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STABILITY AND FLATNESS IN ACTS OVER MONOIDS

BY

JAMES RENSHAW (Southampton)

Abstract. Our aim in this paper is to study the concept of stability for acts over
monoids and in the process develop connections with flatness properties of acts and with
some of the current techniques and construction used in the homological classification of
monoids. We also present new proofs of some results relating to torsion free acts over
monoids and to the embeddability of semigroup amalgams.

1. Introduction. The author [9, 11, 13] introduced the concept of sta-
bility for acts over monoids and showed some strong connections with flat-
ness of monoid acts, with the embeddability of monoid amalgams and with
the structure of amalgamated free products of monoids. Our main aim in
this paper is to develop these connections and introduce some related prop-
erties of act monomorphisms. We also demonstrate that some of the current
results and techniques from the homological classification of monoids are
related to these properties.

Some connections between stability, flatness and amalgamation were pre-
sented by the author in [11] and [13]. We examine in more detail the connec-
tions between stability and flatness in Section 3. The results in this section
then act as a “template” for Section 4 where we define a hierarchy of proper-
ties related to stability and also to the notion of unitary submonoid. Howie
[4] has provided connections between the unitary properties and amalgama-
tion whilst Bulman-Fleming [1] summarises various connections with one of
the related properties that we introduce and the homological classification of
monoids. Section 5 briefly looks at when monomorphisms into various types
of indecomposable act are stable. In Section 6 we demonstrate some connec-
tions between stability and the various flatness concepts used in the homo-
logical classification theory before proving some interesting consequences in
Section 7.

2. Preliminaries. Throughout this paper U and S will be monoids.
For basic definitions and results on monoids and U -acts see for example
[6]. Let X be a right U -act and Y a left U -act. Then it is well known that
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x⊗ y = x′⊗ y′ ∈ X ⊗U Y if and only if there exists a U -scheme over X and
Y joining (x, y) to (x′, y′), that is to say, a finite set of equations

x = x1u1, u1y = v1y2,

x1v1 = x2u2, u2y2 = v2y3,

. . . . . .

xn−1vn−1 = xnun, unyn = vny
′,

xnvn = x
′,

where u1, . . . , un, v1, . . . , vn ∈ U, x1, . . . , xn ∈ X, y2, . . . , yn ∈ Y . From now
on, all tensor products, unless indicated, will be over U .

We say that a right U -act X is flat if for all left U -monomorphisms
f : A → B, the induced map 1X ⊗ f : X ⊗ A → X ⊗ B is one-to-one.
X is said to be weakly flat if for all left ideals I of U , X ⊗ I → X ⊗ U is
one-to-one, while it is principally weakly flat if X⊗ I → X⊗U is one-to-one
for all principal left ideals I of U . It can be shown that X is flat if and only
if whenever x⊗ y = x′ ⊗ y′ in X ⊗ Y then there is a U -scheme over X and
Uy ∪ Uy′ joining (x, y) to (x′, y′).

If f : X → Y is a right U -monomorphism then we say that f is (right)
pure if for all left U -acts Z, the canonical map f ⊗ 1Z : X ⊗ Z → Y ⊗ Z
is one-to-one. Recall also that we say that f splits if there exists a right
U -morphism g : Y → X with g ◦ f = 1X . It is easy to check that if f splits
then f is pure. Purity is a kind of “dual” condition to flatness and it is clear
that if every right U -monomorphism is pure then every left U -act is flat.

Let f : X → Y be a right U -map and g : A → B be a left U -map. We
say that the pair (f, g) is stable (or f stabilises g) if im(f ⊗ 1)∩ im(1⊗ g) =
im(f ⊗ g):

X ⊗A X ⊗B

Y ⊗A Y ⊗B

f⊗1
��

1⊗g
//

f⊗1
��

1⊗g
//

Alternatively, whenever y ⊗ g(a) = f(x) ⊗ b in Y ⊗ B, there exist x′ ∈ X,
a′ ∈ A such that y ⊗ g(a) = f(x′)⊗ g(a′). We say that a right U -monomor-
phism f is stable if (f, g) is stable for all left U -monomorphisms g. It follows
from [12, Theorem 3.1] that if f is pure then f is stable.

We say that a semigroup U is right reversible if any two principal left
ideals intersect and that U is left collapsible if for all u, v ∈ U , there exists
s ∈ U with su = sv. Notice that if U is left collapsible then U is right
reversible.

If f : X → Y is a right U -monomorphism, we can define a right
U -congruence on Y by ̺f = (im(f) × im(f)) ∪ 1Y . The quotient Y/̺f
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is denoted by Y/X and referred to as the Rees quotient of Y by X, and
the element y̺f is denoted by y.

A strong connection between flatness and stability is provided by the
following result.

Lemma 2.1 ([11, Corollary 4.9]). Let f : X → Y be a right U -mono-
morphism.

(1) If Y/X is flat then U is right reversible and f is stable.

(2) If Y is flat , U is right reversible and f is stable then Y/X is flat.

Note that flatness of Y is needed in (2). To see this, note that given any
right U -act X we see that X → X ∪̇X = Y is pure and hence stable and if
Y/X is flat then it follows that X is flat. So if flatness was not needed in (2)
then we would be able to deduce the contradictory statement that “every
right reversible monoid is right absolutely flat”.

Notice also that if U is right absolutely flat then every right U -mono-
morphism is stable.

Let X be a left U -act and define a U -congruence on X by x ∼ y if and
only if either x = y or there exist x1, . . . , xn ∈ X, u1, . . . , un, v1, . . . , vn ∈ U
with

x = u1x1, v1x1 = u2x2, . . . , vnxn = y.

We say that x is connected to y if x ∼ y. Notice that U is right reversible if
and only if for all u, v ∈ U , u ∼ v in Uu ∪ Uv.

Lemma 2.2 ([11, Lemma 2.3]). Let X be a right U -act and Y a left U -
act. If x⊗ y = x′ ⊗ y′ in X ⊗U Y , then x ∼ x

′ in X and y ∼ y′ in Y .

We say that a right U -act F is free if it is isomorphic to a disjoint
union of copies of U . A right U -act P is said to be projective if for all right
U -epimorphisms β : A→ B and all right U -maps α : P → B there exists a
right U -map γ : P → A such that the diagram

P

A B

γ

��~~~~~~ α

��

β
// //

commutes. It can be shown that P is projective if and only if there exists
a family {ei : i ∈ I} of idempotents of U such that P ∼= ˙

⋃

i∈IeiU . A right
U -act A is said to satisfy condition (P) if whenever au = a′u′ with u, u′ ∈ U ,
a, a′ ∈ A, there exist a′′ ∈ A, s, s′ ∈ U with a = a′′s, a′ = a′′s′ and su = s′u′,
whilst A is said to satisfy condition (E) if whenever au = au′ with a ∈ A,
u, u′ ∈ U , there exist a′′ ∈ A, s ∈ U with a = a′′s and su = su′. A right
U -act that satisfies conditions (P) and (E) is said to be strongly flat. Finally
A is said to be torsion free if au = a′u with u right cancellative implies
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a = a′. Notice that we have the following strict implications:

free ⇒ projective ⇒ strongly flat ⇒ condition (P) ⇒ flat

⇒ weakly flat ⇒ principally weakly flat ⇒ torsion free.

A great deal of work has been done in recent years to determine when one
of these properties implies an other. See [1] for a useful survey of many of
the main results in this area and [8] for a more comprehensive treatment.

The following elementary property of pushouts is easy to prove and will
be used on a number of occasions without reference.

Lemma 2.3 ([9, Lemma I.3.9]). Let

A B

C D

g

��

f
//

α

��

β
//

be a pushout diagram in the category of right U -acts. If α(b) = β(c) for
some b ∈ B, c ∈ C then there exist a, a′ ∈ A (not necessarily unique) such
that b = f(a) and c = g(a′). Also, if f and g are one-to-one then so are α
and β and in that case, a = a′.

