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ONE-PARAMETER SEMIGROUPS IN THE CONVOLUTION
ALGEBRA OF RAPIDLY DECREASING DISTRIBUTIONS
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JAN KISYŃSKI (Lublin)

Abstract. The paper is devoted to infinitely differentiable one-parameter convolution
semigroups in the convolution algebra O′C(Rn;Mm×m) of matrix valued rapidly decreasing
distributions on Rn. It is proved that G ∈ O′C(Rn;Mm×m) is the generating distribution
of an i.d.c.s. if and only if the operator ∂t ⊗ 1m×m −G ∗ on R1+n satisfies the Petrovskĭı
condition for forward evolution. Some consequences are discussed.

Introduction. The present article is an improved version of a part of
[K2]. It refers to the papers [P] and [S1]. In [P] I. G. Petrovskĭı revealed the
significance of smooth slowly increasing functions for the theory of Cauchy’s
problem for PDEs with constant coefficients. In [S1] L. Schwartz demon-
strated that rapidly decreasing distributions play an important role there.

One-parameter semigroups in the convolution algebra of rapidly
decreasing distributions. Let Mm×m be the set of m × m matrices with
complex entries, and O′C(Rn;Mm×m) the convolution algebra of Mm×m-
valued distributions on Rn rapidly decreasing in the sense of L. Schwartz.
The Fourier transformation F is an isomorphism of O′C(Rn;Mm×m) onto the
algebra OM (Rn;Mm×m) of Mm×m-valued infinitely differentiable slowly in-
creasing functions on Rn. We shall prove that an Mm×m-valued distribution
G ∈ O′C(Rn;Mm×m) is the generating distributionof a one-parameter infinitely
differentiable convolution semigroup (St)t≥0 ⊂ O′C(Rn;Mm×m) if and only if

(i) 0 ∨maxReσ((FG)(ξ)) = O(log |ξ|) as ξ ∈ Rn and |ξ| → ∞,
where, for any ξ ∈ Rn, σ((FG)(ξ)) denotes the spectrum of the square matrix
(FG)(ξ).

Here the capital O is the Landau symbol, so that (i) means that there
is C ∈ ]0,∞[ such that whenever ξ ∈ Rn and λ ∈ σ((FG)(ξ)), then Reλ ≤
C(1 + log(1 + |ξ|)).
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IfG = G(∂1, . . . , ∂n)⊗δ where δ is the Dirac distribution on Rn, ∂1, . . . , ∂n
denote the partial derivatives with respect to the coordinates of Rn and
G(∂1, . . . , ∂n) is an m×m matrix whose entries are scalar partial differential
operators with constant coefficients, then (FG)(ξ) = G(iξ) for every ξ ∈ Rn,
and condition (i) takes the form

(i)′ max{0 ∨ Reλ : (λ, ξ) ∈ C× Rn, detP (λ, iξ) = 0} = O(log |ξ|)
as |ξ| → ∞

where P (λ, ζ1, . . . , ζn) = λ1m×m − G(ζ1, . . . , ζn). Thanks to the fact that
detP (λ, ζ1, . . . , ζn) is a polynomial, L. Gårding was able to prove that (i)′
holds if and only if
(ii) sup{Reλ : λ ∈ σ(G(iξ)), ξ ∈ Rn} <∞.
i.e. if and only if the real parts of λ-roots of the polynomial detP (λ, ξ1, . . . , ξn)
remain bounded from above when ξ ranges over Rn. This last is known as
the Petrovskĭı condition for forward evolutionarity in t of the matricial dif-
ferential operator

P (∂t, ∂1, . . . , ∂n) := ∂t ⊗ 1m×m − G(∂1, . . . , ∂n) on R1+n.

Notice that if G ∈ O′C(Rn;Mm×m) and suppG 6= {0}, then (i) may hold
without the set {Reλ : λ ∈ σ((FG)(ξ)), ξ ∈ Rn} being bounded from above.
This is so if, for instance, m = n = 1 and (FG)(ξ) = log(e+ ξ2).

Application to the Cauchy problem for convolution equations.
If G ∈ O′C(Rn;Mm×m), then (G∗)|S′(Rn,Cm) ∈ L(S ′(Rn,Cm);S ′(Rn,Cm)).
An argument similar to one used in the proof of [K3, Theorem 1(ii)] leads
to the conclusion that whenever G ∈ O′C(Rn;Mm×m), then G satisfies
the condition (i) if and only if the operator (G∗)|S′(Rn,Cm) is equal to the
infinitesimal generator of a one-parameter operator semigroup (Tt)t≥0 ⊂
L(S ′(Rn,Cm);S ′(Rn,Cm)) of class (C0).

In the following we assume that the distributionG ∈ O′C(Rn;Mm×m) sat-
isfies the condition (i), and (St)t≥0 ⊂ O′C(Rn;Mm×m) is the i.d.c.s. whose
generating distribution is G. By an (S·∗)-invariant l.c.v.s. we mean a sequen-
tially complete l.c.v.s. E continuously imbedded in S ′(Rn;Cm) such that:
1o (St ∗)E ⊂ E for every t ∈ [0,∞[, 2o the mapping [0,∞[ × E 3 (t, u) 7→
St ∗ u ∈ E is continuous, 3o ((St ∗)|E)t≥0 ⊂ L(E;E) is a one-parameter
(C0)-semigroup with infinitesimal generator GE such that

D(GE) = {u ∈ E : G ∗ u ∈ E}, GEu = G ∗ u for u ∈ D(GE).

An l.c.v.s. E imbedded in S(Rn;Cm) will be called strongly (G ∗)-invariant
if (G ∗)E ⊂ E and E is (S·∗)-invariant.

Each of the function spaces

(a) S(Rn;Cm) and DLp(Rn;Cm)={u∈C∞(Rn;Cm) : ∂αu∈Lp(Rn;Cm)
for every α ∈ Nn0}, p ∈ [1,∞],
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as well as each of the distribution spaces

(b) S ′(Rn;Cm), O′C(Rn;Cm) and D′Lq(Rn;Cm) = (DLp)′(Rn;Cm), q ∈
]1,∞], p = q/(q − 1),

is a strongly (G∗)-invariant l.c.v.s. for every G ∈ O′C(Rn;Cm) satisfying the
condition (i) (1). If G ∈ O′C(Rn;Mm×m) satisfies (i), and E is an (S·∗)-
invariant l.c.v.s., then for every u0 ∈ D(GE) and f ∈ C1([0,∞[;E) the
Cauchy problem

du(t)

dt
= G ∗ u(t) + f(t) for t ∈ [0,∞[, u(0) = u0,

has a solution u(·) ∈ C1([0,∞[;E) which is unique in the class C1([0,∞[;
S ′(Rn;Cm)). Moreover, this solution can be expressed by the formula

u(t) = St ∗ u0 +
t�

0

Sτ ∗ f(t− τ) dτ for t ∈ [0,∞[.

The above assertions will be proved in a separate paper.

