composable in B if l(m,n) > 0 and there is no point s ∈ (m,n) such that
l(m, s) > 0, l(s,n) > 0 and both arcs (m, s) and (s,n) are in B.
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We call a set B ⊂ A of arcs complete if for any arc (m,n) ∈ B the arc
(n,m) belongs to B and for any pair of arcs (m,n), (n, s) ∈ B we also have
(m, s) ∈ B.

We call an arc (m,n) ∈ B primitive in B if l(m,n) > 0 and l(m,n)
cannot be written as a sum of smaller lengths l(r, s) (not necessarily distinct)
of non-overlapping arcs (r, s) from B. Clearly any arc which is primitive in
A is also indecomposable in A, but the converse is not true.

Note that for any m ∈ N there is a unique point s ∈ C such that the arc
(m, s) belongs to A and is indecomposable. Indeed, among all the arcs in
A which have m as their initial point, there is one which has the smallest
length; call it (m, s). Then (m, s) is indecomposable, while any other arc
(m,n) ∈ A decomposes into two arcs (m, s) and (s,n), both of which belong
to A. Similarly, there is a unique indecomposable arc in A that has m as its
endpoint. The number of primitive arcs, however, is much smaller than the
cardinality of N .

Lemma 1. Let B ⊂ A be a complete set of arcs. Suppose (m,n) and
(m, r) are arcs in B, l(m,n) > 0 and (m, r) is indecomposable in B. Then

l(m, r) ≤ l(m,n).

Proof. Suppose l(m, r) > l(m,n). Then n ∈ (m, r) and l(n, r) > 0.
Moreover, since B is complete it follows that (n, r) ∈ B. This implies that
(m, r) is not indecomposable in B, contradicting the hypothesis.

Lemma 2. Let B be a complete subset of A invariant under translations.
Let

Ω = {(m,n) ∈ B : (m,n) indecomposable in B and

mi ∈ {0, Ni} for i = 1, . . . , k}.

Then for every arc (r, s) ∈ B with l(r, s) > 0 there exists an arc (m,n) ∈ Ω
such that either

l(r, s) = l(m,n),

or there exists an arc (n, t) ∈ B with l(n, t) > 0 such that

l(r, s) = l(m,n) + l(n, t).

Proof. Let

Ω0 = {(m,n) ∈ B : l(m,n) > 0, mi ∈ {0, Ni} for i = 1, . . . , k}.

Let (r, s) ∈ B. Since the length of an arc is translation invariant and by hy-
pothesis B is invariant under translations, it follows that Ω0 contains an arc
(m, t) for which l(r, s) = l(m, t). Precisely, one defines m = (m1, . . . ,mk)
and t = (t1, . . . , tk) by
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mi =

{

0 if ri ≤ si,
Ni if ri > si,

ti =

{

si − ri if ri ≤ si,
Ni + si − ri if ri > si,

for any 1 ≤ i ≤ k. We distinguish two cases.

1. The arc (m, t) is indecomposable in B. Then (m, t) ∈ Ω and (m,n) =
(m, t) is the required arc.

2. The arc (m, t) is not indecomposable in B. Then there is a unique
point n ∈ (m, t) with l(m,n) > 0, l(n, t) > 0 such that (m,n) ∈ B and
(m,n) is indecomposable in B. Then (m,n) ∈ Ω. Since B is complete one
has (n, t) ∈ B. Also

l(r, s) = l(m, t) = l(m,n) + l(n, t).

Lemma 3. Let B ⊂ A be complete and invariant under translations,
(m,n) ∈ B, (r, s) ∈ B and assume that (m,n) is a translation of (r, s).
Then (m,n) is primitive if and only if (r, s) is primitive.

This follows immediately from the definition of primitive arcs and the
fact that translations leave the length of an arc unchanged.

Theorem 1. Let α = (α1, . . . , αk) be a vector with positive entries and
let N1, . . . , Nk be positive integers. Let A be the set of arcs given by (1) and
let B be a subset of A complete and invariant under translations. Then the
number of lengths of primitive arcs in B is at most 2k.

Proof. Let (r, s) ∈ B be a primitive arc. By Lemma 2 there exists an arc
(m,n) ∈ Ω such that either

l(r, s) = l(m,n),

or there exists an arc (n, t) ∈ B with l(n, t) > 0 such that

l(r, s) = l(m,n) + l(n, t).

