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Abstract. An embedding from a Cartesian product of two spaces into the Cartesian
product of two spaces is said to be factorwise rigid provided that it is the product of
embeddings on the individual factors composed with a permutation of the coordinates.
We prove that each embedding of a product of two pseudo-arcs into itself is factorwise
rigid. As a consequence, if X and Y are metric continua with the property that each of
their nondegenerate proper subcontinua is homeomorphic to the pseudo-arc, then X × Y
is factorwise rigid. This extends results of D. P. Bellamy and J. M. Lysko (for the case
that X and Y are pseudo-arcs) and of K. B. Gammon (for the case that X is a pseudo-arc
and Y is either a pseudo-circle or a pseudo-solenoid).

1. Introduction. A continuum is a nondegenerate compact connected
metric space. Given continuaX,Y,X2, Y2, an embedding e : X×Y → X2×Y2

is said to be factorwise rigid provided that there exist continua X1, Y1 and
embeddings eX : X → X1 and eY : Y → Y1 such that {X1, Y1} = {X2, Y2}
and either for each (x, y) ∈ X × Y , e(x, y) = (eX(x), eY (y)), or for each
(x, y) ∈ X × Y , e(x, y) = (eY (y), eX(x)). The product X × Y is said to
be factorwise rigid provided that every self-homeomorphism of X × Y can
be written as a composition of a product of homeomorphisms on individual
coordinates with a permutation of the coordinates.

In 1983, D. P. Bellamy and J. M. Lysko [BL] proved that the product
of two pseudo-arcs is factorwise rigid. This result was extended by D. P.
Bellamy and J. A. Kennedy [BK] to an arbitrary product of pseudo-arcs.
In 2010, K. B. Gammon [G1] showed that the product of a pseudo-arc and
a pseudo-circle is factorwise rigid, and very recently, K. B. Gammon [G2]
has also proved that the product of a pseudo-arc and a pseudo-solenoid is
factorwise rigid.
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In this paper we prove that every embedding of the product of two
pseudo-arcs into itself is factorwise rigid. The above mentioned results by
Bellamy, Lysko and Gammon are obtained as corollaries.

2. Results. The letter P will denote the pseudo-arc. For a very complete
information about the pseudo-arc, the reader is referred to [L]. A map is a
continuous function. An ε-map between continua is a map f : X → Y such
that diam(f−1(y)) < ε for each y ∈ Y . A continuumX is said to be chainable
provided that for each ε > 0, there exists an ε-map from X into [0, 1]. For
a continuum X, we denote by C(X) the hyperspace of subcontinua of X,
endowed with the Hausdorff metric [IN, Definition 2.1]. Given subcontinua
A and B of a continuum X such that A ( B, an order arc from A to B is
a map α : [0, 1] → C(X) such that α(0) = A, α(1) = B and, if s < t, then
α(s) ( α (t). The existence of order arcs is proved in [IN, Theorem 14.6].

A continuum X is said to be hereditarily indecomposable provided that
if A,B ∈ C(X), then either A∩B = ∅, or A ⊂ B, or B ⊂ A. It is well known
that a continuum is indecomposable if and only if each of its subcontinua
has empty interior. Using this fact and order arcs it is possible to show that,
if X is a continuum such that each of its proper nondegenerate subcontinua
is indecomposable, then X is hereditarily indecomposable. Given continua
X and Y , let π1 and π2 be the respective projections from X × Y onto the
first and second coordinates.

We will use that P is chainable and hereditarily indecomposable. We
also need the following result [BL, Corollary 3].

Lemma 2.1. Let X, Y be chainable continua. Suppose that M and N
are subcontinua of X × Y such that π1(M) ⊂ π1(N) and π2(N) ⊂ π2(M).
Then M ∩N 6= ∅.

Lemma 2.2. Suppose that X and Y are hereditarily indecomposable. Let
e : X × Y → X × Y be an embedding. Suppose that for each (p, q) ∈ X × Y ,
πi(e({p} × Y )) is degenerate for some i ∈ {1, 2} and πj(e(X × {q})) is
degenerate for some j ∈ {1, 2}. Then e is factorwise rigid.

Proof. First, we will show the following claim.

Claim 1. There exists i0 ∈ {1, 2} such that πi0(e({p}×Y )) is degenerate
for every p ∈ X.