Hyperbolic partial differential systems with constant coeffi-
cients. The matricial partial differential operator 1m×m⊗∂t−G(∂1, . . . , ∂n)
on R1+n = {(t, x1, . . . , xn)} is called hyperbolic with respect to the coordinate
t if (ii) above is satisfied and the hyperplane t = 0 is non-characteristic. This
last holds if and only if

(iii) the degree of the polynomial det(λ1m×m − G(ζ1, . . . , ζn)) of 1 + n
variables λ, ζ1, . . . , ζn is equal to m.

Suppose that (ii) is satisfied and (St)t≥0 ⊂ O′C(Rn;Mm×m) is the infinitely
differentiable convolution semigroup whose generating distribution is
G(∂1, . . . , ∂n) ⊗ δ. Then the question arises about properties of (St)t≥0 cor-
responding to (iii). We shall prove that:

(a) if (iii) holds, then (St)t≥0 extends to a one-parameter convolution
group (St)t∈R such that suppSt is bounded for every t ∈ R,

(b) if (iii) does not hold, then suppSt is unbounded for every t ∈ ]0,∞[.

1. Preliminaries. Throughout the present paper the symbols ∂1, . . . , ∂n
denote partial derivatives of the first order (not multiplied by any constant)
of a function or distribution on Rn. For partial derivatives of higher order

(1) Some similar assertions not involving the convolution semigroup (St)t≥0 ⊂
O′C(Rn;Mm×m) were known much ealier. The results of I. G. Petrovskĭı [P, Sec. I.5],
G. Birkhoff [B1], S. D. Eidelman and S. G. Krein [Kr, Sec. I.8], T. Ushijima [U, Theo-
rem 10.1] concern respectively DL∞(Rn;Cm), the Banach spaces BN ,p, the Hilbert spaces
LB and the space UG(Rn;Cm) = {u ∈ L2(Rn;Cm) : G(∂1, . . . , ∂n)ku ∈ L2(Rn;Cm) for
k = 1, 2, . . .}. All these results refer to G(∂1, . . . , ∂n).
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we use the abbreviation ∂α = ∂α1
1 . . . ∂αnn where α = (α1, . . . , αn) ∈ Nn0 is a

multiindex whose length is defined as |α| = α1 + · · ·+ αn.

1.1. The spaces OM (Rn) and O′C(Rn). Let OM (Rn) be the space
of infinitely differentiable slowly increasing complex functions on Rn. Recall
that φ ∈ OM (Rn) if and only if for every multiindex α ∈ Nn0 there ismα ∈ N0

such that
sup
ξ∈Rn

(1 + |ξ|)−mα |∂αφ(ξ)| <∞.

Obviously OM (Rn) is a function algebra. Furthermore

OM (Rn) = {φ ∈ C∞(Rn) : φ · ϕ ∈ S(Rn) for every ϕ ∈ S(Rn)}.
For every k ∈ N0 denote byBk(Rn) the space of continuous complex functions
f on Rn such that f(x) = O(|x|−k) as |x| → ∞. Following L. Schwartz [S3,
p. 244] a distribution T ∈ D′(Rn) is rapidly decreasing if and only if for every
k ∈ N0 there ismk ∈ N0 such that T =

∑
|α|≤mk ∂

αfk,α where fk,α ∈ Bk(Rn)
for every α ∈ Nn0 such that |α| ≤ mk. The space of rapidly decreasing
distributions on Rn, denoted by O′C(Rn), is a convolution algebra. One has

O′C(Rn) = {T ∈ S ′(Rn) : T ∗ ϕ ∈ S(Rn) for every ϕ ∈ S(Rn)},
and

FO′C(Rn) = OM (Rn)
where F denotes the Fourier transformation on Rn. In the following we
assume that F is defined so that (Fϕ)(ξ) =

	
Rn e

−iξxϕ(x) dx whenever
ϕ ∈ S(Rn), ξ ∈ Rn, and subsequently is extended onto S ′(Rn) by dual-
ity. Then F is an algebraic isomorphism of the convolution algebra O′C(Rn)
onto the function algebra OM (Rn).

The operators φ ·, φ ∈ OM (Rn), and U ∗ for U ∈ O′C(Rn), are elements
of the space L(S(Rn);S(Rn)) of continuous linear operators of S(Rn) into
S(Rn). Let Lb(S(Rn);S(Rn)) denote the space L(S(Rn);S(Rn)) equipped
with the topology of uniform convergence on bounded subsets of S(Rn).
Everywhere below, the topology in O′C(Rn) and OM (Rn) is induced from
Lb(S(Rn);S(Rn)) via ∗ and · (2). The Fourier transformation is a continuous
linear isomorphism of O′C(Rn) and OM (Rn).

(2) The operators φ ·, φ ∈ OM (Rn), and U ∗, U ∈ O′C(Rn), can also be treated as
elements of L(S ′(Rn);S ′(Rn)), so that O′C(Rn) and OM (Rn) can be equipped with the
topology induced from Lb(S ′(Rn);S ′(Rn)) via ∗ and ·. Because S(Rn) is a reflexive l.c.v.s.,
the topology in O′C(Rn) induced from Lb(S(Rn);S(Rn)) is identical with the topology in
O′C(Rn) induced from Lb(S ′(Rn);S ′(Rn)). Indeed, both are determined by the system of
seminorms

pB,C(U) = sup
ϕ∈B, T∈C

|〈T,U ∗ ϕ〉| = sup
ϕ∈B, T∈C

|〈Ǔ ∗ T, ϕ〉|, U ∈ O′C(Rn),

where B and C range respectively over bounded subsets of S(Rn) and S ′(Rn). The same
holds for the topology in OM (Rn).
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1.2. The spaces OM (Rn;Mm×m) and O′C(Rn;Mm×m). Let m,n ∈ N,
and let Mm×m be the set of m × m matrices with complex entries. De-
note by OM (Rn;Mm×m) the space of functions of the form φ : Rn 3 ξ 7→
(φj,k(ξ))

m
j,k=1 ∈ Mm×m such that φj,k ∈ OM (Rn) for all j, k. This spaces

carries the topology of OM (Rn)m2 where each factor is equipped with the
topology induced from Lb(S(Rn);S(Rn)). Multiplication in OM (Rn;Mm×m)
is defined by the rule

(φ · ψ)(ξ) =
( m∑
ι=1

φj,ι(ξ)ψι,k(ξ)
)m
j,k=1

.

Denote by O′C(Rn;Mm×m) the space of m×m matrices T = (Tj,k)
m
j,k=1

such that Tj,k ∈ O′C(Rn) for all j, k. The convolution in O′M (Rn;Mm×m) is
determined by the rule

S ∗ T =
( m∑
ι=1

Sj,ι ∗ Tι,k
)m
j,k=1

.

The space O′C(Rn;Mm×m) carries the topology of O′C(Rn)m
2 where each

factor is equipped with the topology induced from Lb(S(Rn);S(Rn)).