In fact we can show that D = (B ∪̇ C)/σ where σ = {(f(a), g(a)) :
a ∈ A}#. Notice also that D = im(α) ∪ im(β).
We refer the reader to [6, 10] for basic definitions and results concerning

semigroup and monoid amalgams.

3. Flatness and stability. Let A be a sub-act of a right U -act B. In [9],
the author defined A to be (right) relatively unitary in B if for all left ideals
I of U , A ∩ BI = AI. The notion of relatively unitary was first introduced
by Howie in [4] and shown to be connected to embeddability of amalgams.
If U is a subsemigroup of a semigroup S, then Howie called U relatively
unitary in S if for all u ∈ U and s ∈ S, us ∈ U implies us ∈ uU ∪ {u}, and
su ∈ U implies su ∈ Uu ∪ {u}. He further showed that if (U, S) is a weak
amalgamation pair then U is relatively unitary in S. The following is clear.

Lemma 3.1. Let f : X → Y be a right U -monomorphism. Then im(f)
is right relatively unitary in Y if and only if for all left ideals I of U , the
pair (f, ιI) is stable, where ιI : I → U is the natural inclusion.

In view of this last lemma, it seems appropriate to call a U -monomor-
phism f : X → Y weakly stable if im(f) is relatively unitary in Y . Notice
that in fact f is weakly stable if and only if for all principal left ideals I of
U, (f, ιI) is stable. We shall use this fact later without reference.
We now deduce a “weak” version of Lemma 2.1 which first appeared in

the author’s PhD thesis but we include the proof here for completeness.
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Theorem 3.2 ([9, Theorem IV.1.6]). Let f : X → Y be a right U -
monomorphism.

(1) If Y/X is weakly flat then U is right reversible and f is weakly stable.

(2) If Y is weakly flat , U is right reversible and f is weakly stable then
Y/X is weakly flat.

Proof. For simplicity, we assume that f is an inclusion map. Let I be a
left ideal of U and consider the maps

α : Y/X ⊗ I → (Y/X)I, β : Y/X ⊗ I → (Y I)/(XI),

γ : (Y/X)I → (Y I)/(X ∩ Y I), δ : (Y I)/(XI)→ (Y I)/(X ∩ Y I)

defined by

α(y ⊗ i) = yi, β(y ⊗ i) = yi, γ(yi) = yi, δ(yi) = yi.

It is not too hard to check that these maps are all well-defined, that α, β
and δ are surjections and that γ is a bijection. We therefore have a commu-
tative diagram

Y/X ⊗ I Y I/XI

(Y/X)I (Y I)/(X ∩ Y I)

α

��

β
//

δ
��

γ
//

It is also not too hard to check that

1. Y/X ⊗ I → Y/X ⊗ U is one-to-one if and only if α is a bijection,

2. α is a bijection if and only if β and δ are bijections,

3. δ is a bijection if and only if X ∩ Y I = XI i.e. (f, I → U) is stable.

The result will therefore follow if we can show

Lemma 3.3. If β is a bijection then for all i, j ∈ I, i ∼ j in I. Con-
versely , if Y ⊗ I → Y ⊗ U is one-to-one and if for all i, j ∈ I, i ∼ j in I,
then β is a bijection.

Proof. Suppose that β is a bijection and let i, j ∈ I. Then it is clear that
if x ∈ X then xi = xj in (Y I)/(XI) and so x⊗ i = x⊗ j in Y/X⊗ I. Hence
i ∼ j in I by Lemma 2.2.

Conversely, suppose that yi = y′j in (Y I)/(XI) with i, j ∈ I, y, y′ ∈ Y .
Then we have two possibilities: either (i) yi = y′j in Y I, or (ii) yi = xk,
y′j = x′k′ for some x, x′ ∈ X, k, k′ ∈ I. In the former case, we see that
y⊗i = y′⊗j in Y ⊗I since Y ⊗I → Y ⊗U is one-to-one. Hence y⊗i = y′⊗j
in Y/X ⊗ I as required. In the latter case, again since Y ⊗ I → Y ⊗ U is
one-to-one, we have y ⊗ i = x ⊗ k and y′ ⊗ j = x′ ⊗ k′ in Y ⊗ I. But since
k ∼ k′ in I we deduce from [11, Lemma 4.1] that y ⊗ i = y′ ⊗ j in Y/X ⊗ I
as required.



272 J. RENSHAW

The proof of Theorem 3.2 is thus complete.

Notice that the proof of the above result also allows us to deduce

Theorem 3.4. Let f : X → Y be a right U -monomorphism.

(1) If Y/X is principally weakly flat then f is weakly stable.
(2) If Y is principally weakly flat and f is weakly stable then Y/X is

principally weakly flat.

Later we shall consider similar results for the other flatness conditions
mentioned earlier but for now we wish to study the connections between
(weak) stability and (weak) flatness in more detail.

Lemma 3.5. Let U be a monoid and u ∈ U . Then the inclusion uU → U
is right weakly stable if and only if u is regular.

Proof. Since (uU → U,Uu → U) is stable we have u ∈ uUu and u is
regular. Conversely, if u is regular and if ux = yv for any x, y, v ∈ U then
ux = uu−1ux = uu−1yv and so (uU → U,Uv → U) is stable.

Notice that if f : X → Y is any right U -monomorphism and if e ∈ E(U),
then (f, Ue→ U) is stable. Consequently we can deduce the following result.

Theorem 3.6. Every (right) U -monomorphism is weakly stable if and
only if U is regular.

Theorem 3.7. Let U be a monoid and J a right ideal of U . Then the
following are equivalent :

(1) J → U is stable,
(2) J → U is weakly stable,
(3) for all left ideals I of U , J ∩ I = JI,
(4) for all finitely generated left ideals I of U , J ∩ I = JI,
(5) for all k ∈ U , J ∩ Uk = Jk,
(6) for all j ∈ J , j ∈ Jj.

Proof. (2)⇒(3). Since (J → U, I → U) is stable, J ∩ UI = JI.
(6)⇒(1). If λ : A → B is a left U -monomorphism and if λ(a) = jb for

some a ∈ A, j ∈ J , b ∈ B then since j = kj for some k ∈ J we see that
λ(a) = kλ(a) and so (J → U, λ) is stable as required.
The other implications are clear.

The following corollary is probably well known.

Corollary 3.8. Let U be a monoid and J a proper right ideal of U .
Then U/J is flat if and only if it is weakly flat.

Note that Bulman-Fleming [1] calls a right ideal J left stable if j ∈ Jj
for all j ∈ J . This condition is important in the homological classification
theory of monoids.
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We thus deduce

Corollary 3.9 ([7, Lemma 4]). Let U be a monoid and J a right ideal
of U . Then U/J is (weakly) flat if and only if U is right reversible and
j ∈ Jj for all j ∈ J . Also, U/J is principally weakly flat if and only if
j ∈ Jj for all j ∈ J .

Lemma 3.10. Let J be a right ideal of a monoid U and suppose that
u ∈ U is such that J ∪ uU → U is (weakly) stable. If u is not regular then
u ∈ J .

Proof. Since u ∈ J ∪ uU and since u is not regular, there exists k′ ∈ J
with u = k′u and so u ∈ J as required.

Corollary 3.11. If J is a finitely generated right ideal of a monoid
U then J → U is (weakly) stable if and only if J is generated by regular
elements.

Let f : X → Y be a right U -monomorphism and consider the following
pushout diagram:

(∗)

X Y

Y P

f
��

f
//

α

��

β
//

We shall also make use of this diagram in later sections. Notice that if
α(y) = β(y′) in P then y = y′ = f(x) for some x ∈ X. It may be useful to
view P pictorially as the union of two copies of Y amalgamating X:

Lemma 3.12 ([13, Lemma 1.5]). Suppose that f : X → Y is a right U -
monomorphism and consider the pushout diagram (∗). Then α and β split
(and hence are pure).