Since the arc (r, s) is primitive in B, the second case cannot occur. It follows
that l(r, s) = l(m,n). Now each arc (m,n) ∈ Ω is uniquely determined by
its initial point m. Hence Ω contains at most 2k elements.

Theorem 2. Let α = (α1, . . . , αk) be a vector with positive entries, let
N1, . . . , Nk be positive integers and let r, 1 ≤ r ≤ k, be an integer. Assume
that for 1 ≤ i ≤ r one has αi = ai/qi for some positive integers ai, qi with
qi ≤ Ni. Let A be the set of arcs given by (1) and B a subset of A complete
and invariant under translations. Then the number of lengths of primitive

arcs in B is at most 2k−r.

Proof. Note first that we may assume qi = Ni for 1 ≤ i ≤ r, since the
fractional parts {m · α} give all the elements of M when m runs over N ,
but restricted by the conditions mi ≤ qi for 1 ≤ i ≤ r. Let (m,n) ∈ B be
a primitive arc. Using Lemmas 2 and 3 we know that there is a translation
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which sends (m,n) to an arc (s, t) ∈ Ω. On the other hand since {αiNi} =
{αiqi} = 0 for 1 ≤ i ≤ r, it follows that for any m ∈ N with mi ∈
{0, Ni}, 1 ≤ i ≤ r, the vector m′ = (m′1, . . . ,m

′
k) given by

m′i =

{

0 if 1 ≤ i ≤ r,
mi if r < i ≤ k,

produces the same point as m on the circle C. This shows that the number
of lengths of primitive arcs from B is not larger than the number of inde-
composable arcs of the form ((0, . . . , 0, xr+1, . . . , xk),y), where xi ∈ {0, Ni}
for r + 1 ≤ i ≤ k. In each such arc the endpoint is uniquely determined
by its initial point. Thus the number of lengths of primitive arcs is at most
2k−r.

Theorem 1 can be generalized as follows. By an interval of integers J
we mean a finite set of consecutive integers J = {a, a + 1, . . . , a + b}. We
write ∂J = {a, a+ b}. Suppose that we have positive integers d1, . . . , dk and
for each 1 ≤ i ≤ k, we are given a set Ni which is a union of di intervals of
integers, say Ni = Ji1∪. . .∪Jidi . The intervals Ji1, . . . , Jidi do not need to be
disjoint, but we will assume that they have the same number of elements, say
|Ji1| = . . . = |Jidi | = Ni. Set ∂Ni = ∂Ji1 ∪ . . . ∪ ∂Jidi . Let α = (α1, . . . , αk)
be a vector with positive components. We consider the set of k-vectors

N = {n = (n1, . . . , nk) : ni ∈ Ni for 1 ≤ i ≤ k}

and define the setsM and A as at the beginning of this section. Let B be
a complete subset of A invariant under translations and

Ω = {(m,n) ∈ B : (m,n) indecomposable in B and

mi ∈ ∂Ni for i = 1, . . . , k}.

Note that Ω contains at most 2kd1 . . . dk elements. Arguing as before one
obtains the following theorem, which shows that the number of lengths of
primitive arcs produced by the set B is bounded in terms of d1, . . . , dk,
regardless of the size of N1, . . . , Nk.

Theorem 3. Let α = (α1, . . . , αk) be a vector with positive entries and
let d1, . . . , dk be positive integers. For 1 ≤ i ≤ k let Ni be a union of di
intervals of integers Ji1, . . . , Jidi such that |Ji1| = . . . = |Jidi |. Let A be the
set of arcs given by (1) and let B be a subset of A complete and invariant
under translations. Then the number of lengths of primitive arcs in B is at
most 2kd1 . . . dk.

Remark 1. (1) In particular, when d1 = . . . = dk = 1 this gives the
bound from Theorem 1.
(2) If we drop the condition that |Ji1| = . . . = |Jidi |, 1 ≤ i ≤ k, then

the problem becomes more complicated, but there are instances when we
obtain reasonably good upper bounds for the number of primitive arcs by
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the same method. For example, if the intervals Ji1, . . . , Jidi have about the
same length, in the sense that |Ji1|, . . . , |Jidi| ∈ [Ni, 2Ni] for some Ni, then
we again have an upper bound for the number of lengths of primitive arcs
which does not depend on Ni.