1.3. One-parameter convolution semigroups in O′C(Rn;Mm×m).
By a one-parameter infinitely differentiable convolution semigroup in
O′C(Rn;Mm×m), briefly i.d.c.s., we mean an infinitely differentiable map-
ping [0,∞[ 3 t 7→ St ∈ O′C(Rn;Mm×m) such that Ss+t = Ss ∗ St for every
s, t ∈ [0,∞[, and S0 = 1m×m⊗ δ where 1m×m is the unit m×m matrix and
δ is the Dirac distribution on Rn.

The generating distribution of the i.d.c.s. (St)t≥0 ⊂ O′C(Rn;Mm×m) is
defined as

G :=
d

dt

∣∣∣∣
t=0

St.

Since S(Rn;Cm) is a Fréchet space and the topology in O′C(Rn;Mm×m) is
induced from Lb(S(Rn;Cm);S(Rn;Cm)), the Banach–Steinhaus equiconti-
nuity theorem works for convolution operators belonging to O′C(Rn;Mm×m).
Therefore an analogue of the argument used in the proof of [H-P, Theorem
23.8.1] shows that every i.d.c.s. in O′C(Rn;Mm×m) is uniquely determined
by its generating distribution.

1.4. Fourier transformation with respect to spatial coordinates.
Let G ∈ O′C(Rn;Mm×m). The Cauchy problem for the convolution equation
∂tu = G ∗ u can be reduced by Fourier transformation with respect to the
spatial coordinates to the Cauchy problem with parameter for an ODO.
In the framework of the spaces O′C(Rn;Mm×m) and OM (Rn;Mm×m) this
method consists in making use of the following
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Lemma 1.4. Suppose that G ∈ O′C(Rn;Mm×m) and let A = FG, so that
A ∈ OM (Rn;Mm×m). Then the following two conditions are equivalent:

(a) G is the generating distribution of an i.d.c.s. (St)t≥0⊂O′C(Rn;Mm×m),
(b) exp(tA(·)) ∈ OM (Rn;Mm×m) for every t ∈ [0,∞[ and the mapping

[0,∞[ 3 t 7→ exp(tA(·)) ∈ OM (Rn;Mm×m) is infinitely differen-
tiable.

Furthermore, if A = FG and (a), (b) are satisfied, then exp(tA(·)) = FSt
and

(St ∗)|S′(Rn;Cm) = F−1 ◦ [(exp(tA(·))) ·] ◦ F|S′(Rn;Cm) for every t ∈ [0,∞[.

Lemma 1.4 implies once again that every i.d.c.s. in O′C(Rn;Mm×m) is
uniquely determined by its generating distribution.

Proof of Lemma 1.4. The Fourier transformation is a continuous isomor-
phism of the convolution algebra O′C(Rn;Mm×m) of Mm×m-valued distribu-
tions onto the pointwise multiplication algebra OM (Rn;Mm×m) of Mm×m-
valued functions. Consequently, condition (a) is equivalent to the condition
that if ft := FSt, then

(a)′ the mapping [0,∞[ 3 t 7→ ft ∈ OM (Rn;Mm×m) is infinitely differen-
tiable, ft · fτ = ft+τ whenever t, τ ∈ [0,∞[, and d

dt

∣∣
t=0

ft = FG = A,

where d
dt

∣∣
t=0

denotes the right derivative at t = 0, in the sense of the topol-
ogy of OM (Rn;Mm×m). From the condition that ft := FSt satisfies (a)′ it
follows that whenever ξ ∈ Rn is fixed, then for the matrices ft(ξ) ∈ Mm×m
and A(ξ) ∈ Mm×m one has d

dt

∣∣
t=0

ft(ξ) = A(ξ) and ft(ξ) · fτ (ξ) = ft+τ (ξ)
whenever t, τ ∈ [0,∞[. Consequently, ft(ξ) = exp(tA(ξ)) for every t ∈ [0,∞[
and ξ ∈ Rn, so that ft := FSt satisfies (a)′ if and only if ft = exp(tA(·)) and
(b) holds. Furthermore, whenever T ∈ S ′(Rn;Cm) and t ∈ [0,∞[, then

[F−1 ◦ [exp(tA(·)) ·] ◦ F](T ) = [F−1 ◦ [(FSt)·] ◦ F](T )
= F−1((FSt) · (FT )) = St ∗ T

where (FSt) · (FT ) makes sense and belongs to S ′(Rn;Cm) because FT ∈
S ′(Rn;Cm) and FSt ∈ OM (Rn;Mm×m) is an Mm×m-valued multiplier of
S ′(Rn;Cm).

2. The results

2.1. Generation and growth of an i.d.c.s. in O′C(Rn;Mm×m)

Theorem 2.1. A distribution G ∈ O′C(Rn;Mm×m) is the generating
distribution of an i.d.c.s. (St)t≥0 ⊂ O′C(Rn;Mm×m) if and only if

(2.1) 0 ∨maxReσ((FG)(ξ)) = O(log |ξ|) as ξ ∈ Rn, |ξ| → ∞.
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For any G ∈ O′C(Rn;Mm×m) the quantity

(2.2) s(G) := sup{Reλ : there is ξ ∈ Rn such that λ ∈ σ((FG)(ξ))},

finite or equal to +∞, is called the spectral bound of G. For any i.d.c.s.
(St)t≥0 ⊂ O′C(Rn;Mm×m) let

(2.3) ω(S·) := inf{ω ∈ Rn : {(e−ωtSt ∗)|S(Rn;Cm) : t ∈ [0,∞[} is an equicon-
tinuous subset of L(S(Rn;Cm);S(Rn;Cm))}

where it is assumed that inf ∅ = +∞. We call ω(S·) the equicontinuity expo-
nent of the i.d.c.s. (St)t≥0.

Theorem 2.2. For every i.d.c.s. (St)t≥0 ⊂ O′C(Rn;Mm×m) its equiconti-
nuity exponent is equal to the spectral bound of its generating distribution (3).

Let G(∂1, . . . , ∂n) be an m × m matrix whose entries are PDOs on Rn
with constant complex coefficients. Let δ be the Dirac distribution on Rn.
Then G(∂1, . . . , ∂n)⊗ δ ∈ O′C(Rn;Mm×m) and

[F(G(∂1, . . . , ∂n)⊗ δ)](ξ) = G(iξ1, . . . , iξn)

for every ξ = (ξ1, . . . , ξn) ∈ Rn. The quantity

s0(G) := sup{Reλ : λ ∈ σ(G(iξ1, . . . , iξn)) for some (ξ1, . . . , ξn) ∈ Rn}

is equal to the spectral bound of the distribution G(∂1, . . . , ∂n)⊗δ. From the
conjecture by I. G. Petrovskĭı [P, footnote on p. 24] proved by L. Gårding [G,
Lemma on p. 11] it follows that s0(G) <∞ if and only ifG = G(∂1, . . . , ∂n)⊗δ
satisfies (2.1). Therefore Theorems 2.1 and 2.2 imply

Theorem 2.3. Let G(∂1, . . . , ∂n) be an m×m matrix whose entries are
PDOs on Rn with constant complex coefficients. Then the following two con-
ditions are equivalent:

(2.4) s0(G) <∞,
(2.5) G(∂1, . . . , ∂n)⊗ δ is the generating distribution of an i.d.c.s. (St)t≥0 ⊂

O′C(Rn;Mm×m).