The flat case of the next result was proved in [13], the proof of the weakly
flat and principally weakly flat cases are similar and are left to the reader.

Theorem 3.13 (cf. [13, Lemma 1.6]). Suppose that f : X → Y is a
right U -monomorphism and consider the pushout diagram (∗). Then P is
(resp. weakly , principally weakly) flat if and only if Y is (resp. weakly ,
principally weakly) flat and f is (resp. weakly , weakly) stable.

Recall [10] that a right U -monomorphism f : X → Y is said to be perfect
if f is right pure and Y is right flat. It follows that if f is perfect then so
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are α and β. Perfect monomorphisms were essentially introduced by Hall [3]
and later recast in terms of acts and tensor products by Howie [5]. They are
closely connected with embeddability of semigroup amalgams.
In the case Y = U and X = J , a proper right ideal of U , the pushout is

sometimes denoted by A(J) (see [1]). So we see that A(J) is flat (equivalently
weakly or principally weakly flat) if and only if for all j ∈ J , j ∈ Jj.
In this case, Theorem 3.13 has a number of interesting applications in the
homological classification of monoids. We provide in Section 6 a few similar
results for some of the other flatness conditions that appear in that area.
To summarise this section, we have looked at the following questions:

when are monomorphisms of the form J → U (weakly) stable? what is
the connection between (weak) stability of f : X → Y and (weak) flatness
of Y/X? what is the connection between (weak) stability of f and (weak)
flatness of the pushout P?

4. Stable and unitary monomorphisms. We introduce five more
properties of U -monomorphisms related to stability and consider similar
questions to those above. These properties have been used in the past in con-
nection with semigroup amalgams or with homological classification tech-
niques.
Let f : X → Y be a right U -monomorphism. We shall say that f is

unitary if y ∈ im(f) whenever yu ∈ im(f) and u ∈ U . It is not too hard to
deduce that if f is unitary then f is (right) pure and hence stable.
In some respects the unitary property can be viewed as a kind of “strong

stability”, an observation that is strengthened by Theorem 6.1 below. Con-
sider now the following related properties:

P-unitary : whenever y, y′ ∈ Y , u, u′ ∈ U are such that yu 6= y′u′ but
yu, y′u′ ∈ im(f) then either y ∈ im(f) or y′ ∈ im(f); equivalently

(∀y, y′ ∈ Y \ im(f))(∀u, u′ ∈ U)(yu, y′u′ ∈ im(f)⇒ yu = y′u′).

E-unitary : whenever y ∈ Y , u, u′ ∈ U are such that yu 6= yu′ but
yu, yu′ ∈ im(f) then y ∈ im(f); equivalently

(∀y ∈ Y \ im(f))(∀u, u′ ∈ U)(yu, yu′ ∈ im(f)⇒ yu = yu′).

In [10], the author defined the concept of quasi-unitary subsemigroups
(a generalisation of Howie’s almost unitary condition) and provided a con-
nection with this property and amalgamation. We generalise this concept
here by defining a right U -monomorphism f : X → Y to be quasi-unitary if
there exists a right U -morphism φ : Y → Y such that

1. φ2 = φ,
2. φ ◦ f = f ,
3. for all y ∈ Y and u ∈ U , yu ∈ im(f)⇒ φ(y) ∈ im(f).
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For example if f splits then f is quasi-unitary. Notice that im(φ)∩ im(f)
is unitary in im(f).

Finally, we shall say that a right U -monomorphism f : X → Y is
c-unitary if y ∈ im(f) whenever yu ∈ im(f) with u right cancellative.

Clearly, unitary implies P-unitary implies E-unitary. Note that the impli-
cations are in general strict: let G be a group and let U = G0. Let X = {x},
Y = {x, y} and define a U -act structure on Y by zg = z, z0 = x for all z ∈ Y
and all g ∈ G. Then X is a subact of Y such that X → Y is P-unitary but
not unitary. Moreover the natural inclusion X ∪̇ X → Y ∪̇ Y is E-unitary
but not P-unitary.

Notice that if X → Y is P-unitary but not unitary then X contains a
fixed point. Later we shall see that P-unitary is related to property (P) while
E-unitary to property (E).

Theorem 4.1. If f : X → Y is a right P-unitary U -monomorphism
then f is quasi-unitary.

Proof. If f is in fact unitary then we can take φ = 1Y and the result is
trivial. Otherwise, there exist y0 ∈ Y \X and u0 ∈ U with y0u0 = f(x0) ∈
im(f) and x0 is unique with respect to this property. Notice that x0 is then
a fixed point in X. In this case define

φ(y) =

{

y if y ∈ im(f),
f(x0) otherwise.

It is straightforward to check that φ has the required properties.

The proof in fact shows that f splits.

Theorem 4.2. Let U be a left reversible monoid and suppose that f :
X → Y is E-unitary. Then f is quasi-unitary.

Proof. The proof is similar to the previous one. We assume that f is not
unitary and so there exists a fixed point in im(f). Choose one of these fixed
points and call it f(x0). Now define φ : Y → Y by

φ(y) =







y if y ∈ im(f),
f(x1) if y 6∈ im(f), yu = f(x1) for some u ∈ U,
f(x0) otherwise.

It is left to the reader to see that φ has the required properties. The only
point worth noting is that if yu 6∈ im(f) and yuU 6⊆ im(f) then yU 6⊆ im(f)
since U is left reversible.

Theorem 4.3. Let f : X → Y be a right quasi-unitary monomorphism.
Then f is pure.
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Proof. Let B be a left U -act and suppose that f(x) ⊗ b = f(x′) ⊗ b′ in
Y ⊗B so that we have a U -scheme over Y and B:

f(x) = y1u1, u1b = v1b2,

y1v1 = y2u2, u2b2 = v2b3,

. . . . . .

yn−1vn−1 = ynun, unbn = vnb
′.

ynvn = f(x
′),

We apply φ to the left hand equations to get

f(x) = φ(y1)u1, u1b = v1b2,

φ(y1)v1 = φ(y2)u2, u2b2 = v2b3,

. . . . . .

φ(yn−1)vn−1 = φ(yn)un, unbn = vnb
′.

φ(yn)vn = f(x
′),

But φ(y1) ∈ im(f) and so φ(y2) ∈ im(f). Continuing in this way we see that
this new scheme is actually over im(f) and B and so x⊗b = x′⊗b′ in X⊗B
as required.

Theorem 4.4. Let f : X → Y be an E-unitary right U -monomorphism.
Then f is stable.

Proof. Suppose that λ : A → B is a left U -monomorphism and that
y ⊗ λ(a) = f(x)⊗ b in Y ⊗ B. If y ∈ im(f) then there is nothing to show,
so we can suppose that the following is a minimal length U -scheme over Y
and B connecting (y, λ(a)) to (f(x′), b′) for some x′ ∈ X, b′ ∈ B:

y = y1u1, u1λ(a) = v1b2,

y1v1 = y2u2, u2b2 = v2b3,

. . . . . .

yn−1vn−1 = ynun, unbn = vnb
′.

ynvn = f(x
′),

Now because of the minimality of the scheme, yn 6∈ im(f) and so since f is
E-unitary we deduce that f(x′) is a fixed point in Y and hence the following
is a U -scheme over Y and B joining (y, λ(a)) and (f(x′), λ(a)) as required:

y = y1u1, u1λ(a) = v1b2,

y1v1 = y2u2, u2b2 = v2b3,

. . . . . .
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yn−1vn−1, = ynun, unbn = vnb
′,

ynvn = f(x
′)vn, vnb

′ = unbn,

f(x′)un = f(x
′)vn−1, vn−1bn = un−1bn−1,

. . . . . .

f(x′)u2 = f(x
′)v1, v1b2 = u1λ(a).

f(x′)u1 = f(x
′),

We therefore have a sequence of implications

quasi-unitary pure

unitary P-unitary stable weakly stable

E-unitary

+3______
�%

CCCCCCCCCCCC
+3______

3<pppppppppppppppppp
"+

NNNNNNNNNNNNNNNNNN +3______
19kkkkkkkkkkkkkkkkkkkkkkkkkkkk

It is also easy to verify

Lemma 4.5. Let U be a monoid and f : X → Y a right U -monomor-
phism with Y torsion free. If f is weakly stable then f is c-unitary.

