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LOCAL DERIVATIONS

IN POLYNOMIAL AND POWER SERIES RINGS

BY

JANUSZ ZIELIŃSKI (Toruń)

Abstract. We give a description of all local derivations (in the Kadison sense) in
the polynomial ring in one variable in characteristic two. Moreover, we describe all local
derivations in the power series ring in one variable in any characteristic.

1. Introduction. The notion of a local derivation appeared in the paper
of Kadison [1]. Let k be a field andA a commutative k-algebra with unity. Re-
call that a k-linear map d : A→ A is a derivation ofA if d(ab) = ad(b)+bd(a)
for all a, b ∈ A. Next, a k-linear map α : A → A is called a local derivation of
A if for each a ∈ A there exists a derivation da ofA such that α(a) = da(a).

Each derivation of A is a local derivation. It is known that every local
derivation of a polynomial ring over an infinite field k is a derivation. In
the case k = C this was proved by Kadison [1]. For any infinite field k the
result was formulated by Yon [3], but his proof was incorrect. The correct
proof was given by Nowicki [2]. Furthermore, in [2] Nowicki gave an example
of a local derivation of the polynomial ring in n variables over a finite field
which is not a derivation.

In Section 3 we describe all local derivations in any polynomial ring in
one variable in characteristic two. In our proof we use, among other things,
the lemma (from Section 2) which states, under some additional assump-
tions, the invariance of the quotient of the product by the least common
multiple. These methods are unrelated to Nowicki’s example, but at the
end of Section 3 we present a certain natural generalization of that ex-
ample.

The final Section 4 is devoted to power series rings. It contains a con-
struction of an infinite family of local derivations in the power series ring
in one variable over an arbitrary field. This family is a generalization of
another example given by Nowicki [2]. Finally, we give a full description of
local derivations in any power series ring in one variable.
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2. Preliminary lemmas. Let k be a finite field of a positive charac-
teristic p. If l is a non-negative integer, then we denote by Bl the subset of
k[t] defined by

Bl := {h ∈ k[t]; degt(h) < l}.

Moreover, we use the notations

Gl(g) :=
∏

h∈Bl

(g + h), Hl(g) := lcm{g + h; h ∈ Bl}

(the least common multiple is not uniquely defined, from now on we assume
that it is a monic polynomial) for any g ∈ k[t] such that degt(g) ≥ l (then
each element of the form g+h, for h ∈ Bl, is non-zero). It is clear that Gl(g)
is divisible by Hl(g).

Lemma 1. Let g1, g2 ∈ k[t] be monic polynomials and degt(g1) ≥ l,
degt(g2) ≥ l. Then

Gl(g1)

Hl(g1)
=
Gl(g2)

Hl(g2)
.

Proof. Put L1 := {g1 + h; h ∈ Bl} and L2 := {g2 + h; h ∈ Bl}. Define
vg(f) := m for f, g ∈ k[t] \ {0} such that f = g

mf and f is not divisible by
g. Let g ∈ k[t] be an irreducible polynomial. Assume that g is a factor of at
least one polynomial from the set L1, that is,

{f ∈ L1; vg(f) ≥ 1} 6= ∅.

If #{f ∈ L1; vg(f) ≥ 1} = 1, then g is a factor (in some power s) of
exactly one polynomial from L1. Then vg(Gl(g1)) = s = vg(Hl(g1)) and

vg

(
Gl(g1)

Hl(g1)

)
= 0.

Let s be a positive integer. We first prove that if

#{f ∈ L1; vg(f) ≥ s} ≥ 2,

then
#{f ∈ L1; vg(f) ≥ s} = #{f ∈ L2; vg(f) ≥ s}.

Since gs | g1 + h1 and g
s | g1 + h2 for some h1, h2 ∈ Bl, h1 6= h2, we have

gs |h1 − h2 and thus degt(g
s) < l. Let g1 − g2 = g

sq + r for q, r ∈ k[t] such
that degt(r) < degt(g

s). Then

g1 ≡ g2 + r (mod g
s)

and r ∈ Bl. Since Bl is an additive group, when we add consecutively to both
sides of the congruence all the elements of Bl we get on the left-hand side
all the polynomials from L1 and on the right-hand side all the polynomials
from L2. Thus g

s divides the same number of polynomials from L1 and of
polynomials from L2.
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Suppose that #{f ∈ L1; vg(f) ≥ 1} ≥ 2. Put

ms := #{f ∈ L1; vg(f) ≥ s}

for any positive integer s. Let

j = max{s ≥ 1; ms ≥ 2},

i1 = max{s ≥ 1; ms ≥ 1} = max{vg(f); f ∈ L1}.