(3) By [K3, Theorem 1], whenever G = G(∂1, . . . , ∂n) ⊗ δ and E is one of the spaces
S(Rn;Cm),S ′(Rn;Cm), DL∞(Rn;Cm) DL2(Rn;Cm) or UG(Rn;Cm), then:

1o s0(G) <∞ if and only if G(∂1, . . . , ∂n) is the infinitesimal generator of an operator
semigroup in L(E;E) of class (C0),

2o s0(G) = sup{s ∈ R : G(∂1, . . . , ∂n) + s1m×m is the infinitesimal generator of an
equicontinuous operator semigroup in L(E;E) of class (C0)}.

Assertion 1o was earlier proved for DL∞(Rn;Cm) by I. G. Petrovskĭı [P, Sec. I.5], and
for UG(Rn;Cm) by T. Ushijima [U, Theorem 10.1]. The theory of equicontinuous (C0)-
semigroups of linear operators in locally convex spaces is presented in [S2] and [Y,
Chap. IX].
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Furthermore, if these equivalent conditions are fulfilled, then there is exactly
one i.d.c.s. (St)t≥0 ⊂ O′C(Rn;Mm×m) satisfying (2.5), and the equicontinuity
exponent of this i.d.c.s. is equal to s0(G).

2.2. Application to PDOs of higher order. Let

P (λ, ζ1, . . . , ζn) =
m∑
µ=0

λµQµ(ζ1, . . . , ζn)

be a complex polynomial of 1 + n variables such that Qm(iξ1, . . . , iξn) 6= 0
for every (ξ1, . . . , ξn) ∈ R and the Petrovskĭı condition

sup{Reλ : (λ, ξ1, . . . , ξn) ∈ C× Rn, P (λ, iξ1, . . . , iξn) = 0} <∞

is satisfied. From [H, Example A.2.7] it follows that the equality

(FG)(ξ) =

∣∣∣∣∣∣∣∣∣∣∣∣

0 1

0

1

0 1

− Q0(iξ)
Qm(iξ) −

Q1(iξ)
Qm(iξ) · · · −

Qm−2(iξ)
Qm(iξ) −Qm−1(iξ)

Qm(iξ)

∣∣∣∣∣∣∣∣∣∣∣∣
, ξ ∈ Rn,

determines a distribution G∈O′C(Rn;Mm×m) generating an i.d.c.s. (St)t≥0
⊂ O′C(Rn;Mm×m). To see this, it suffices to note that det(λ1m×m−(FG)(ξ))
= (Qm(iξ))

−1P (λ, iξ1, . . . , iξn). The i.d.c.s. (St)t≥0 ⊂ O′C(Rn;Mm×m) de-
fined above satisfies the equality∣∣∣∣∣∣∣∣∣∣

1
. . .

1

Qm

∣∣∣∣∣∣∣∣∣∣
∂tSt

=

∣∣∣∣∣∣∣∣∣∣
0 1

0

0 1

−Q0 −Q1 · · · −Qm−2 −Qm−1

∣∣∣∣∣∣∣∣∣∣
St, t ∈ [0,∞[,

where Qk = Qk(∂1, . . . , ∂n) for k = 0, . . . ,m. It follows that for every
u0, u1, . . . , um−1 ∈ S(Rn) the following two conditions are equivalent:

(a) u(·) is a solution of the Cauchy problem

P (∂t, ∂1, . . . , ∂n)u(t, x) = 0 for (t, x) ∈ [0,∞[× Rn,
∂kt u(0, x) = uk(x) for x ∈ Rn and k = 0, . . . ,m− 1,
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(b)

∣∣∣∣∣∣∣∣∣∣
u(t, ·)
∂tu(t, ·)

...
∂m−1t u(t, ·)

∣∣∣∣∣∣∣∣∣∣
= St ∗

∣∣∣∣∣∣∣∣∣∣
u0

u1
...

um−1

∣∣∣∣∣∣∣∣∣∣
for t ∈ [0,∞[.

In this way one obtains the theorem of J. Rauch [R, Sec. 3.10, Theorem 2]
about well-posedness of the Cauchy problem for the scalar differential oper-
ator P (∂t, ∂1, . . . , ∂n) in the space C∞([0,∞[;S(Rn)) (4).

2.3. Comments. I. G. Petrovskĭı [P] was the first to notice the signif-
icance of smooth slowly increasing functions and conditions (i) and (ii) in
the theory of those evolutionary PDOs which may be reduced to the form
∂t ⊗ 1m×m − G(∂1, . . . , ∂n). The theory of distributions did not yet exist in
1938 when [P] was published, and only in 1950 did L. Schwartz explain in
[S1] how the results of Petrovskĭı may be elucidated by placing them in the
framework of O′C . However in [S1] conditions (i)′ and (ii) do not appear. The
role of these conditions in the theory of PDOs is discussed in [H, Secs. 12.3
and 12.8] and [R, Sec. 3.10].

Suppose that the matricial differential operator G(∂1, . . . , ∂n) on Rn sat-
isfies condition (ii). In terms of the operator

(iii) P (∂t, ∂0, . . . , ∂n) := ∂t ⊗ 1m×m − G(∂1, . . . , ∂n)
this last is equivalent to the Petrovskĭı condition

(iv) sup{Reλ : (λ, ξ1, . . . , ξn) ∈ C× Rn, detP (λ, iξ1, . . . , iξn) = 0} <∞.
Let (St)t≥0 ⊂ O′C(Rn;Mm×m) be the i.d.c.s. generated by G(∂1, . . . , ∂n)⊗ δ.
Then the distribution N ∈ D′(R1+n;Mm×m) defined by the equality

N(φ) =

∞�

0

(Sτ )(y)φ(τ, y) dτ for every φ ∈ D(R1+n)

is a fundamental solution of the operator P (∂t, ∂0, . . . , ∂n), and suppN ⊂
H+ = {(t, x1, . . . , xn) ∈ R1+n : t ≥ 0}.