To prove Claim 1, let A = {p ∈ X : π1(e({p} × Y )) is degenerate} and
B = {p ∈ X : π2(e({p} × Y )) is degenerate}. By hypothesis, X = A ∪ B.
Since e is one-to-one, A∩B = ∅. It is easy to show that A and B are closed.
By the connectedness of X, either A = ∅ or B = ∅. Thus, either X = A or
X = B. This ends the proof of Claim 1.
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Claim 2. Let j0 ∈ {1, 2}−{i0}. Then πj0(e(X ×{q})) is degenerate for
every q ∈ Y .

A similar argument as in Claim 1 implies that there exists j ∈ {1, 2} such
that πj(e(X×{q})) is degenerate for every q ∈ Y . If j = i0, then for all points
(x1, y1), (x2, y2) ∈ X × Y , the sets πi0(e({x1} × Y )) and πi0(e(X × {y2}))
are degenerate. Since their intersection is nonempty, πi0(e({x1} × Y )) ∪
πi0(e(X × {y2})) is degenerate. Thus πi0(e(x1, y1)) = πi0(e(x2, y2)). This
proves that πi0(e(X × Y )) = {z} for some z. This proves that e(X × Y )
is contained in a slice of X × Y . Since X and Y are hereditarily indecom-
posable, we conclude that e(X × Y ) and X × Y are indecomposable. This
is a contradiction since the product of two nondegenerate continua is not
indecomposable. We have shown that j 6= i0 and j = j0. Claim 2 is proved.

Define Xi0 = πi0(X × Y ) and Yj0 = πj0(X × Y ). Then {Xi0 , Yj0} =
{X,Y }. Fix x0 ∈ X and y0 ∈ Y . Define ei0 : X → Xi0 and ej0 : Y → Yj0 by
ei0(p) = πi0(e(p, y0)) and ej0(q) = πj0(e(x0, q)). Then ei0 and ej0 are con-
tinuous. By the choice of i0 and j0, for each (p, q) ∈ X × Y , πi0(e(p, q)) =
πi0(e(p, y0)) = ei0(p) and πj0(e(p, q)) = πj0(e(x0, q)) = ej0(q). This im-
plies that e(p, q) = (ei0(p), ej0(q)) or e(p, q) = (ej0(q), ei0(p)), depending on
whether i0 = 1 or i0 = 2.

In order to see that ei0 is one-to-one, let p, x ∈ X be such that ei0(p) =
ei0(x). By definition, πi0(e(p, y0)) = ei0(p) = ei0(x) = πi0(e(x, y0)). By the
choice of j0, πj0(e(p, y0)) = πj0(e(x, y0)). Hence, e(p, y0) = e(x, y0). Since e is
one-to-one, p = x. Thus ei0 is an embedding. Similarly, ej0 is an embedding.
Therefore, e is factorwise rigid.

Theorem 2.3. Every embedding of P ×P into itself is factorwise rigid.

Proof. Let d be a metric for P . Let e : P ×P → P ×P be an embedding.

Claim 3. For each p ∈ P , π1(e({p}×P )) or π2(e({p}×P )) is degenerate.

In order to prove Claim 3, suppose to the contrary there exists p ∈ P
such that π1(e({p} × P )) and π2(e({p} × P )) are nondegenerate. Let ε > 0
be such that ε < min{diam(πi(e({p} × P ))) : i ∈ {1, 2}}. Let δ > 0 be
such that if a, b, x, y ∈ P , i ∈ {1, 2} and max{d(a, b),d(x, y)} < δ, then
d(πi(e(a, x)), πi(e(b, y))) < ε/3. Let α : [0, 1] → C(P ) be an order arc from
{p} to P . Then there exists t > 0 such that diam(α(t)) < δ. Let A = α(t).
Then p ∈ A, A is a nondegenerate subcontinuum of P and diam(A) < δ.