The numbers j and i1 are well defined since L1 is a finite set of non-zero
elements. Then

vg(Gl(g1)) = m1 + . . .+mj + (i1 − j), vg(Hl(g1)) = i1.

Hence

vg

(
Gl(g1)

Hl(g1)

)
= m1 + . . .+mj − j.

From what has already been proved, we conclude that ms, for s =
1, . . . , j, is also the number of polynomials from L2 divisible by g

s, that
is,

#{f ∈ L2; vg(f) ≥ s} = ms.

Moreover, we easily deduce that

#{f ∈ L2; vg(f) ≥ s} ≤ 1

for s > j. Let

i2 = max{vg(f); f ∈ L2}.

Then

vg(Gl(g2)) = m1 + . . .+mj + (i2 − j), vg(Hl(g2)) = i2.

Hence

vg

(
Gl(g2)

Hl(g2)

)
= m1 + . . .+mj − j.

The same arguments are valid when {f ∈ L2; vg(f) ≥ 1} 6= ∅. Thus the
polynomials Gl(g1)/Hl(g1) and Gl(g2)/Hl(g2) have the same factorization.
Since both are monic, they are equal.

For example, for each monic g ∈ Z2[t] such that degt(g) ≥ 2,

G2(g)

H2(g)
= t(t+ 1),

and for each monic g ∈ Z2[t] such that degt(g) ≥ 3,

G3(g)

H3(g)
= t4(t+ 1)4(t2 + t+ 1).
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Slight changes in the proof of Lemma 1 actually show that if g is a monic
polynomial from k[t] and degt(g) ≥ l, then

Gl(g)

Hl(g)
= (−1)l

∏

h∈Bl\{0}

h.

Moreover, the assumption of Lemma 1 that the polynomials are monic is not
essential. If g1, g2 are arbitrary polynomials from k[t] such that degt(g1) ≥ l
and degt(g2) ≥ l, then

g̃2
Gl(g1)

Hl(g1)
= g̃1
Gl(g2)

Hl(g2)
,

where g̃1 and g̃2 are respectively the leading coefficients of g1 and g2. For
our further purposes we require only Lemma 1.

Lemma 2. Let f1, . . . , fl ∈ k[t]. Then the map Fl : k[t]→ k[t] defined by

Fl(a) =
∏

(b1,...,bl)∈kl

(a+ f1b1 + . . .+ flbl)

for a ∈ k[t] is additive.

Proof. We prove by induction that for each l ≥ 1 there exist g0, . . . , gs ∈
k[t] such that for every a ∈ k[t],

F (a) = gsa
ps + . . .+ g1a

p + g0a.

This proves the lemma since in characteristic p raising to the power pj is
additive and a linear combination of additive maps is additive.
Assume l = 1 and let the field k consist of {c1, . . . , cpr}. Then

(1) (a+ f1c1) . . . (a+ f1cpr) = a
pr − fp

r−1
1 a

since all the elements of the form −f1ci are roots of the polynomial x
pr −

fp
r−1
1 x.
Let l > 1. By (1),
∏

(b1,...,bl)∈kl

(a+ f1b1 + . . .+ flbl)

=
∏

(b1,...,bl−1)∈kl−1

((a+f1b1+. . .+fl−1bl−1)
pr−fp

r−1
l (a+f1b1+. . .+fl−1bl−1)).

Hence F (a) is equal to
∏

(b1,...,bl−1)∈kl−1

(ap
r

−fp
r−1
l a+(fp

r

1 −f
pr−1
l f1)b1+. . .+(f

pr

l−1−f
pr−1
l fl−1)bl−1).

We now apply the inductive assumption for f̃i = f
pr

i − f
pr−1
l fi and i =

1, . . . , l− 1. The proof is complete since (ap
r

− fp
r−1
l a)p

m

is for any natural
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m again a polynomial expression in a, with coefficients in k[t], such that the
exponents of a are powers of p.

Corollary 3. The map F : k[t] → k[t] defined by F (a) = Gl(a), for
a ∈ k[t], is k-linear.

Proof. In Lemma 2 replace fi by t
i−1 for i = 1, . . . , l. Then F is additive.

Let c ∈ k and c 6= 0. Then cGl(a) = Gl(ca) since for c 6= 0 we have

{ch; h ∈ Bl} = Bl and since c
plr = c in the field k of cardinality pr (then

Bl contains p
lr elements). If c = 0, then cGl(a) = 0 = Gl(ca).