Condition (iv) may also be applied to matricial differential operators

(v) P (∂t, ∂1, . . . , ∂n) = [Pi,j(∂t, ∂1, . . . , ∂n)]
m
i,j=1

of a form more general than (iii), still under the assumption that Pi,j(∂t, ∂1,
. . . , ∂n) are scalar differential operators with constant coefficients. The sys-

(4) The argument presented above depends on our Section 3 while the argument of
J. Rauch consists in direct estimation of certain contour integrals representing the Fourier
transform of the solution. Suppose conversely that the polynomial P (λ, ζ1, . . . ζn) does not
satisfy the Petrovskĭı condition. Then the contour integrals of J. Rauch still work, and
their properties lead to Theorem 4 of [R, Sec. 3.10] asserting that the Cauchy problem for
the operator P (∂t, ∂0, . . . , ∂n) is ill-posed.
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tems of PDEs considered in [P], [B1], [F, Sec.7.1] constitute here a particular
case. They involve the operators (v) satisfying (iv) and satisfying moreover
the condition

(vi) for every l = 1, . . . ,m there is dl > 0 such that degλ Pk,l < dl for
every k ∈ {1, . . . ,m} \ {l} and Pl,l(λ, ζ1, . . . , ζn) = λdl +

∑dl−1
d=0 λ

d ·
Qd,l(ζ1, . . . , ζn).

Under assumptions (iv) and (vi) the operator (v) may be replaced by the
operator P̃ (∂t, ∂1, . . . , ∂n) with m̃ = d1 + · · ·+ dm satisfying (iv) and having
the form (iii). This implies that the fundamental solution of P̃ (∂t, ∂1, . . . , ∂n)
with support in {(t, x1, . . . , xn) ∈ R1+n : t ≥ 0} may be expressed by an
i.d.c.s. ⊂ O′C(Rn;Mm×m). However from [H, Sec. 12.8] and [K4] it follows
that condition (vi) is not necessary for forward evolutionarity of PDOs of the
form (v) satisfying (iv). Indeed, if for a PDO of the form (v) condition (iv)
holds but (vi) is not satisfied, then the fundamental solutions with support
contained H+ can be constructed by a method independent of convolution
semigroups in O′C(Rn;Mm×m).

2.4. Hyperbolic systems of PDOs with constant coefficients as a
subclass of systems satisfying the Petrovskĭı condition. Let E ′(Rn)
be the space of distributions on Rn with compact support equipped with the
topology of uniform convergence on bounded subsets of C∞(Rn). L. Ehren-
preis [E, Sec. V.5] proved E ′(Rn) = {T ∈ D′(Rn) : T ∗ ∈ L(D(Rn);D(Rn))}
and that the topology induced in E ′(Rn) from Lb(D(Rn);D(Rn)) via the
mapping T 7→ T ∗ coincides with the original topology of E ′(Rn). This
topology is stronger than the one induced in E ′(Rn) from O′C(Rn). See [S3,
Sec. III.7], [E, Sec. V.5, Lemma 5.17]. Let E ′(Rn;Mm×m) be the space of
Mm×m-valued distributions on Rn with compact support, i.e. the space of
m×m matrices whose entries belong to E ′(Rn).

As in Theorem 2.3, let G(∂1, . . . , ∂n) be an m×m matrix whose entries
are PDOs on Rn with constant complex coefficients. Put

(2.6) P (λ, ζ1, . . . , ζn) = det(λ1m×m − G(ζ1, . . . , ζn))

where (λ, ζ1, . . . , ζn) ∈ C1+n.

Theorem 2.4. Assume that G(∂1, . . . , ∂n) satisfies condition (2.4). Let
(St)t≥0 ⊂ O′C(Rn;Mm×m) be the i.d.c.s. whose generating distribution is
equal to G(∂1, . . . , ∂n)⊗δ. Then the following three conditions are equivalent:

(2.7) there is t0 ∈ ]0,∞[ such that St0 ∈ E ′(Rn;Mm×m),
(2.8) the polynomial P (λ, ζ1, . . . , ζn) of 1 + n variables defined by (2.6) has

degree m,



RAPIDLY DECREASING DISTRIBUTIONS 59

(2.9) (St)t≥0 is an i.d.c.s. in the topological convolution algebra E ′(Rn;
Mm×m), and it may be uniquely extended to a one-parameter infinitely
differentiable subgroup of E ′(Rn;Mm×m).

Let

(2.10) N = {(λ, ζ1, . . . , ζn) ∈ C1+n : P (λ, ζ1, . . . , ζn) = 0}.

The matricial PDO

(2.11) ∂t ⊗ 1m×m − G(∂1, . . . , ∂n)

on R1+n = {(t, x1, . . . , xn) : t ∈ R, (x1, . . . , xn) ∈ Rn} is said to be hyperbolic
in the sense of Ehrenpreis with respect to the vector (1, 0, . . . , 0) ∈ R1+n

whenever there is C ∈ ]0,∞[ such that

(2.12) if (λ, ζ1, . . . , ζn) ∈ N then |Reλ| ≤ C(1 + |Re ζ1|+ · · ·+ |Re ζn|).

Condition (2.12), formulated in [E, Sec.VIII.3], is stronger than (2.4) which
may be written in the following form: there is C ∈ ]0,∞[ such that

(2.4)′ if (λ, ζ1, . . . , ζn) ∈ N and Re ζ1 = · · · = Re ζn = 0, then Reλ ≤ C.

The matricial PDO of the form (2.11) is said to be hyperbolic in the sense of
Gårding with respect to the vector (1, 0, . . . , 0) ∈ R1+n if the polynomial (2.6)
satisfies (2.4)′ and (2.8). In the proof of Theorem 2.4 it will be shown that for
the matricial PDO of the form (2.11) the above two notions of hyperbolicity
are equivalent. Therefore Theorem 2.4 may be formulated as follows:

If G(∂1, . . . , ∂n) satisfies condition (2.4), then for the semigroup (St)t≥0
⊂ O′C(Rn;Mm×m) with generating distribution G(∂1, . . . , ∂n)⊗ δ the proper-
ties (2.7) and (2.9) are equivalent and they both hold if and only if the matri-
cial PDO (2.11) is hyperbolic with respect to the vector (1, 0, . . . , 0) ∈ R1+n.

Suppose that the matricial differential operator of the form (2.11) is
hyperbolic with respect to the vector (1, 0, . . . , 0) ∈ R1+n. Let Pm be the
principal homogeneous part of the polynomial (2.6), and let Γ be the con-
nected component of the set {(σ, ξ1, . . . , ξn) ∈ R1+n : Pm(σ, ξ1, . . . , ξn) 6= 0}
that contains (1, 0, . . . , 0). By [H, Lemma 8.7.3], Γ is a convex cone. Let Γ 0

be the closed cone dual to Γ . Making use of [H, Theorem 12.5.1] it is proved
in [K2] that

Γ 0 = {(t, x1, . . . , xn) ∈ R1+n : t ≥ 0, (x1, . . . , xn) ∈ conv suppSt}

where (St)t≥0 is the i.d.c.s. occurring in Theorem 2.4. It follows that the
distribution N ∈ D′(R1+n;Mm×m) such that N(φ) =

	∞
0 St(ϕ(t, ·)) dt for

every ϕ ∈ D(R1+n) is a fundamental solution of the operator (2.11) with
support contained in Γ 0.
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3. A link between properties of Mm×m-valued functions ξ 7→ A(ξ)
and (t, ξ) 7→ exp(tA(ξ))

Theorem 3.1 (The Shilov inequality). Let A ∈Mm×m. Then for every
t ∈ [0,∞[ one has

(3.1) ‖exp(tA)‖Mm×m ≤ ρ(exp(tA))
(
1 +

m−1∑
k=1

(2t)k

k!
‖A‖kMm×m

)
and

(3.2) ρ(exp(tA)) = etmaxReσ(A)

where ρ stands for the spectral radius, and σ(A) denotes the spectrum of A.