With the possible exceptions of weakly stable ⇒ stable, E-unitary ⇒
pure and E-unitary⇒ quasi-unitary, there are no other possible implications
between these properties as will be shown later in this section.

Let U be a submonoid of a monoid S. Hall [3] (using the language of
representations rather than acts) defined U to have the orbit preserving ex-
tension property in S if for all U -acts X, there exists an S-act Z with a
unitary U -monomorphism f : X → Z (see also [10]). He proved [3, Theo-
rem 27] that if [U ;S, T ] is an amalgam of monoids such that U has the orbit
preserving extension property in S and T then the amalgam is strongly
embeddable and U has the orbit preserving extension property in S ∗U T .

Recall [10] that a monoid U is said to have the extension property in
a containing monoid S if for all right U -acts X and all left U -acts Y the
canonical morphism X ⊗U Y → X ⊗U S ⊗U Y is one-to-one. The following
is not too hard to prove:

Theorem 4.6. Let U be a submonoid of a monoid S. Then U has the
extension property in S if and only if for every right U -act X there exists a
right S-act Z and a right pure U -monomorphism f : X → Z.

Proof. If U has the extension property in S then X = X ⊗U U →
X ⊗U S⊗U U = X ⊗U S is one-to-one. It is then clear that it is a right pure
monomorphism.



278 J. RENSHAW

Conversely, if X is any right U -act and Y any left U -act then there
exists a right S-act Z and a right pure U -monomorphism f : X → Z.
Define φ : X ⊗U S ⊗U Y → Z ⊗U Y by φ(x⊗ s⊗ y) = f(x)s⊗ y and check
that the diagram

X ⊗U Y X ⊗U S ⊗U Y

Z ⊗U Y
��

//

vvnnnnnnnnnnn
commutes. The result then follows on noting that the vertical map is one-
to-one.

The author [10, Theorem 6.1] proved that if [U ;S, T ] is a monoid amal-
gam with U having the extension property in S and T then the amalgam
is embeddable and U has the extension property in S ∗U T . Moreover [10,
Theorem 6.11], U is an amalgamation base if and only if U has the extension
property in every containing monoid.
Consequently, there are very strong connections between these types of

monomorphisms and amalgamation.
The following is clear:

Theorem 4.7. Let J be a proper right ideal of a monoid U . The follow-
ing are equivalent :

(1) J → U is P-unitary ,
(2) J → U is E-unitary ,
(3) |J | = 1.

Lemma 4.8. Let J be a right ideal of a monoid U . The following are
equivalent :

(1) J → U splits,
(2) J → U is quasi-unitary ,
(3) there exists an idempotent e ∈ J with j = ej for all j in J .

Proof. (1)⇒(2) is clear.
(2)⇒(3). Suppose that J → U is quasi-unitary with related morphism

φ : U → U . Then let e = φ(1) and note that e2 = φ(1)φ(1) = φ(1φ(1)) =
φ2(1) = φ(1) = e, that j = φ(j) = φ(1)j = ej and that e ∈ J since j.1 ∈ J
for all j in J , as required.
(3)⇒(1). Suppose now that there exists an idempotent e ∈ J with j = ej

for all j in J . Then define a right U -map φ : U → J by φ(u) = eu and note
that J → U splits.

Corollary 4.9. For any monoid U and any u ∈ U , the inclusion uU →
U is quasi-unitary if and only if u is regular.

We then easily deduce the following



STABILITY AND FLATNESS IN ACTS OVER MONOIDS 279

Theorem 4.10. Let U be a monoid. Then every inclusion J → U of
right ideals J is quasi-unitary if and only if U is regular and every right
ideal is principal.

Lemma 4.11. Let J be a right ideal of a monoid U and suppose that
u ∈ U is such that J ∪ uU → U is quasi-unitary. If u is not regular then
u ∈ J .

Proof. There exists e ∈ J ∪ uU with u = eu and since u is not regular
we have e ∈ J from which it follows that u ∈ U .

We then deduce the following result (which also follows from Corol-
lary 3.11):

Corollary 4.12. If J is a finitely generated right ideal of a monoid U
such that J → U is quasi-unitary then J is generated by regular elements.

If x, y ∈ U then we shall denote by λ(x, y) the smallest left U -congruence
on U which contains (x, y). Notice that (u, v) ∈ λ(x, y) if and only if either
u = v or there exist s1, . . . , sn, x1, . . . , xn, y1, . . . , yn ∈ U with {xi, yi} =
{x, y} for i = 1, . . . , n such that

u = s1x1,

s1y1 = s2x2,

. . .

snyn = v.

Notice that if B is any left U -act in which there exists b ∈ B with xb = yb
then ub = vb for any u, v ∈ U with (u, v) ∈ λ(x, y).

Let J be a right ideal of a monoid U . We shall say that J → U is strongly
connected if for all x, y ∈ J , there exists a sequence of equalities over J (as
a U -act)

x = x1u1, x1v1 = x2u2, . . . , xnvn = y

such that for i = 1, . . . , n, (xivi, x) ∈ λ(x, y). In this case we shall also say
that x and y are strongly connected. Notice that this holds if x⊗ 1 = y ⊗ 1
in J ⊗ U/λ(x, y).

Theorem 4.13. Let J be a right ideal of a monoid U . Then J → U is
pure if and only if J → U is stable and strongly connected.

Proof. (⇒) Clear.

(⇐) Suppose that the given condition holds and that B is any left U -act
such that ib = jb′ in B for some i, j ∈ J . By assumption, there exist k, k′ ∈ J
with i = ki, j = k′j and a collection of equations over J

k = x1u1, x1v1 = x2u2, . . . , xnvn = k
′
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such that for each l = 1 . . . , n, (xlvl, k) ∈ λ(k, k
′). Let b′′ = ib and notice

that since kb′′ = k′b′′ we have xlulb
′′ = xlvlb

′′ = kb′′. Also, for each xl there
exists kl ∈ J with xl = klxl and so we can construct a U -scheme over J
and B:

i = k1i, ib = x1v1b
′′,

k1x1v1 = k2x2u2, x2u2b
′′ = x2v2b

′′,

k2x2v2 = k3x3u3, x3u3b
′′ = x3v3b

′′,

. . . . . .

kn−1xn−1vn−1 = knxnun, xnunb
′′ = jb′,

knj = j,

as required.

Lemma 4.14. Let U be a monoid and let u ∈ U . Then uU → U is
strongly connected.

Proof. Since uv = u.v, u.w = uw and (uv, uw) ∈ λ(uv, uw) for all
v, w ∈ U , the result follows.

It is easy to check

Theorem 4.15. Let U be a monoid and let x 6= y ∈ U . Then xU ∪ yU
→ U is strongly connected if and only if there exists z ∈ xU ∩ yU such that
zλ(x, y)x.

Proof. Let J = xU ∪yU and suppose that J → U is strongly connected.
Then x = x1u1, x1v1 = x2u2, . . . , xnvn = y, with (xivi, x) ∈ λ(x, y). If all
xi ∈ xU then put z = y else let i be the smallest index with xiui ∈ yU and
put z = xiui. The result then follows.
Conversely, we see from the proof of Lemma 4.14 that we need only show

that xu is strongly connected to yv for any u, v ∈ U . But if z = xu0 = yv0
is such that zλ(x, y)x then xu = x.u, x.u0 = y.v0, y.v = yv and so J → U
is strongly connected.