3. Polynomial rings in characteristic two. Let k be a finite field of
characteristic two and n be a fixed non-negative even integer. Consider the
set

An :=
{
h ∈ k[t]; degt(h) < n, h =

∑

2|i

ait
i, ai ∈ k

}
.

This is a finite set (and An = {0} in the case n = 0). Moreover, it forms
an additive group. Define a k-linear map αn : k[t]→ k[t] by

αn(t
s) =

{ 0, s ≤ n,
lcm{ts−1 + h; h ∈ An}, s > n, 2 | (s− 1),
0, s > n, 2 | s.

Observe that all the exponents of the polynomials on the right-hand side of
the above equality are even numbers. Thus we may replace t2 by x. Further-
more we consider the least common multiple in the ring k[x]. Obviously α0
is a partial derivative.

Proposition 4. If n 6= 0, then αn is a local derivation of k[t] which is
not a derivation.

Proof. Let f ∈ k[t]. If degt(f) ≤ n, then αn(f) = 0 = d(f) where
d is the zero derivation of k[t]. Assume that degt(f) = m > n. Let U :=
{n < u ≤ m; 2 | (u− 1)} and Jn(g) := lcm{g + h; h ∈ An} for g ∈ k[t] such
that degt(g) ≥ n. If f =

∑
i≤m ait

i, where ai ∈ k and am 6= 0, then

αn(f) =
∑

i∈U

aiJn(t
i−1).

Suppose that αn(f) = f
′g (we denote by f ′ the derivative ∂f/∂t) for some

g ∈ k[t]. Let d : k[t] → k[t] be the derivation such that d(t) = g. Then
d(f) = f ′d(t) = αn(f) and consequently αn is a local derivation. Hence, it
remains to prove that f ′ divides αn(f). Since

f ′ ∈
{∑

i∈U

ait
i−1 + h; h ∈ An

}
,
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it suffices to show that
∑

i∈U

aiJn(t
i−1) is divisible by Jn

(∑

i∈U

ait
i−1
)
.

Again, all the exponents of the polynomials of these two expressions are
even numbers and we may replace t2 by x. Then the above expressions are
respectively of the forms

∑

l≤j≤s

cjHl(x
j), Hl

( ∑

l≤j≤s

cjx
j
)

for some l and s, where cj ∈ k (more precisely j = (i− 1)/2 and cj = ai).
Obviously

Hl

( ∑

l≤j≤s

cjx
j
)
= Hl

( ∑

l≤j≤s

cj
cs
xj
)
.

We now proceed to show that
∑

l≤j≤s

cjHl(x
j) = csHl

( ∑

l≤j≤s

cj
cs
xj
)
,

which completes the proof. By Lemma 1 it remains to prove that
∑

l≤j≤s

cjGl(x
j) = csGl

( ∑

l≤j≤s

cj
cs
xj
)
.

This equality is a consequence of Corollary 3.

The map αn is not a derivation since αn(t) = 0 6= αn(t
n+1).

We denote by
∑
2|n fnαn, for f0, f2, . . . ∈ k[t], a map from k[t] to k[t]

such that (∑

2|n

fnαn

)
(f) =

∑

2|n

fnαn(f)

for every f ∈ k[t]. Observe that the map is well defined since for each f
of degree s we have αn(f) = 0 for n ≥ s. The map

∑
2|n fnαn is a local

derivation of k[t] since for each f of degree s,
∑

2|n

fnαn(f) =
∑

n<s, 2|n

fnαn(f)

and since a linear combination, with coefficients in k[t], of local derivations
of k[t] is a local derivation of k[t].

Theorem 5. A map β is a local derivation of k[t] iff there exist unique
polynomials f0, f2, . . . ∈ k[t] such that β =

∑
2|n fnαn.

Proof. Assume that β : k[t]→ k[t] is a local derivation. Then β(tm) = 0
for all even m. Define
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f0 := β(t), β0 := β − f0α0 = β − f0
∂

∂t
.

Then β0 is a local derivation and β0(t) = 0. Suppose we have defined poly-
nomials f0, f2, . . . , fn and local derivations β0, β2, . . . , βn where n is an even
integer, and suppose βi(t

m) = 0 for m ≤ i+2. Since βn is a local derivation
and for every derivation d : k[t] → k[t] and polynomial f ∈ k[t] we have
d(f) = f ′d(t), we conclude that

f ′ |βn(f)

for all f ∈ k[t]. In particular this is valid for all f of the form tn+3+g where
degt(g) < n+ 3. Since in this case βn(g) = 0 and (∂/∂t)t

m = 0 for even m,
we obtain

tn+2 + h |βn(t
n+3)

for all h ∈ An+2. Then

Jn+2(t
n+2) |βn(t

n+3).