The equality (3.2) follows from the spectral mapping theorem. See [E-N,
Sec. I.3, Lemma 3.19]. The Shilov inequality (3.1) is an elaborate result of
the theory of functions of matrices. See [Sh], [Ge, Sec. I.4], [G-S, Sec. II.6],
[F, Sec. 7.2]. We say that Φ ⊂ OM (Rn;Mm×m) is a set of uniformly slowly
increasing infinitely differentiable functions if for every α ∈ Nn0 there exists
kα ∈ N0 such that

sup

{
(1 + |ξ|)−kα

∥∥∥∥( ∂

∂ξ

)α
φ(ξ)

∥∥∥∥
Mm×m

: φ ∈ Φ, ξ ∈ Rn
}
<∞.

Proposition 3.2. For any A(·) ∈ OM (Rn;Mm×m) the following three
conditions are equivalent:

(3.3) 0 ∨maxReσ(A(ξ)) = O(log |ξ|) as ξ ∈ Rn and |ξ| → ∞,
(3.4) for every T ∈ ]0,∞[ there are C ∈ ]0,∞[ and k ∈ N0 such that

‖exp(tA(ξ))‖Mm×m ≤ C(1 + |ξ|)k whenever t ∈ [0, T ] and ξ ∈ Rn,
(3.5) whenever T ∈ ]0,∞[, then {exp(tA(·)) : t ∈ [0, T ]} is a set of uni-

formly slowly increasing infinitely differentiable Mm×m-valued func-
tions on Rn.

Proposition 3.3. For every A(·) ∈ OM (Rn;Mm×m) and s0 ∈ R the
following five conditions are equivalent:

(3.6) sup{Reλ : λ ∈ σ(A(ξ)), ξ ∈ Rn} ≤ s0,
(3.7) there is k ∈ N0 such that for every ε > 0,

sup{e−(s0+ε)t(1+ |ξ|)−k‖exp(tA(ξ))‖Mm×m : t ∈ [0,∞[, ξ ∈ Rn} <∞,
(3.7)∗ for every ε > 0 there is k ∈ N such that

sup{e−(s0+ε)t(1+ |ξ|)−k‖exp(tA(ξ))‖Mm×m : t ∈ [0,∞[, ξ ∈ Rn} <∞,
(3.8) for every α ∈ Nn0 there is kα ∈ N0 such that for every ε > 0,

sup

{
e−(s0+ε)t(1+|ξ|)−kα

∥∥∥∥( ∂

∂ξ

)α
exp(tA(ξ))

∥∥∥∥
Mm×m

: t∈{0,∞[, ξ∈Rn
}
<∞,
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(3.8)∗ whenever ε ∈ ]0,∞[, then {e−(s+ε)t exp(tA(·)) : t ∈ [0,∞[} is a set
of uniformly slowly increasing infinitely differentiable Mm×m-valued
functions on Rn.

Our proofs of Propositions 3.2 and 3.3 are based on the Shilov inequal-
ity. In this connection notice that the arguments of I. G. Petrovskĭı from [P,
Sec. I.5] prove the implication (3.3)⇒(3.5) without referring to the Shilov
inequality. We shall prove Propositions 3.2 and 3.3 according to the schemes
(3.3)⇒(3.4)⇒(3.5)⇒(3.4)⇒(3.3) and (3.6)⇒(3.7)⇒(3.8)⇒(3.8)*⇒(3.7)∗⇒
(3.6) where the implications (3.5)⇒(3.4) and (3.8)⇒(3.8)∗⇒(3.7)∗ are triv-
ial.

Proof of (3.3)⇔(3.4). If A(·)∈OM (Rn;Mm×m) and (3.3) holds, then, by
(3.1) and (3.2), for any fixed T ∈ ]0,∞[ there are C,D ∈ ]0,∞[ and l ∈ N0

such that for every (t, ξ) ∈ [0, T ]× Rn one has

‖exp(tA(ξ))‖Mm×m ≤ etmaxReσ(A(ξ))

(
1 +

m−1∑
k=1

(2t)k

k!
‖A(ξ)‖kMm×m

)
≤ eTC(1+log(1+|ξ|))D(1 + ‖A(ξ)‖Mm×m)

m−1

≤ eTCD(1 + |ξ|)TC+l(m−1),

so that (3.4) is satisfied. Conversely, if (3.4) holds, then there are C ∈ ]0,∞[
and k ∈ N0 such that ‖expA(ξ)‖Mm×m ≤ C(1 + |ξ|)k for every ξ ∈ Rn,
whence, by (3.2),

maxReσ(A(ξ)) = log ρ(expA(ξ))

≤ log ‖expA(ξ)‖Mm×m ≤ logC + k log(1 + |ξ|),
so that (3.3) holds.

Proof of (3.6)⇒(3.7). If (3.6) holds, then, by (3.1) and (3.2), for every
t ∈ [0,∞[ and ξ ∈ Rn one has

‖exp(tA(ξ))‖Mm×m ≤ es0t
(
1 +

m−1∑
k=1

(2t)k

k!
‖A(ξ)‖kMm×m

)
≤ es0t(1 + 2t)m−1(1 + ‖A(ξ)‖Mm×m)

m−1.

Furthermore, since A(·) ∈ OM (Rn;Mm×m), there are C ∈ ]0,∞[ and l ∈ N0

such that ‖A(ξ)‖Mm×m ≤ C(1+|ξ|)l for every ξ ∈ Rn. The above inequalities
imply (3.7).

Proof of (3.7)∗⇒(3.6). By (3.2),

maxReσ(A(ξ)) =
1

t
log ρ(exp(tA(ξ))) ≤ 1

t
log ‖exp(tA(ξ))‖Mm×m

for every t ∈ ]0,∞[ and ξ ∈ Rn, so that, if (3.7)∗ holds, then for every ε > 0
there are C ∈ ]0,∞[ and k ∈ N such that
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maxReσ(A(ξ)) ≤ s0 + ε+
1

t
log(C(1 + |ξ|)k)

for every t ∈ ]0,∞[ and ξ ∈ Rn, whence (3.6) follows.

Proof of (3.4)⇒(3.5) and (3.7)⇒(3.8). These implications can be proved
by an argument resembling [P, Sec. I.2, proof of Lemma 2], [S1, Sec. 5]. We
shall limit ourselves to (3.7)⇒(3.8).

For every α ∈ Nn0 let

Uα,t(ξ) =

(
∂

∂ξ

)α
exp(tA(ξ)).