Corollary 4.16. Let J be a right ideal of a monoid U . Then J → U
is strongly connected if for all x, y ∈ J , xU ∪ yU → U is strongly connected.

Proof. Let x, y ∈ J and note that x is strongly connected to y in xU∪yU
and so in J . Hence J → U is strongly connected.

Corollary 4.17. Let U be a monoid. Then J → U is strongly con-
nected for all right ideals J of U if and only if for all x, y ∈ U there exists
z ∈ xU ∩ yU such that zλ(x, y)x.

From Corollary 3.11 we see that

Corollary 4.18. If J is a finitely generated right ideal of a monoid U
such that J → U is pure then J is generated by regular elements.
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Notice that in general stable 6⇒ pure since if U is regular then J → U
is stable for all right ideals J of U but not every regular monoid is left
absolutely weakly flat. Also if U is inverse then U is left absolutely flat and
so J → U is pure for all right ideals J of U but since not every right ideal
of U is principal it follows that in general pure 6⇒ quasi-unitary.

It would be of interest to have a useful description of J → U being
c-unitary. Certainly, if it is and if J is a proper right ideal of U then J
cannot contain any right cancellative elements. Moreover, if J contains all
the non-right cancellative elements of U then J → U is c-unitary as is the
case if J consists entirely of regular elements or even if for every j ∈ J there
exist k ∈ J , u ∈ U with k regular and j = ku. However, at the moment we
do not even have a satisfactory characterisation of uU → U to be c-unitary.
As a summary, notice that we have

Corollary 4.19. Let U be a monoid and u ∈ U and consider the in-
clusion ι : uU → U . Then the following are equivalent :

(1) u is regular ,
(2) ι splits,
(3) ι is quasi-unitary ,
(4) ι is pure,
(5) ι is stable,
(6) ι is weakly stable.

Lemma 4.20. Suppose that f : X → Y is a right U -monomorphism and
consider the pushout diagram (∗). Then α is E-unitary (resp. P-unitary ,
c-unitary , unitary) if and only if f is.

Proof. We only prove the E-unitary case, the others being similar.
(⇒) Suppose that yu= f(x), yv= f(x′) and yu 6=yv with y∈Y , x, x′∈X,

u, v ∈ U . Then β(y)u 6= β(y)v but β(y)u = β(yu) = β(f(x))=α(f(x)) and
similarly β(y)v = α(f(x′)). Now β(y)∈ im(α) and hence y ∈ im(f).
(⇐) Suppose that pu 6= pv but pu = α(y1), pv = α(y2) and p = β(y) for

y, y1, y2 ∈ Y , u, v ∈ U . Then yu = f(x1), yv = f(x2) for some x1, x2 ∈ X
and yu 6= yv. Hence y ∈ im(f) and so p ∈ im(α).

Theorem 4.21. For any monoid U , the following are equivalent :

(1) every right U -monomorphism is E-unitary ,
(2) every right weakly stable U -monomorphism is E-unitary ,
(3) every right stable U -monomorphism is E-unitary ,
(4) every right pure U -monomorphism is E-unitary ,
(5) every right quasi-unitary U -monomorphism is E-unitary ,
(6) every inclusion J → U with J a right ideal of U is E-unitary ,
(7) U is a group or a 0-group.
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Proof. (1)⇒(2)⇒(3)⇒(4)⇒(5) are clear.
(5)⇒(6). This follows from Lemmas 3.12 and 4.20.
(6)⇒(7). U can have at most one proper right ideal {0} and so U is a

group or a 0-group.
(7)⇒(1). If U is a group then every right U -monomorphism is unitary

and so is E-unitary. Suppose then that U is a 0-group and let f : X → Y be a
right U -monomorphism and suppose also that yu 6= yv but yu = f(x), yv =
f(x′). If y 6∈ im(f) then it follows that u = v = 0, giving a contradiction.

In a similar way we have

Theorem 4.22. For any monoid U , the following are equivalent :

(1) every right U -monomorphism is P-unitary ,
(2) every right weakly stable U -monomorphism is P-unitary ,
(3) every right stable U -monomorphism is P-unitary ,
(4) every right pure U -monomorphism is P-unitary ,
(5) every right quasi-unitary U -monomorphism is P-unitary ,
(6) U is a group.

Proof. Again (1)⇒(2)⇒(3)⇒(4)⇒(5) are clear.
(5)⇒(6). As before, U is either a group or a 0-group. But from a previous

example we see that for every 0-group there exists a U -monomorphism that
is not P-unitary and so from Lemmas 3.12 and 4.20 there exists a quasi-
unitary U -monomorphism that is not P-unitary.
(6)⇒(1). If U is a group then every right U -monomorphism is unitary

and so is P-unitary.

Also, it is easy to verify

Theorem 4.23. For any monoid U , the following are equivalent :

(1) every right U -monomorphism is unitary ,
(2) every right weakly stable U -monomorphism is unitary ,
(3) every right stable U -monomorphism is unitary ,
(4) every right pure U -monomorphism is unitary ,
(5) every right quasi-unitary U -monomorphism is unitary ,
(6) every inclusion J → U with J a right ideal of U is unitary ,
(7) U is a group.

Theorem 4.24. For any monoid U , the following are equivalent :

(1) every right U -monomorphism is c-unitary ,
(2) every right weakly stable U -monomorphism is c-unitary ,
(3) every right stable U -monomorphism is c-unitary ,
(4) every right pure U -monomorphism is c-unitary ,
(5) every right quasi-unitary U -monomorphism is c-unitary ,
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(6) every inclusion J → U with J a right ideal of U is c-unitary ,

(7) every right cancellative element in U is right invertible.

Proof. (1)⇒(2)⇒(3)⇒(4)⇒(5)⇒(6) are clear.

(6)⇒(7). Let c be a right cancellative element of U and consider the
inclusion cU → U . By the c-unitary property, it follows that cU = U and
the result follows.

(7)⇒(1). Easy.

Theorem 4.25. Let U be a monoid. The following are equivalent :

(1) every right P-unitary U -monomorphism is unitary ,

(2) every right E-unitary U -monomorphism is P-unitary ,

(3) U is a group.

Proof. (1)⇒(3). Let u0 ∈ U and let ̺ be the right U -congruence on U
generated by {(u0, u0u) : u ∈ U}. Then it is easy to see that {[u0]̺} → U/̺
is a P-unitary monomorphism and hence is unitary. Consequently, ̺ = ∇,
the universal congruence on U . But this means that U is right simple and
hence a group.

(2)⇒(3). As is the previous case, let u0 ∈ U and consider the E-unitary
monomorphism {[u0]̺}∪̇{[u0]̺} → U/̺∪̇U/̺. But this cannot be P-unitary
unless ̺ = ∇ and so again U is a group.

The other implications follow from Theorems 4.22 and 4.23.

5. Monomorphisms into indecomposable acts. Recall that a U -
act A is called locally cyclic if for every a, a′ ∈ A there exists a′′ ∈ A with
a, a′ ∈ a′′U , and A is indecomposable if A is not the coproduct (disjoint
union) of any two subacts. It is well known that A is indecomposable if and
only if a ∼ a′ for all a, a′ ∈ A. It is easy to establish that cyclic ⇒ locally
cyclic ⇒ indecomposable.

In this section, ̺ will denote a right U -congruence on U so that U/̺
is a cyclic right U -act. Note that in general, if X is a subact of U/̺ then
X need not be cyclic but X will consist of ̺-classes, [u]̺, for some u ∈ U .
Let J = {u ∈ U : [u]̺ ∈ X} and note that J is a right ideal of U . Clearly
X ∼= J/(̺|J×J), which we shall write simply as J/̺ for brevity. Conversely,
if J is any right ideal of U then J/̺ is a subact of U/̺.