In the case βn(t
n+3) = 0 we put fn+2 := 0. If βn(t

n+3) 6= 0, then

βn(t
n+3) = fn+2Jn+2(t

n+2)

for some fn+2 ∈ k[t]. Define βn+2 := βn − fn+2αn+2. Thus βn+2 is a local
derivation and βn+2(t

n+3) = 0. Moreover,

β − βn+2 =
∑

m<n+3, 2|m

fmαm.

We have obtained the sequence (f0, f2, . . .) of polynomials in k[t] (in some
cases fn may be 0 for almost all n). Then β =

∑
2|n fnαn since for each

f ∈ k[t] of degree s we have
∑

2|n

fnαn(f) =
∑

n<s, 2|n

fnαn(f) = β(f).

The sequence (f0, f2, . . .) is unique since the value of β =
∑
2|n fnαn at

the monomials t, t3, t5, . . . determines successively f0, f2, . . .

A consequence of the fact that (f0, f2, . . .) is unique, is the linear inde-
pendence of the set {αn}2|n over k[t]. Unfortunately the methods used in the
paper in characteristic two are not valid for higher characteristics. Instead
it is possible to generalize Nowicki’s example of [2].
Let k be a finite field of characteristic p and of cardinality q := pr with

r ≥ 1. Let v(t) ∈ k[t] be a polynomial of the form

v(t) = cmt
qm + cm−1t

qm−1 + . . .+ c1t
q + c0t,

where c0, . . . , cm ∈ k. Define a map γ : k[t]→ k[t] by

γ(f) = v(f ′)
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for all f ∈ k[t]. Obviously if degt v(t) = 1, then γ is a derivation. A mod-
ification of the proof of Proposition 3 from [2] shows that if degt v(t) > 1,
then γ is a local derivation of k[t] which is not a derivation. The example
from [2] in the case of one variable is obtained for v(t) = t− tq.
As in [2] we may generalize the construction of the map γ to the ring

k[x1, . . . , xn]. Unfortunately even for one variable and characteristic two
the family of local derivations obtained above for all v is not sufficient for
description of all local derivations. A simple calculation shows that if k =
Z2, then the local derivation α4 : Z2[t] → Z2[t] and the set of the local
derivations γ for all v are linearly independent over Z2[t]. It is also impossible
to represent the map α4 as an infinite sum of these local derivations.

4. Local derivations in the power series rings. Let k be an ar-
bitrary field and A = k[[t]] be the formal power series ring over k. In [2]
Nowicki proved that the map γ : A → A such that if f ∈ A, then γ(f) is
the coefficient of the monomial t in f , is a local derivation of A which is not
a derivation. First we generalize this result. Denote by p the characteristic
of k.
Let n be a positive integer. Define hn : A→ A by

hn(f) = nant
n−1 for f =

∞∑

i=0

ait
i.

If p > 0, then we denote by B the set of the maps hn for n not divisible by
p. If p = 0, then put B := {h1, h2, . . .}.

Proposition 6. The map hn : A → A is a local derivation of A for
each n ≥ 1. If hn ∈ B, then hn is not a derivation. The set {∂/∂t} ∪ B is
linearly independent over A.

Proof. Let m be an integer such that m > n and if p > 0, then m is not
divisible by p. By definition hn(t

n) = ntn−1 and hn(t
m) = 0. Suppose hn is

a derivation. Then hn(t
n) = ntn−1hn(t) and hn(t

m) = mtm−1hn(t). Thus
hn(t) = 1 and hn(t) = 0. We obtain a contradiction.
Obviously hn is k-linear. Let f =

∑∞
i=0 ait

i ∈ A. If nan = 0, then
hn(f) = 0 = d(f) where d is the zero derivation of A. Suppose that nan 6= 0.
Assume sas is the first non-zero element of the sequence (a1, 2a2, . . . , nan).
Then the element g :=

∑∞
i=s iait

i−s is invertible. Define the derivation d as
follows:

d(t) = g−1nant
n−s.

Hence

d(f) = f ′d(t) = ts−1nant
n−s = hn(f).

Therefore hn is a local derivation.
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Let c∂/∂t+ c1hi1 + . . .+ cshis = 0. Let m be a positive integer such that
m > max{i1, . . . , is} and m is not divisible by p in the case p > 0. Then

0 =

(
c
∂

∂t
+ c1hi1 + . . .+ cshis

)
(tm) = cmtm−1,

hence c = 0. Suppose ir = max{ij ; cj 6= 0}. Then

0 = (c1hi1 + . . .+ cshis)(t
ir) = crirt

ir−1,

and thus cr = 0. This contradiction proves that cj = 0 for all ij .