Consider the condition

(3.9)α there is kα ∈ N0 such that for every ε > 0 there is Cα,ε ∈ ]0,∞[ such
that whenever (t, ξ) ∈ [0,∞[× Rn, then

‖Uα,t(ξ)‖Mm×m ≤ Cα,εe(s0+ε)t(1 + |ξ|)kα .

Then (3.7) means that (3.9)0 holds, and (3.8) means that (3.9)α holds for
all α ∈ Nn0 . So, still assuming that A(·) ∈ OM (Rn;Mm×m), we have to prove
that (3.9)0 implies (3.9)α for every α ∈ Nn0 . We proceed by induction on
the length of α. Suppose that (3.9)β is satisfied whenever |β| ≤ l, and take
α ∈ Nn0 such that |α| = l + 1. To prove that (3.9)α is satisfied, put

Vα,t(ξ) =
∑

β≤α, |β|≤l

(
α

β

)((
∂

∂ξ

)α−β
A(ξ)

)
Uβ,t(ξ).

Since A(·) ∈ OM (Rn;Mm×m) and (3.9)β holds whenever |β| ≤ l, it follows
that

(3.10)α there is hα ∈ N0 such that for every ε > 0 there is Dα,ε ∈ ]0,∞[ such
that whenever (t, ξ) ∈ [0,∞[× Rn, then

‖Vα,t(ξ)‖Mm×m ≤ Dα,εe
(s0+ε)t(1 + |ξ|)hα .

One has

∂

∂t
Uα,t(ξ) =

∂

∂t

(
∂

∂ξ

)α
exp(tA(ξ)) =

(
∂

∂ξ

)α
[A(ξ) exp(tA(ξ))]

= A(ξ)Uα,t(ξ) + Vα,t(ξ),

and Uα,0(ξ) = 0 because |α| = l + 1 ≥ 1. Hence

(3.11) Uα,t(ξ) =

t�

0

[exp((t− τ)A(ξ))]Vα,t(ξ) dτ.
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From (3.9)0, (3.10)α and (3.11) it follows that

‖Uα,t(ξ)‖Mm×m

≤
t�

0

C0,ε/2e
(s0+ε/2)(t−τ)(1 + |ξ|)k0Dα,ε/2e

(s0+ε/2)τ (1 + |ξ|)hα dτ

= C0,ε/2Dα,ε/2te
(s0+ε/2)t(1 + |ξ|)k0+hα ≤ C̃α,εe(s0+ε)t(1 + |ξ|)kα

for kα = k0 + hα and C̃α,ε = C0,ε/2Dα,ε/2maxt∈[0,∞[ te
−(ε/2)t.

4. Proof of Theorem 2.1

Necessity of (2.1). Suppose that (St)t≥0 ⊂ O′C(Rn;Mm×m) is an i.d.c.s.
with generating distribution G ∈ O′C(Rn;Mm×m). Let A = FG. Then we
have A,FSt ∈ OM (Rn;Mm×m) and (FSt)(ξ) = exp(tA(ξ)) for every t ∈
[0,∞[ and ξ ∈ Rn. Since the mapping

[0,∞[ 3 t 7→ [exp(tA(·))] · = (FSt) · ∈ Lb(S(Rn;Cm);S(Rn;Cm))
is continuous, the Banach–Steinhaus theorem implies that whenever T ∈
]0,∞[, then the set of multiplication operators {[exp(tA(·))] · : t ∈ [0, T ]}
is an equicontinuous subset of L(S(Rn;Cm);S(Rn;Cm)). By [K1, Theorem
3.1], this is equivalent to (3.5). From Proposition 3.2 it follows that (3.5) is
equivalent to (3.3). Since, A = FG, (3.3) means that (2.1) is satisfied.

Sufficiency of (2.1). Suppose that G ∈ O′C(Rn;Mm×m) satisfies (2.1).
Let A = FG. Then A ∈ OM (Rn;Mm×m), and A satisfies (3.3). Hence, by
Proposition 3.2 and [K1, Theorem 3.1], whenever T ∈ ]0,∞[, then
{[exp(tA(·))] · : t ∈ [0, T ]} is an equicontinuous subset of L(S(Rn;Cm);
S(Rn;Cm)). By the theorem on differentiating a solution of an ODE with
respect to a parameter ([Ha, Sec.V.4, Corollary 4.1]), the mapping R1+n 3
(t, ξ) 7→ exp(tA(ξ)) ∈ Mm×m is infinitely differentiable. By [K1, Theo-
rem 3.2], so is the mapping [0,∞[ 3 t 7→ [exp(tA(·))] · ∈ Lb(S(Rn;Cm);
S(Rn;Cm)) whose right-side derivative at zero (computed in the topology of
Lb(S(Rn;Cm);S(Rn;Cm))) is A · ∈ L(S(Rn;Cm);S(Rn;Cm)). By Lemma
1.4 it follows that

G ∗ = (F−1A) ∗ = F−1 ◦ (A ·) ◦ F ∈ L(S(Rn;Cm);S(Rn;Cm))
is the infinitesimal generator of the infinitely differentiable operator semi-
group

(F−1 exp(tA(·)) ∗)t≥0 = (F−1 ◦ ([exp(tA(·))] ·) ◦ F)t≥0
⊂ Lb(S(Rn;Cm);S(Rn;Cm)).

Hence, G is the generating distribution of the i.d.c.s. (F−1 exp(tA(·)))t≥0
⊂ O′C(Rn;Mm×m).
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5. Proof of Theorem 2.2. Let (St)t≥0 ⊂ O′C(Rn;Mm×m) be an i.d.c.s.
with generating distribution G ∈ O′C(Rn;Mm×m). Put A = FG. Then
A,FSt ∈ OM (Rn;Mm×m), condition (b) from Lemma 1.4 is satisfied, and
(exp(tA(·))) · = F ◦ (St ∗) ◦ F−1 for all t ∈ [0,∞[. As F,F−1∈L(S(Rn;Cm);
S(Rn;Cm)), it follows that for ω(S·) defined by (2.3) one has

ω(S·) = inf{ω ∈ R : {[e−ωt exp(tA(·))] · : t ∈ [0,∞[} is
an equicontinuous subset of L(S(Rn;Cm);S(Rn;Cm))}.

From [K1, Theorem 3.1] it follows that whenever s0 ∈ R, then the condition

(5.1) ω(S·) < s0 + ε for every ε > 0

is equivalent to (3.8)∗. Hence, by Proposition 3.3, the condition (5.1) is equiv-
alent to (3.6). In other words, whenever s0 ∈ R, then (5.1) holds if and only if
s0(G) ≤ s0, where s0(G) = sup{Reλ : λ ∈ σ(A(ξ)), ξ ∈ Rn} is the spectral
bound of G. This last equivalence implies that ω(S·) = s0(G).