Theorem 3.7 can be generalised in the following way.

Theorem 5.1. Let U be a monoid , ̺ a right U -congruence on U and
J/̺ a right subact of U/̺.

(1) Let J/̺ → U/̺ be a right weakly stable U -monomorphism and let
u ∈ J . Then there exists v ∈ J such that u̺vu.
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(2) If ̺ is both a left and right U -congruence on U and if J/̺ → U/̺
is a right U -monomorphism such that for all u ∈ J there exists v ∈ J with
u̺vu then J/̺→ U/̺ is stable.

Proof. (1) Since (J/̺ → U/̺, Uu → U) is stable and since [u]̺ = [1]̺u
in U/̺ we have [u]̺ = [v]̺u for some v in J as required.

(2) Let λ : X → Y be a left U -monomorphism, let u0 ∈ J and suppose
that [u0]̺⊗ b = [u]̺⊗λ(a) in U/̺⊗B. Then we have a U -scheme over U/̺
and B:

[u0]̺ = [u1]̺s1, s1b = t1b2,

[u1]̺t1 = [u2]̺s2, s2b2 = t2b3,

. . . . . .

[un−1]̺tn−1 = [un]̺sn, snbn = tnλ(a).

[un]̺tn = [u]̺,

Since [u0]̺ = [vu0]̺ for some v ∈ J , we see that

[u0]̺ = [vu1]̺s1, s1b = t1b2,

[vu1]̺t1 = [vu2]̺s2, s2b2 = t2b3,

. . . . . .

[vun−1]̺tn−1 = [vun]̺sn, snbn = tnλ(a),

[vun]̺tn = [vu]̺,

is a U -scheme so that [u0]̺⊗ b = [vu]̺⊗λ(a) in U/̺⊗B as required. Notice
that this scheme is in fact over J/̺ and B.

In particular, if we take J = uU and if J/̺→ U/̺ is weakly stable then
there exists w ∈ U with u̺uwu.

Corollary 5.2. If ̺ is both a right and left U -congruence on U then
J/̺→ U/̺ is stable if and only if it is weakly stable.

Theorem 5.3. Let f : X → Y be a right pure U -monomorphism with
Y indecomposable. Then X is indecomposable.

Suppose that x, x′ ∈ X so that f(x) ∼ f(x′) in Y . Then we have a
system of equations f(x) = y1u1, y1v1 = y2u2, . . . , ynun = f(x

′) in Y . But
then f(x)⊗ z = f(x′)⊗ z in Y ⊗ Θ where Θ = {z} is the one-element left
U -act. Hence x ⊗ z = x′ ⊗ z in X ⊗ Θ and so x ∼ x′ in X and so X is
indecomposable.

Theorem 5.4. Let U be a monoid. Then the following are equivalent :

(1) J/̺→ U/̺ splits,

(2) J/̺→ U/̺ is right quasi-unitary ,
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(3) J/̺ is cyclic with generator u0 ∈ J , we have u0̺u
2
0 and for all

u, v ∈ U , u̺v ⇒ u0u̺u0v.

Proof. (1)⇒(2). Clear.

(2)⇒(3). Let φ : U/̺→ U/̺ be the morphism associated with the quasi-
unitary property. Since [u]̺ = [1]̺u for all u ∈ J , we have φ([1]̺) ∈ J/̺ and
it is clear that J/̺ = φ([1]̺)U . If we let φ([1]̺) = [u0]̺ then we find that
[u20]̺ = [u0]̺u0 = φ([1]̺)u0 = φ([u0]̺) = [u0]̺ since φ|J/̺ = 1J/̺. The other
property holds since φ is well defined.

(3)⇒(1). Define g : U/̺ → J/̺ by g([u]̺) = [u0u]̺. Then g is a well
defined right U -map. Finally, g([u0u]̺) = [u

2
0u]̺ = [u0u]̺ as required.

Theorem 5.5. Let U be a monoid and let f : X → Y be a right U -
monomorphism. If Y is indecomposable (resp. locally cyclic) then f splits if
and only if f is quasi-unitary. In that case, X is also indecomposable (resp.
locally cyclic).

Proof. We prove the locally cyclic case, the other being similar. If f splits
then f is quasi-unitary. Conversely, if f is quasi-unitary with associated map
φ : Y → Y then for all x ∈ X, y ∈ Y there exist y′ ∈ Y , u1, u2 ∈ U with
f(x) = y′u1, y = y

′u2. Then φ(y
′) ∈ im(f) and so φ(y) ∈ im(f). Hence

im(φ) ⊆ im(f) and the result follows.

Theorem 5.6. Let U be a monoid and let f : X → Y be a right U -
monomorphism with Y locally cyclic. Then the following are equivalent :

(1) f is P-unitary ,

(2) f is E-unitary ,

(3) im(f) = Y or |X| = 1.

Proof. (1)⇒(2). Clear.

(2)⇒(3). Suppose im(f) 6= Y and |X| > 1. Let y ∈ Y \ im(f), x 6= x′

∈ X. Then there exist y′ ∈ Y , u1, u2, u3 ∈ U such that y = y
′u1, f(x) = y

′u2,
f(x′) = y′u3. Since f is E-unitary we have y

′ = f(x′′) for some x′′ ∈ X and
so y ∈ im(f). This is a contradiction and so |X| = 1.

(3)⇒(1). Clear.

It is clear that a right U -monomorphism f : X → Y with Y indecom-
posable can only be unitary if im(f) = Y .

6. Pushouts, Rees quotients and unitary monomorphisms. The
next result is a variation on Theorem 3.13.

Theorem 6.1. Let f : X→Y be a right U -monomorphism with pushout
diagram as in diagram (∗). Then

(1) P is torsion free if and only if Y is torsion free and f is c-unitary.
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(2) P satisfies condition (P) if and only if Y satisfies condition (P) and
f is unitary.

(3) P satisfies condition (E) if and only if Y satisfies condition (E).

(4) P is strongly flat if and only if Y is strongly flat and f is unitary.

(5) P is projective if and only if Y is projective and f is unitary.

(6) P is free if and only if Y is free and f is unitary.

Proof. (1) (⇒) Suppose that yu = f(x) with u right cancellative. Then
α(y)u = αf(x) = βf(x) = β(y)u and so α(y) = β(y) and y ∈ im(f).

If yu = y′u in Y with u right cancellative, then α(y)u = α(y′)u in P and
so α(y) = α(y′), giving y = y′ and so Y is torsion free.

(⇐) Suppose that pu = qu with u right cancellative and p, q ∈ P . Then
there are essentially two cases to consider. Either p = α(y), q = α(y′) for
some y, y′ ∈ Y , in which case yu = y′u in Y and so y = y′ and hence p = q,
or else p = α(y), q = β(y′) for y, y′ ∈ Y , in which case yu = y′u ∈ im(f)
and so y = y′ ∈ im(f). But then p = α(y) = α(y′) = β(y′) = q as required.

(2) (⇒) Suppose that yu = f(x) for some u ∈ U , y ∈ Y , x ∈ X. Then
α(y)u = αf(x) = βf(x) = β(y)u in P . Hence there exist p ∈ P , s, t ∈ U
with α(y) = ps, β(y) = pt and su = tu. But then p ∈ im(α) ∪ im(β) and so
y ∈ im(f).

If yu = y′u′ in Y then α(y)u = α(y′)u′ in P and so there exist p ∈ P ,
s, s′ ∈ U with su = s′u′ and α(y) = ps, α(y′) = pu′. If p = α(y′′) or p =
β(y′′) then y = y′′s, y′ = y′′s′ and su = s′u′ and Y satisfies condition (P).