Note that the γ from Nowicki’s example is equal to h1. Define nowMn :=
{f ∈ A; f =

∑∞
i=n ait

i} for n ≥ 0. It is evident that if n ≥ 1, then hn(A) ⊆
Mn−1. Let fn ∈ A for all n ≥ 1. We denote by

∑∞
n=1 fnhn the map from A

to A defined by
( ∞∑

n=1

fnhn

)
(f) =

∞∑

n=1

fnhn(f)

for every f ∈ A. Note that this map is well defined since for each f ∈ A we
have fnhn(f) ∈ Mn−1. Thus the coefficient of every monomial t

i is a sum
of a finite number of summands.

Proposition 7. Every local derivation h : A → A is determined by its
values at ti for all i ≥ 1, that is, by the set {h(ti); i ≥ 1}.

Proof. Let f =
∑∞
i=0 ait

i ∈ A and h(f) =
∑∞
i=0 bit

i. Clearly h(a0) = 0.
Then

h(f) = a1h(t) + h
( ∞∑

i=2

ait
i
)
.

Observe that h(Mn) ⊆Mn−1 for all n ≥ 1. Indeed, if g =
∑∞
i=n cit

i, then

h(g) = dg(g) =
( ∞∑

i=n

icit
i−1
)
dg(t) ⊆Mn−1.

Since h(
∑∞
i=2 ait

i) ∈ M1, the coefficient b0 is determined by h(t). Suppose
bj for j < n is determined by h(t

i) for 1 ≤ i ≤ n. Then

h(f) =
n+1∑

i=1

aih(t
i) + h

( ∞∑

i=n+2

ait
i
)
.

Since h(
∑∞
i=n+2 ait

i) ∈ Mn+1, the coefficient bn is determined by h(t
i) for

1 ≤ i ≤ n+ 1.

Theorem 8. A map h : A→ A is a local derivation iff it is of the form
h =
∑∞
n=1 fnhn where f1, f2, . . . ∈ A.

Proof. The map
∑∞
n=1 fnhn is k-linear since, by the fact that hn(A) ⊆

Mn−1 for n ≥ 1, the coefficient of every monomial t
i is determined only by
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a finite number of summands. Thus k-linearity follows from the fact that
a linear combination of k-linear maps is k-linear.

Let f =
∑∞
i=0 ait

i ∈ A. If (
∑∞
n=1 fnhn)(f) = 0, then df may be the

zero derivation. Assume (
∑∞
n=1 fnhn)(f) =

∑∞
i=r bit

i and br 6= 0. Let f
′ =∑∞

i=s iait
i−1 and sas 6= 0. We first prove that s ≤ r + 1. Suppose, contrary

to our claim, that s > r + 1. Then

( ∞∑

n=1

fnhn

)
(f) =

r+1∑

n=1

fnhn(f) +
∞∑

n=r+2

fnhn(f) =
∞∑

n=r+2

fnhn(f)

since hn(f) = nant
n−1 = 0 for n ≤ r+1. However

∑∞
n=r+2 fnhn(f) ∈Mr+1

and we obtain a contradiction.
Since sas 6= 0, the element h :=

∑∞
i=s iait

i−s is invertible. Define a
derivation d of A by

d(t) = h−1
∞∑

i=r

bit
i+1−s.

Hence

d(f) = f ′d(t) = ts−1
∞∑

i=r

bit
i+1−s =

∞∑

i=r

bit
i =
( ∞∑

n=1

fnhn

)
(f).

Let h : A→ A be a local derivation. Then

h(ti) = dti(t
i) = iti−1dti(t)

for all i ≥ 1. Define fi := dti(t) for each i ≥ 1. By Proposition 7, the local
derivations h and

∑∞
n=1 fnhn are equal if and only if they have the same

values at ti for all i ≥ 1. Indeed,

( ∞∑

n=1

fnhn

)
(ti) = fihi(t

i) = fiit
i−1 = iti−1dti(t) = h(t

i).

The proof above gives more, namely a k-linear map h : A → A is a
local derivation iff for each f =

∑∞
i=0 ait

i ∈ A we have s ≤ r + 1, where
h(f) =

∑∞
i=r bit

i, br 6= 0 and f
′ =
∑∞
i=s iait

i−1, sas 6= 0. Note that as a
consequence of Proposition 7 we find that the polynomials fn in Theorem
8 are unique for any n in the case p = 0, and for n not divisible by p in the
case p > 0.
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