6. Proof of Theorem 2.4

6.1. Condition (2.7) implies Gårding hyperbolicity. Let (St)t≥0 ⊂
O′C(Rn;Mm×m) be an i.d.c.s. with generating distribution equal to G(∂1, . . . ,
∂n) ⊗ δ. Then the condition (2.4) is satisfied and FSt ∈ OM (Rn;Mm×m),
(FSt)(ξ) = exp(tG(iξ)) for every t ∈ [0,∞[ and ξ ∈ Rn. Suppose that (2.7)
holds, i.e. St0 ∈ E ′(Rn;Mm×m) for some t0 ∈ ]0,∞[. Then, by the Paley–
Wiener–Schwartz theorem, i.e. by [H, Theorem 7.3.1], there are C, k, l ∈
]0,∞[ such that whenever ζ ∈ Cn, then

(6.1) ‖exp(t0G(iζ))‖Mm×m = ‖(FSt0)(ζ)‖Mm×m ≤ C(1 + |ζ|)lek|Im ζ|.

For every ζ ∈ Cn put

Λ(ζ) = maxReσ(G(iζ)).
Then

Λ(ζ) = max{Reλ : λ ∈ C, P (λ, iζ1, . . . , iζn) = 0}
where

P (λ, ζ1, . . . , ζn) = det(λ1m×m − G(ζ1, . . . , ζn))
= λm +Qm−1(ζ1, . . . , ζn)λ

m−1 + · · ·+Q1(ζ1, . . . , ζn)λ+Q0(ζ1, . . . , ζn).

Let
p0 = inf

{
p ∈ ]0,∞[ : sup

ζ∈Cn
(1 + |ζ|)−pΛ(ζ) <∞

}
.

By (3.2) and (6.1) there is K ∈ ]0,∞[ such that

Λ(ζ) ≤ t−10 log ‖exp(t0G(iζ))‖Mm×m ≤ K(1 + |ζ|)
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for every ζ ∈ Cn. Consequently,

(6.2) p0 ≤ 1.

By the theorem on reduced order [B1], [G-S, Sec. II.6.2], [F, Sec. 7.2, Theo-
rem 4],

p0 = max
k=0,...,m−1

(m− k)−1 deg[Qk(iζ1, . . . , ζn)],

so that, by (6.2), degQk ≤ m − k for every k = 0, . . . ,m − 1, and hence
degP = m, proving (2.8).

6.2. Gårding hyperbolicity implies Ehrenpreis hyperbolicity.
Suppose that the differential operator (2.11) is hyperbolic in the sense
of Gårding with respect to v0 = (1, 0, . . . , 0) ∈ R1+n. Let N ⊂ C1+n be
defined by (2.6), (2.10). Then, in view of the results of L. Gårding [G,
Lemmas 2.2, 2.6–2.8] or by [H, Theorems 12.4.1 and 12.4.4],

(6.3) N ⊂ C1+n \ (iR1+n + ((Γ + s+v0) ∪ (−Γ − s−v0)))

where
s± = sup{±Reλ : (λ, ξ) ∈ C× Rn, P (λ, iξ) = 0}

are finite, and Γ contains v0 and is the open connected component of the set
{ξ ∈ R1+n : Pm(ξ) = 0} where Pm is the principal homogeneous part of P .
By [G, Lemma 2.8] or [H, Lemma 8.7.3], Γ is an open convex cone in R1+n

with vertex at 0. The inclusion (6.3) is equivalent to

(6.4) N ⊂ {(λ, ζ1, . . . , ζn) ∈ C1+n :

(Reλ,Re ζ1, . . . ,Re ζn) 6∈ (Γ + s+v0) ∪ (−Γ − s−v0)}.

Since Γ contains the halfline {σv0 : σ > 0}, the set on the right side of (6.4)
is contained in the set{

(λ, ζ1, . . . , ζn) ∈ C1+n : |Reλ| ≤ C
(
1 +

n∑
ν=1

|Re ζν |
)}

if only C ∈ ]0,∞[ is sufficiently large. Hence the operator (2.11) is hyperbolic
in the sense of Ehrenpreis with respect to the vector v0.

6.3. The Ehrenpreis hyperbolicity implies (2.9). Suppose that the
operator (2.11) is hyperbolic in the sense of Ehrenpreis with respect to the
vector (1, 0, . . . , 0) ∈ R1+n. This means that if (λ, ζ1, . . . , ζn) ∈ C1+n and

P (λ, ζ) = det(λ1m×m − G(ζ)) = 0,

then
|Reλ| ≤ C(1 + |Re ζ|)
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for some C ∈ ]0,∞[ independent of (λ, ζ). Since

σ(G(iζ)) = {λ ∈ C : P (λ, iζ) = 0},

it follows that whenever ζ ∈ Cn, then

max |Reσ(G(iζ))| ≤ C(1 + |Im ζ|).

By (3.1) and (3.2), this implies that

‖exp(tG(iζ))‖Mm×m ≤ eC|t|
(
1 +

m−1∑
k=1

(2|t|)k

k!
‖G(iζ)‖kMm×m

)
eC|t| |Im ζ|(6.5)

≤ eC|t|(1 + 2|t|)m−1D(1 + |ζ|)(m−1)deC|t| |Im ζ|

for every (t, ζ) ∈ R × C where C,D ∈ ]0,∞[ are independent of (t, ζ), and
d ∈ N0 is the maximum of the orders of the scalar PDOs which are the
entries of G(∂1, . . . , ∂n). By the Paley–Wiener–Schwartz theorem, i.e. by [H,
Theorem 7.3.1], (6.5) implies that there is a one-parameter convolution group
(S̃t)t∈R ⊂ E ′(Rn;Mm×m) such that

(FS̃t)(ζ) = exp(tG(iζ)) for every (t, ζ) ∈ R× Cn

and

max{|x| : x ∈ supp S̃t} ≤ C|t| for every t ∈ R.

The convolution group (S̃t)t∈R is an extension of the i.d.c.s. (St)t≥0 ⊂
O′C(Rn;Mm×m) with generating distribution G(∂1, . . . , ∂n)⊗ δ. This last ex-
ists by Theorem 2.3 because (6.5)⇒(2.4) by Proposition 3.3. Furthermore,
by (6.5), one has

(6.6) ‖G(iζ)k exp(tG(iζ))‖Mm×m

≤ eC|t|(1 + 2|t|)m−1Dk(1 + |ζ|)(m+k−1)deC|t| |Im ζ|

for every (t, ζ) ∈ R × Cn and k ∈ N0. By the theorem on differentiating a
solution of an ODE with respect to a parameter ([Ha, Sec. V.4, Corollary
4.1]), the mapping R × Cn 3 (t, ζ) 7→ exp(tG(iζ)) ∈ Mm×m is infinitely
differentiable. Since(

∂

∂t

)k
exp(tG(iζ)) = G(iζ)k exp(tG(iζ)),

from (6.6) and [E, Sec. V.5, Lemma 5.17] it follows that the mapping
R 3 t 7→ S̃t ∈ E ′(Rn;Mm×m) is infinitely differentiable in the topology
of E ′(Rn;Mm×m).
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