Corollary 1. Let α = (α1, . . . , αk) be a vector with positive entries
and let d1, . . . , dk be positive integers. Let Ni be a set which is a union of
di intervals of integers Ji1, . . . , Jidi such that |Ji1|, . . . , |Jidi | ∈ [Ni, 2Ni] for
some positive integer Ni, 1 ≤ i ≤ k. Let A be the set of arcs given by (1)
and let B be a subset of A complete and invariant under translations. Then
the number of lengths of primitive arcs in B is at most 4kd1 . . . dk.

Proof. This follows from Theorem 3 and the fact that for any 1 ≤ i ≤ k
and any 1 ≤ j ≤ di, the interval Jij can be written as a union of two
intervals of integers Jij = J

′
ij ∪ J

′′
ij with |J

′
ij| = |J

′′
ij| = Ni. Then one applies

Theorem 3 with di replaced by 2di for 1 ≤ i ≤ k to get the result.

If B = A, the gap between two elements {m · α} and {n · α} that
corresponds to a primitive arc (m,n) ∈ A is called a primitive gap. Then
by Theorem 1 it follows that the number of lengths of primitive gaps is at
most 2k.

3. Examples for k = 2 and k = 3. The bound 2k from Theorem 1
is clearly the best possible when k = 1. In the first part of this section
we construct a class of examples to show that for k = 2 the bound 2k is
attained for every N1 > 1. To simplify the notations, we will briefly write
N,α, β instead of N1, α1, α2 respectively. We take k = 2, N > 1, N2 = 1,
ε = 1/(2N2 + 3N) and we consider the interval

I =

(

1

N + 1
,
(1− ε)N

N2 +N − 1

)

.

For any α restricted for the moment only to belong to I, we take β =
((2N − 1)/N)α+ ε. This selection allows us to calculate precisely the frac-
tional part of the numbers iα + jβ when 0 ≤ i ≤ N and 0 ≤ j ≤ 1. To do
this, let us notice that by definition it follows that

α < β < 2α and (N − 1)α+ β =

(

N − 1 +
2N − 1

N

)

α+ ε < 1.

Consequently, we have the following sequence of inequalities (notice that
they sort sub-unitary numbers, which therefore coincide with their own frac-
tional parts):

0 < α < β < 2α < α+ β < 3α < 2α+ β < 4α < 3α+ β < . . .(2)

< (N − 1)α < (N − 2)α+ β < Nα < (N − 1)α+ β < 1.
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It remains to find the position of {Nα + β} in this sequence. Again, by
definition we have

Nα+ β =
N2 + 2N − 1

N
α+ ε >

N2 + 2N − 1

N(N − 1)
+ ε > 1(3)

and

0 < Nα+ β − 1 =
N2 + 2N − 1

N
α+ ε− 1 < α.(4)

Then by (2)–(4) we obtain

0 < {Nα+ β} < {α} < {β} < {2α} < {α+ β}(5)

< {3α} < {2α+ β} < {4α} < {3α+ β} < . . .

< {(N − 1)α} < {(N − 2)α+ β} < {Nα} < {(N − 1)α+ β} < 1.

From (2) and (5) we see that there are only four distinct gaps between
consecutive points on the circle C(0, 1/(2π)) represented by {iα+jβ}, where
0 ≤ i ≤ N and 0 ≤ j ≤ 1. Then the distinct lengths of the gaps are:

d1 = {Nα+ β} =
N2 + 2N − 1

N
α−
2N2 + 3N − 1

2N2 + 3N
,

d2 = α− {Nα+ β} = −
N2 +N − 1

N
α+
2N2 + 3N − 1

2N2 + 3N
,

d3 = β − α =
N − 1

N
α+

1

2N2 + 3N
,

d4 = 2α− β =
1

N
α−

1

2N2 + 3N
.

Also, we find that there is one gap with length d1, two gaps with length d2,
N gaps with length d3 and N − 1 gaps with length d4. Then it is easy to
show that

d2 < d4 < d3 < d1.(6)

Now we are ready to prove that d1, d2, d3 and d4 are all lengths of
primitive gaps as announced at the beginning of this section. For this we
shall see that an additional restriction on α is needed. Thus we will choose
α ∈ I in such a way that a finite number of elements of I are excepted.
Since there are only two gaps with length d2 and d4 6= 2d2, by (6) and the
definition it follows that both d2 and d4 are lengths of primitive gaps.