Let i∈{1, 2}. Let x0, y0 ∈ P be such that ε < d(πi(e(p, x0)), πi(e(p, y0))).
Given a, b ∈ A, d(πi(e(a, p)), πi(e(b, p))) < ε/3. Thus, diam(πi(e(A× {p})))
< ε/3. Given a ∈ A, notice that d(πi(e(a, x0)), πi(e(p, x0))) < ε/3 and
d(πi(e(a, y0)), πi(e(p, y0))) < ε/3. This implies d(πi(e(a, x0)), πi(e(a, y0)))
> ε/3. We have shown that diam(πi(e({a} × P ))) > ε/3.
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Let G(a, i) = πi(e({a}×P )). Then for all a ∈ A and i ∈ {1, 2}, G(a, i) is
a subcontinuum of P such that diam(G(a, i)) > ε/3. Moreover, πi(e(a, p)) ∈
πi(e(A× {p})) ∩G(a, i) and diam(πi(e(A× {p}))) < ε/3. This implies that
πi(e(A× {p})) ⊂ G(a, i). Therefore, for all a, b ∈ A and i ∈ {1, 2}, G(a, i)∩
G(b, i) 6= ∅, so either G(a, i) ⊂ G(b, i) or G(b, i) ⊂ G(a, i).

We claim that if a 6= b, then G(a, i) 6= G(b, i). Suppose to the contrary
that G(a, i) = G(b, i). Let j ∈ {1, 2} be such that j 6= i. Then either
G(a, j) ⊂ G(b, j) or G(b, j) ⊂ G(a, j). Applying Lemma 2.1 to the continua
e({a} × P ) and e({b} × P ), we obtain e({a} × P ) ∩ e({b} × P ) 6= ∅. This
contradicts the fact that e is one-to-one. We have shown that, if i ∈ {1, 2}
and a, b ∈ A are such that a 6= b, then either G(a, i) ( G(b, i) or G(b, i) (
G(a, i).

Consider the map ϕ : A→ C(P ) given by ϕ(a) = G(a, 1). Notice that ϕ
is continuous. By the previous paragraph, ϕ is one-to-one. Let µ : C(X)→
[0, 1] be a Whitney map [IN, Definition 13.1]. Then µ ◦ ϕ : A → [0, 1] is
continuous and one-to-one, and so µ ◦ϕ is an embedding. This implies that
A is an arc, which contradicts the fact that P is hereditarily indecomposable.
This completes the proof of Claim 3.

With similar arguments, the following claim can be proved.

Claim 4. For each q ∈ P , either π1(e(P × {q})) or π2(e(P × {q})) is
degenerate.

Hence, by Lemma 2.2 we conclude that e is factorwise rigid.

The proof of the following theorem is straightforward.

Theorem 2.4. Let R, S, T and Y be continua homeomorphic to the
pseudo-arc. Then each embedding from R×S into T ×Y is factorwise rigid.

Theorem 2.5. Let X and Y be continua all of whose nondegenerate
proper subcontinua are pseudo-arcs. Then X × Y is factorwise rigid.

Proof. Let f : X × Y → X × Y be a homeomorphism.

Claim 5. If p ∈ X and f({p} × Y ) is contained in a slice Z of X × Y ,
then f({p} × Y ) = Z.

In order to prove Claim 5, suppose to the contrary that f({p}×Y ) 6= Z.
Suppose, for example, that Z = X × {y0} for some y0 ∈ Y ; the case when
Z is a slice with Y as a factor is similar.

Let W = π1(f({p} × Y )). Then f({p} × Y ) = W × {y0} ( X × {y0}.
Thus, W is a nondegenerate proper subcontinuum of X. Hence, W is a
pseudo-arc. Since f is a homeomorphism, we conclude that {p}×Y and Y are
homeomorphic to the pseudo-arc. Since π1(f−1(W×{y0}) = {p} ( X, using
order arcs it is possible to find nondegenerate proper subcontinua R and S of
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X and Y , respectively, such that W ( R, y0 ∈ S and π1(f−1(R× S)) 6= X.
Let T = π1(f−1(R× S)). Then T is either a one-point set or a pseudo-arc.

Notice that R and S are pseudo-arcs and f−1|R×S : R×S → T×Y is an
embedding. Since Y is hereditarily indecomposable, T cannot be degenerate.
Thus, R,S, T and Y are pseudo-arcs.

By Theorem 2.4, the embedding e = f−1|R×S is factorwise rigid. Thus,
there exist continua R1 and S1 and embeddings eR : R → R1 and eS :
S → S1 such that {R,S} = {R1, S1}, and either for each (x, y) ∈ R × S,
e(x, y) = (eR(x), eS(y)), or for each (x, y) ∈ R× S, e(x, y) = (eS(y), eR(x)).
In the first case, for each w ∈W , p = π1(e(w, y0)) = π1(eR(w), eS(y0)), that
is, p = eR(w). This is absurd since eR is one-to-one. Hence, only the second
case is possible, that is, for each (x, y) ∈ R× S, e(x, y) = (eS(y), eR(x)).