(⇐) Suppose that pu = p′u′ in P . Then there are two cases to consider:

(a) p = α(y), p′ = α(y′) for some y, y′ ∈ Y . But then yu = y′u′ ∈ Y and
the result follows since Y satisfies condition (P).

(b) p = α(y), p′ = β(y′) for some y, y′ ∈ Y . In this case we have yu =
y′u′ ∈ Y and yu = f(x) for some x ∈ X. Consequently, y = f(x′) for some
x′ ∈ X. Since Y satisfies condition (P), there exist y′′ ∈ Y , s, s′ ∈ U such
that y = y′′s, y′ = y′′s′, su = s′u′. Hence y′′ = f(x′′) for some x′′ ∈ X and
so p = α(y) = α(y′′s) = βf(x′′)s, p′ = β(y′) = βf(x′′)s′ and su = s′u′.
Therefore P satisfies condition (P).

(3) Straightforward.

(4) Straightforward.

(5) (⇒) Since P is projective, it is strongly flat and so f is unitary. Hence
by Lemma 4.20, α : Y → P is unitary and hence Y is projective.

(⇐) Notice that since f is unitary and Y is projective, X and Y \X are
both projective as well. Hence P = Y ∪̇ Y \X is projective.

(6) Similar to the projective case.

If we use Rees quotients rather than pushouts we can deduce:
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Theorem 6.2. Let f : X → Y be a right U -monomorphism.

(1) If Y/X is torsion free then f is c-unitary.

(2) If Y is torsion free and if f is c-unitary then Y/X is torsion free.

(3) If Y/X satisfies condition (P) then U is right reversible and f is
P-unitary.

(4) If Y satisfies condition (P), U is right reversible and f is P-unitary
then Y/X satisfies condition (P).

(5) If Y/X satisfies condition (E) then U is left collapsible and f is
E-unitary.

(6) If Y satisfies condition (E), U is left collapsible and f is E-unitary
then Y/X satisfies condition (E).

(7) If Y/X is strongly flat then U is left collapsible and f is P-unitary.

(8) If Y is strongly flat , U is left collapsible and f is P-unitary then
Y/X is strongly flat.

(9) If Y/X is projective then U contains a left zero and f is P-unitary.

(10) If Y is projective, U contains a left zero and f is P-unitary then
Y/X is projective.

(11) If Y/X is free then U contains a left zero and f is P-unitary but
not unitary if |U | > 1.

(12) If Y is free, U contains a left zero and f is P-unitary but not
unitary if |U | > 1 then Y/X is free.

Proof. (1) If yu = f(x) with u right cancellative then yu = f(x) = f(x)u
in Y/X and so y = f(x) in Y/X and hence y ∈ im(f).

(2) Suppose that yu = y′u in Y/X with u right cancellative. Then either
yu = y′u in Y , in which case y = y′ since Y is torsion free and hence
y = y′ in Y/X; or else yu = f(x), y′u = f(x′) for some x, x′ ∈ X. But then
y, y′ ∈ im(f) and so y = y′ in Y/X as required.

(3) If Y/X satisfies condition (P) then Y/X is flat and so U is right
reversible. Suppose that yu 6= y′u′ but yu, y′u′ ∈ im(f) and suppose also
that y′ 6∈ im(f). Then yu = yu = y′u′ = y′u′ in Y/X and so there exist
z ∈ Y , s, s′ ∈ U with y = zs, y′ = zs′ and su = s′u′. Now y′ = zs′ since
y′ 6∈ im(f). But if y = zs then yu = zsu = zs′u′ = y′u′, a contradiction,
and so it follows that y ∈ im(f) as required.

(4) Suppose that yu = y′u′ in Y/X. Then there are two possibilities:

(a) yu = y′u′ in Y . In this case there exist z ∈ Y , s, s′ ∈ U with y = zs,
y′ = zs′ and su = s′u′ and the result then follows.

(b) yu = f(x), y′u′ = f(x′) for some x, x′ ∈ X. Suppose then that
y ∈ im(f). If y′ ∈ im(f) also then y = y′ and the result easily follows since
U is right reversible. Otherwise y′ 6∈ im(f). Notice then that y′u′ is a fixed
point in Y . Hence y′u′ = y′u′u = f(x′)u and so there exist z ∈ Y , s, s′ ∈ U
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with y′ = zs′, f(x′) = zs and su = s′u′. Hence y = f(x) = f(x′) = zs,
y′ = zs′ and su = s′u′ as required.
(5) Let u 6= v ∈ U and x ∈ X. Then f(x)u = f(x)v in Y/X and so

there exist y ∈ Y/X, s ∈ U with f(x) = ys and su = sv. Hence U is left
collapsible. Suppose then that y ∈ Y , u, v ∈ U are such that yu 6= yv but
yu, yv ∈ im(f). Then yu = yv and so there exist z ∈ Y/X, s ∈ U with
y = zs and su = sv. Now y 6= zs since yu 6= yv and so y ∈ im(f).
(6) Suppose that yu = yv in Y/X. Then either yu = yv in Y , in which

case y = zs and su = sv for some z ∈ Y , s ∈ U and consequently y =
zs, su = sv as required, or else yu 6= yv but both terms belong to im(f).
Hence y = f(x) for some x ∈ X. But U left collapsible means that su = sv
for some s ∈ U and so y = f(x) = f(x)s = f(x)s and su = sv as required.
(7) Straightforward.
(8) Straightforward.

(9) Since there exists an isomorphism φ : Y/X → ˙
⋃

eiU for some family
{ei ∈ E(U)}, we see that for any x ∈ X and any u ∈ U we have φ(f(x))u =
φ(f(xu)) = φ(f(x)) and so φ(f(x)) is a left zero in U .
Since Y/X is projective, it is strongly flat and so f is P-unitary.
(10) Let β : A→ B be a right U -epimorphism and α : Y/X → B a right

U -map. Since Y is projective, there exists a right U -map γ : Y → A such
that

Y

Y/X

A B

γ

���������������
��
��

α

��

β
// //

commutes. If there exist y ∈ Y \ im(f), u ∈ U with yu ∈ im(f) then let
a0 = γ(yu). Notice that in this case, such a product yu is unique and is a
fixed point in Y and so a0 is a fixed point in A. Otherwise, if there is no such
y ∈ Y , choose and fix any a0 ∈ A such that for all x ∈ X, β(a0) = α(f(x))
and a0v = a0 for all v ∈ U . Notice that this last condition is possible since
U has a left zero. Now define δ : Y/X → A by

δ(y) =

{

γ(y) if y 6∈ im(f),
a0 otherwise

and note that by the P-unitary property, δ is well defined and β ◦ δ = α. We
need only check now that δ is a right U -map. Suppose then that y ∈ Y , u ∈ U
and consider δ(yu). If y ∈ im(f) then yu ∈ im(f) and so δ(yu) = δ(yu) =
a0 = a0u = δ(y)u as required. Otherwise y 6∈ im(f) and so there are two
possibilities: (i) yu 6∈ im(f), in which case δ(yu) = γ(yu) = γ(y)u = δ(y)u;
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(ii) yu ∈ im(f), in which case δ(yu) = a0 = γ(yu) = γ(y)u = δ(y)u as
required.
(11) First notice that if Y/X is free and |U | > 1 then f cannot be unitary,

otherwise the class containing the elements of im(f) would be a singleton
subact of Y/X.
If Y/X is free then it is projective and so U contains a left zero and f is

P-unitary.
(12) Notice that X is isomorphic to a disjoint union of copies of U to-

gether with a single proper ideal containing only a left zero element of U . It
is then straightforward to see that Y/X is free.

7. Some consequences. Many of the results in this section, in par-
ticular those concerning homological classification, are already known (see
[8]). We provide alternative proofs of some of these results using some of the
previous work on stable and unitary morphisms.