The gap d3 is primitive unless

d3 = id2 + jd4(7)

for some i ∈ {0, 1, 2} and j ∈ {0, . . . , N − 1}. Condition (7) is equivalent to

α((N2 +N − 1)i− j +N − 1) =
(2N2 + 3N − 1)i− j − 1

2N + 3
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and we see that there are finitely many (at most 3N) values of α ∈ I for
which this is true with i ∈ {0, 1, 2} and j ∈ {0, . . . , N − 1}. Let U be the set
of those bad values of α, that is,

U = {α ∈ I : d3 = id2 + jd4 for some i ∈ {0, 1, 2}, j ∈ {0, . . . , N − 1}}.

Similarly, d1 is primitive unless

d1 = id2 + jd4 + hd3(8)

for some i ∈ {0, 1, 2}, j ∈ {0, . . . , N − 1}, h ∈ {0, . . . , N}. Condition (8) is
equivalent to

(9) α((N2 +N − 1)i− j − (N − 1)h+N2 + 2N − 1)

=
(2N2 + 3N − 1)i− j + h+ 2N2 + 3N − 1

2N + 3
.

Since the coefficient of α on the left-hand side of (9) is

≥ −(N − 1)−N(N − 1) +N2 + 2N − 1 = 2N > 0,

it follows that there are only finitely many (at most 3N(N + 1)) values
of α ∈ I for which (8) is satisfied with i ∈ {0, 1, 2}, j ∈ {0, . . . , N − 1},
h ∈ {0, . . . , N}. The set of those bad values is

V = {α ∈ I : d1 = id2 + jd4 + hd3 for some i ∈ {0, 1, 2},

j ∈ {0, . . . , N − 1}, h ∈ {0, . . . , N}}.

The set U ∪V being finite, there are only a finite number of values of α ∈ I
for which d3 or d1 is not primitive.
In conclusion, for α ∈ I \ (U ∪ V) all the gaps are primitive and there

exist exactly four primitive arcs, as claimed.
We conclude the case k = 2 with the remark that in the above example,

the lengths of the primitive arcs are not linearly independent over Z.

In the second part of this section we move in 3 dimensions and we present
a numerical example where we find eight primitive gaps. Trying to get such
an example, we found that for small values of N1, N2, N3 and α1, α2, α3
chosen at random, it is quite unlikely to encounter an example with eight
primitive gaps. There is an interesting behavior though which combines
continuity with jumps in the number of distinct lengths of gaps and the
number of primitive gaps, if one changes slightly the values of α’s and the
N ’s. We also observed that the number of primitive gaps is near the bound
2k when most of the lengths of the gaps are close to one another, and very
often there are few primitive gaps when some gaps are small, other large and
the remaining have lengths well distributed in-between. Starting with three
real numbers in (0, 1) and three integers N1, N2, N3, moving back and forth
with slight changes in the chosen values, we arrived at the following example.
(This example is by no means singular; one can find similar examples in its
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neighborhood or with completely different values of α’s and N ’s.) Choose
N1 = 2, N2 = 12, N3 = 13 and α1 = 0.601189, α2 = 0.131320, α3 =
0.580500. Then there are 3 · 13 · 14 = 546 arcs between the points generated
by the set

{{n1α1 + n2α2 + n3α3} : n1 = 0, 1, 2, n2 = 0, 1, . . . , 12, n3 = 0, 1, . . . , 13}.

The arcs have only 13 distinct lengths, d1, . . . , d13. We present the results
in Table 1.

Table 1

Arc Length No. of apparitions

d1 0.000191 104 primitive
d2 0.000711 176 primitive
d3 0.000722 8 primitive
d4 0.000902 10
d5 0.001242 12 primitive
d6 0.002718 5 primitive
d7 0.002898 12 primitive
d8 0.003238 77 primitive
d9 0.003418 40 primitive
d10 0.003429 30
d11 0.003609 6
d12 0.003949 36
d13 0.004140 30

The gaps d4, d10, d11, d12, d13 are not primitive because

d4 = d1+d2, d10 = d2+d6, d11 = d2+d7, d12 = d2+d8, d13 = d5+d7.

The other eight gaps are primitive.
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