Given w ∈W , p = π1(e(w, y0)) = eS(y0). Thus, eS(y0) = p. Given x ∈ R,
e(x, y0) = (eS(y0), eR(x)) = (p, eR(x)). Hence, (x, y0) = f(f−1(x, y0)) =
f(e(x, y0)) = f(p, eR(x)) ∈ W × {y0}. This implies that x ∈ W . We have
shown that R ⊂ W , contrary to the choice of R. This ends the proof of
Claim 5.

Claim 6. If p ∈ X, then f({p} × Y ) contains a slice of the product
X × Y .

In order to prove Claim 6, fix q0 ∈ Y . Let α : [0, 1] → C(X) and β :
[0, 1]→ C(Y ) be order arcs from {p} to X and from {q0} to Y , respectively.
Given (s, t) ∈ [0, 1]2, let A(s, t) = α(s)× β(t).

Let

E = {(s, t) ∈ (0, 1)× (0, 1) : π1(f(A(s, t))) 6= X and π2(f(A(s, t))) 6= Y }.

Notice that π1(f(A(0, 0))) = {π1(f(p, q0))} 6= X and π2(f(A(0, 0))) =
{π2(f(p, q0))} 6= Y , so the continuity of α, β, f, π1 and π2 implies that E
is nonempty. Given (s, t) ∈ E, the map f |A(s, t) : A(s, t)→ π1(f(A(s, t)))×
π2(f(A(s, t))) is an embedding from the product of two pseudo-arcs into the
product of two pseudo-arcs. By Theorem 2.4, f |A(s, t) is factorwise rigid.

This implies that there exist continua X(s, t), Y (s, t) and embeddings
e(α,s,t) : α(s)→ X(s, t) and e(β,s,t) : β(t)→ Y (s, t) satisfying

{X(s, t), Y (s, t)} = {π1(f(A(s, t))), π2(f(A(s, t)))},

and either for each (x, y) ∈ A(s, t), f(x, y) = (e(α,s,t)(x), e(β,s,t)(y)), or for
each (x, y) ∈ A(s, t), f(x, y) = (e(β,s,t)(y), e(α,s,t)(x)). In the first case de-
fine i(s, t) = 1 and in the second case define i(s, t) = 2. Let j(s, t) be the
only element in {1, 2} − {i(s, t)}. Notice that for each (x, y) ∈ A(s, t), the
continua πi(s,t)(f({x} × β(t))) = {e(α,s,t)(x)} and πj(s,t)(f(α(s) × {y})) =
{e(β,s,t)(y)} are degenerate, and hence πj(s,t)(f({x} × β(t))) = e(β,s,t)(β(t))
and πi(s,t)(f(α(s)× {y})) = e(α,s,t)(α(s)) are nondegenerate.
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Claim 6.1. Suppose that s1, s2 ∈ (0, 1) and t1, t2 ∈ (0, 1) are such that
(s1, t1), (s2, t2) ∈ E. Then i(s1, t1) = i(s2, t2) and j(s1, t1) = j(s2, t2).

In order to prove Claim 6.1, let s = min{s1, s2} and t = min{t1, t2}.
Notice that A(s, t) ⊂ A(s1, t1)∩A(s2, t2). Then for each (x, y) ∈ A(s, t), the
continua πi(s,t)(f({x} × β(t))) and πi(s1,t1)(f({x} × β(t))) are degenerate,
and πj(s,t)(f({x} × β(t))) and πj(s1,t1)(f({x} × β(t))) are nondegenerate.
This implies that i(s, t) = i(s1, t1), and hence j(s, t) = j(s1, t1). Similarly,
i(s, t) = i(s2, t2) and j(s, t) = j(s2, t2). Thus, the proof of Claim 6.1 is
complete.

By Claim 6.1, there exist i0, j0 ∈ {1, 2} such that {i0, j0} = {1, 2} and
i0 = i(s, t), j0 = j(s, t) for each (s, t) ∈ E. By definition πi0(f({p} × β(t)))
is degenerate for each (s, t) ∈ E, so we can define v0 = max{t ∈ [0, 1] :
πi0(f({p} × β(t))) is degenerate}. Define W = X if j0 = 1, and W = Y if
j0 = 2. Notice that πj0(f({p} × β(v0))) ⊂W . Let Z be the only element of
the set {X,Y } − {W}. Then W = πj0(X × Y ) and Z = πi0(X × Y ).