Theorem 7.1. Let f : X → Y be a right U -monomorphism and suppose
that Y and Y/X satisfy condition (P). Then X also satisfies condition (P).

Proof. Suppose that xu = x′u′ in X. Then f(x)u = f(x′)u′ in Y and
so there exist y ∈ Y , s, s′ ∈ S with f(x) = ys, f(x′) = ys′ and su = s′u′.
Now if y = f(x′′), say, then x = x′′s, x′ = x′′s′ and su = s′u′ as required.
Otherwise y 6∈ im(f) and so since f is P-unitary we see that ys = ys′ in
Y and so x = x′ in X. Moreover, x is a fixed point in X and so we have
x = xs, x′ = xs′ and su = s′u′ as required.

In a similar way we can also show

Theorem 7.2. Let f : X → Y be a right U -monomorphism and suppose
that Y and Y/X satisfy condition (E). Then X also satisfies condition (E).

And hence we can deduce

Theorem 7.3. Let f : X → Y be a right U -monomorphism and suppose
that Y and Y/X are strongly flat. Then X is also strongly flat.

In [11, Theorem 6.1], the author proved that if [U ;S1, S2] is a monoid
amalgam such that Si, Si/U are flat (both right and left) then the amalgam
is strongly embeddable. This is similar to the situation for ring theory except
that in that case, we only need one-sided flatness of Si/U . In [13, Theorem
4.3] we strengthened this result slightly but still needed double-sided flatness
of Si. Recall [5] that if U is a submonoid of a monoid S then we say that U is
(right) perfect in S if S is right flat and U → S is right pure as U -acts. This
is equivalent to Hall’s representation extension property [3]. It was proved
in [3, Theorem 4] and [5, Lemma 2.6] that if [U ;S, T ] is an amalgam of
monoids such that U → S, U → T are (right) perfect then the amalgam
is strongly embeddable. Let U be a submonoid of a monoid S and suppose
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that as right U -acts, S and S/U satisfy condition (P). Then we see that S
is right flat and U → S is right pure and so U is right perfect in S and thus
we can deduce

Theorem 7.4. Let [U ;Si] be a monoid amalgam such that as right U -
acts, Si and Si/U satisfy condition (P). Then the amalgam is strongly em-
beddable.

Suppose now that all flat right U -acts satisfy condition (P). If Y is flat
and f : X → Y is stable then the pushout, P , of diagram (∗) is flat and so
satisfies condition (P). Hence f is unitary and so we have

Theorem 7.5. Let U be a monoid such that all flat right U -acts satisfy
condition (P). Suppose that f : X → Y is a right U -monomorphism with Y
flat. Then f is stable if and only if f is unitary.

In the same way we can also show

Theorem 7.6. Let U be a monoid such that all weakly flat right U -acts
satisfy condition (P). Suppose that f : X → Y is a right U -map with Y
weakly flat. Then f is weakly stable if and only if f is unitary.

Theorem 7.7. Let U be a monoid and Y a weakly flat right U -act.
Then all principally weakly flat right Rees factor acts of Y are weakly flat
if and only if U is right reversible.

From Theorems 3.2, 3.4 and 3.6, we deduce the following interesting
results.

Corollary 7.8 ([7]). Let U be a monoid. All right Rees factor acts of
U are principally weakly flat if and only if U is regular.

Corollary 7.9 ([2, Theorem 6]). Let U be a monoid. All right Rees
factor acts of U are weakly flat if and only if U is right reversible and
regular.

It is clear that every inclusion J → U of right ideals is right pure if and
only if U is left absolutely weakly flat. Hence, from Theorems 3.6 and 4.13
and Corollary 4.17 we see that we can recover Fleischer’s Theorem:

Corollary 7.10 ([2, Theorem 4]). A monoid U is left absolutely weakly
flat if and only if U is regular and for every x, y ∈ U there exists z ∈ xU∩yU
such that zλ(x, y)x.

We also have

Corollary 7.11 ([8, Theorem 4.6.6]). A monoid U is left absolutely
principally weakly flat if and only if it is regular.

Lemma 7.12. If all torsion free right U -acts satisfy condition (P) then
U is right cancellative and right reversible.
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Proof. Suppose U is not right cancellative. Let J be the proper right
ideal of U consisting of the non-right cancellative elements of U . Then the
inclusion J → U is c-unitary and so since U is torsion free, the pushout
A(J) satisfies condition (P). This is impossible since then J → U would be
unitary. Hence U is right cancellative.

Since the 1-element right U -act is torsion free, it satisfies condition (P)
and so U is right reversible.

Lemma 7.13. A monoid U is either right cancellative or right 0-cancel-
lative if and only if no proper right ideal J of U with |J | > 1 is such that
J → U is c-unitary.

Proof. (⇒) Suppose that J is a proper right ideal of U such that J → U
is c-unitary. Note that U cannot be right cancellative as J → U cannot be
unitary and so U is 0-cancellative. But if |J | > 1 then there exists a right
cancellative u ∈ J with 1.u ∈ J and so by the c-unitary property it follows
that J = U , a contradiction.

(⇐) Suppose that U is not right cancellative and let J be the proper
right ideal of U consisting of the non-right cancellative elements of U . Then
J → U is c-unitary and so |J | = 1, from which it easily follows that U is
0-cancellative.

Theorem 7.14 ([8, Theorem 4.9.8]). Let U be a monoid. All torsion
free right Rees quotients of U satisfy condition (P) if and only if U is
right reversible and either right cancellative or right 0-cancellative.

Proof. (⇒) U is right reversible since the 1-element right U -act is torsion
free. Suppose then that J is a proper right ideal of U with J → U c-unitary.
It follows by the assumption that J → U is P-unitary. Consequently |J | = 1,
from which we deduce that S is right cancellative or right 0-cancellative from
Lemma 7.13.

(⇐) Suppose that J is a right ideal of U such that U/J is torsion free.
If J = U then right reversibility of U means that U/J has property (P).
Otherwise, by Lemma 7.13 we see that |J | = 1 and hence J → U is P-unitary
and so U/J satisfies condition (P).

Notice that U/J torsion free means that either J = U or |J | = 1. In a
similar way we have

Theorem 7.15 ([8, Theorem 4.10.7]). Let U be a monoid. All torsion
free right Rees quotients of U are strongly flat if and only if U is left col-
lapsible and either right cancellative or right 0-cancellative.

We can also deduce
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Theorem 7.16 ([8, Theorem 4.11.12]). Let U be a monoid. Then all
torsion free right Rees quotients of U are projective if and only if U contains
a left zero and either U is right cancellative or right 0-cancellative.

Proof. (⇒) Since the 1-element right U -act is torsion free, it is projective
and so there exists e2 = e ∈ U with |eU | = 1 and so U contains a left zero.
Suppose then that J is a proper right ideal of U with U/J torsion free.
Then U/J is projective and so it follows that |J | = 1 and hence U is right
cancellative or right 0-cancellative.

(⇐) Suppose that J is a right ideal of U such that U/J is torsion free.
If J = U then the existence of a left zero means that U/J is projective.
Otherwise, by Lemma 7.13 we see that |J | = 1 and hence U/J ∼= U and so
is projective.

8. Problems. 1. Determine which monoids U have the property that
all right U -monomorphisms are stable, pure or quasi-unitary.

2. Determine when I → U is c-unitary for I a right ideal of a monoid U .

3. Determine which monoids U have the property that for any contain-
ing monoid S, any U -act X embeds in an S-act, Y , with X → Y either
P-unitary, E-unitary, quasi-unitary, stable or weakly stable. Study the con-
nections between these and embeddability of semigroup amalgams.

4. If f : X → Y is a (weakly) stable right U -monomorphism with Y
indecomposable, is X indecomposable?
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