Claim 6.2. πj0(f({p} × β(v0))) = W .

Suppose, contrary to the claim, that πj0(f({p} × β(v0))) 6= W . Since
πi0(f({p} × β(v0))) is degenerate, f({p} × β(v0)) is properly contained in a
slice of X×Y , and by Claim 5, v0 < 1. Since πi0(f({p}×β(v0))) is degenerate
and f({p}×β(v0)) = f(α(0)×β(v0)), by continuity of α, β and f there exist
s ∈ (0, 1] and t ∈ (v0, 1] such that (s, t) ∈ E. By the choice of i(s, t) and
j(s, t), πi(s,t)(f({p}×β(t))) and πj(s,t)(f(α(s)×{q0})) are degenerate. Thus,
πi0(f({p}×β(t))) is degenerate. This contradicts the choice of v0 and proves
Claim 6.2.

Claim 6.3. πi0(f({p} × β(v0))) = {πi0(f(p, q0))}.
To prove Claim 6.3, notice that Claim 6.2 implies that v0 > 0. Take

(s, t) ∈ E such that t < v0. By the choice of i(s, t), πi(s,t)(f({p} × β(t))) is
degenerate and contains {πi0(f(p, q0))}. Since πi0(f({p}×β(v0))) is degener-
ate and contains πi(s,t)(f({p}×β(t))), we conclude that πi0(f({p}×β(v0))) =
{πi0(f(p, q0))}.

Claims 6.2 and 6.3 clearly imply that f({p} × β(v0)) is a slice of the
product. This completes the proof of Claim 6.

By symmetry, we can deduce the following.

Claim 7. For each slice S in X × Y , f(S) contains a slice of X × Y
and f−1(S) contains a slice of X × Y .

Claim 8. For each slice S in X × Y , f(S) is a slice in X × Y .

In order to prove Claim 8, notice that, by Claim 7, there exists a slice
T of X × Y such that T ⊂ f(S). Applying again Claim 7, we find a slice
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S1 of X × Y such that S1 ⊂ f−1(T ) ⊂ S. This implies that S1 = S; hence
S = f−1(T ) and f(S) = T . This proves Claim 8.

By Lemma 2.2, there exist continua X1, Y1 and embeddings eX : X→X1

and eY : Y → Y1 such that {X,Y } = {X1, Y1} and either for every
(x, y) ∈ X × Y , f(x, y) = (eX(x), eY (y)), or for every (x, y) ∈ X × Y ,
f(x, y) = (eY (y), eX(x)). Since f is a homeomorphism, it follows that eX
and eY are onto. This completes the proof of the theorem.

The following corollary extends the main results of [BL], [G1], [G2].

Corollary 2.6. Suppose X is homeomorphic to either (a) the pseudo-
arc, or (b) the pseudo-circle, or (c) some pseudo-solenoid, and Y is also
homeomorphic to one of these continua. Then X × Y is factorwise rigid.

Problem 2.7. Can Theorem 2.3 be extended to a finite product of more
than two factors?

For infinite products, there is no a direct natural generalization of Theo-
rem 2.3 since we can consider embeddings like e : P ×P ×· · · → P ×P ×· · ·
given by e(x1, x2, . . .) = (x1, x1, x1, x2, x3, . . .).

Two maps h, g : P → P are said to be pseudo-homotopic provided that
there exist a continuum C, points s0, t0 ∈ C and a map H : P × C → P
such that H(p, s0) = g(p) and H(p, t0) = h(p) for each p ∈ P . In this case,
we say that H is a pseudo-homotopy between g and h.

There are only two known types of pseudo-homotopies for maps into
the pseudo-arc, namely either H(P × {c}) is degenerate for each c ∈ C, or
H(x, c) = f(x) for each (x, c) ∈ X × C, where f : P → P is a map.

Problem 2.8. Do there exist pseudo-homotopies on the pseudo-arc dif-
ferent from the ones described in the paragraph above?

A negative answer to Problem 2.8 would help to solve Problem 2.7 and
other problems about maps defined on products that have some pseudo-arcs
as factors (see [I]).

Very recently, the second named author has shown [I] that if H is a
pseudo-homotopy between a one-to-one map g and a map h, then g = h.
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México 04510, D.F., México
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