
COLLOQU IUM MATHEMAT ICUM
VOL. 128 2012 NO. 1

1
2 -HOMOGENEOUS HYPERSPACE SUSPENSIONS

BY
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Abstract. We continue the study of 1
2
-homogeneity of the hyperspace suspension

of continua. We prove that if X is a decomposable continuum and its hyperspace sus-
pension is 1

2
-homogeneous, then X must be continuum chainable. We also characterize

1
2
-homogeneity of the hyperspace suspension for several classes of continua, including:

continua containing a free arc, atriodic and decomposable continua, and decomposable
irreducible continua about a finite set.

1. Introduction. Hyperspace suspensions are introduced in [30] in or-
der to obtain a class of disk-like continua with the fixed point property.
Hyperspace suspensions are studied further in [5], [17], and [19]. We note
that 1

2 -homogeneity has been studied for the hyperspace of subcontinua of a
continuum in [32] and for topological suspensions of continua in [13] and [34].
Hence, it is natural to study 1

2 -homogeneity of the hyperspace suspension of
a continuum. Here we continue the investigation initiated in [23].

This paper is divided into seven sections. After the introduction and
definitions, in Section 3 we give the results we use later. In Section 4, we
present our main results, for example we prove that if X is a decomposable
continuum and its hyperspace suspension is 1

2 -homogeneous, then X must be

continuum chainable (Theorem 4.4). We also characterize 1
2 -homogeneity of

the hyperspace suspension for several classes of continua, including: continua
containing a free arc (Theorem 4.19), atriodic and decomposable continua
(Corollary 4.20), decomposable continua which are irreducible about a finite
set (Theorem 4.25), and pseudo-linear continua (Corollary 4.27). In Sec-
tion 5, we study dendroids whose hyperspace suspension is 1

2 -homogeneous;
we strongly believe that the arc is the only dendroid with this property, and
in this section we give several conditions that help to support our conjec-
ture: see Corollaries 5.4, 5.5 and Theorem 5.21. In Section 6 we give a result
analogous to Theorem 5.21 for C(X) (Theorem 6.2). In Section 7, we present
a list of open questions.
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2. Definitions. If (Z, d) is a metric space, then given A ⊂ Z and ε > 0,
the open ball about A of radius ε is denoted by Vdε (A), the interior of A
is denoted by IntZ(A), the boundary of A is denoted by BdZ(A), and the
closure of A is denoted by ClZ(A). Also, Z \ A denotes the complement
of A in Z and Z/A denotes the quotient space of Z modulo A with the
quotient topology. A subset A of Z is a closed domain provided that A =
ClZ(IntZ(A)).

An arc is any space homeomorphic to [0, 1], and a simple closed curve is
any space homeomorphic to S1 = {(x, y) ∈ R2 | x2 + y2 = 1}.

If S is a topological space, then H(S) denotes the group of homeomor-
phisms of S. For a point s of S, the orbit of s in S is the set OS(s) = {h(s) |
h ∈ H(S)}. Note that the family of orbits of S forms a decomposition of S.
A topological space S is 1

n -homogeneous if S has exactly n orbits.
A continuum is a compact, connected, metric space. A continuum X is

unicoherent provided that for each pair of subcontinua A and B of X such
that X = A ∪ B, the intersection A ∩ B is connected. The continuum X is
hereditarily unicoherent if every subcontinuum of X is unicoherent.

A continuum X is said to be bicoherent if for any two proper subcontinua
A and B whose union is X, the set A ∩B has exactly two components.

A continuum X is irreducible about a finite set provided that there exists
a finite subset F of X such that if Z is a proper subcontinuum of X, then
F \ Z 6= ∅.

A continuum X is continuum chainable if for each ε > 0 and each pair of
points p, q ∈ X such that p 6= q, there exists a finite sequence {M1, . . . ,Mn}
of subcontinua of X such that diam(Mj) < ε, p ∈ M1 \

⋃n
j=2Mj , q ∈

Mn \
⋃n−1
j=1 Mj , and Mj ∩Mk 6= ∅ if and only if |j − k| ≤ 1.

Let X be a continuum, and let A and B be two subcontinua of X such
that A ⊂ B. We say that A is terminal in B provided that if C and D are
two subcontinua of B such that A ⊂ C ∩D, then either C ⊂ D or D ⊂ C.

A continuum X is said to be pseudo-linear provided that there exist two
proper subcontinua X1 and X2 of X such that X = X1 ∪ X2, X1 ∩ X2 is
connected and is terminal in both X1 and X2, and each subcontinuum of X
intersecting both X \X1 and X \X2 must contain X1 ∩X2.

A continuum X is said to be pseudo-circular provided that there exist
two proper subcontinua X1 and X2 of X such that X = X1 ∪X2, X1 ∩X2

has exactly two components K1 and K2 each of which is terminal in both X1

and X2, each subcontinuum of X intersecting both K1 and K2 must contain
either X1 or X2, and there exists ε > 0 such that if L is a subcontinuum
of X and X ⊂ Vdε (L), then either K1 ⊂ L or K2 ⊂ L.

A continuum X is a triod provided that it contains a subcontinu-
um N , called a core, such that X \ N is the union of three nonempty
mutually separated sets. A simple triod is a continuum homeomorphic to
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{(0, y) ∈ R2 | 0 ≤ y ≤ 1} ∪ {(x, 1) ∈ R2 | −1 ≤ x ≤ 1}. Let X be a con-
tinuum and let A1, A2 and A3 be subcontinua of X. We say that A1, A2

and A3 form a weak triod if:

(i) A1 ∩A2 ∩A3 6= ∅, and
(ii) Ai \ (Aj ∪Ak) 6= ∅ whenever {i, j, k} = {1, 2, 3}.
Given a continuum X we consider the following hyperspaces:

2X = {A ⊂ X | A is closed and nonempty},
C(X) = {A ∈ 2X | A is a subcontinuum of X},
F1(X) = {{x} | x ∈ X}.

We topologize 2X with the Hausdorff metric H [29, (0.1)]. It is known that
2X and C(X) are continua [29, (1.13)]. Hence, we may consider the hyper-

spaces 22X and C(2X) topologized with the Hausdorff metric H2 induced
by H. Given A ∈ C(X), we let C(A,X) = {K ∈ C(X) | A ⊂ K}. If
f : X → Y is a map between continua, then C(f) : C(X) → C(Y ) given
by C(f)(A) = f(A) is the induced map by f [29, (0.49)].

We also consider the quotient space

HS(X) = C(X)/F1(X),

with the quotient topology. HS(X) is called the hyperspace suspension of X
and was originally defined in [30]. Let qX : C(X) → HS(X) be the quotient
map. We denote by TX the point qX(X) and by FX the point corresponding
to qX(F1(X)). In view of the notation above, note that OHS(X)(χ) denotes
the orbit of χ in HS(X).

A continuum X has the property of Kelley at a point x1 ∈ X provided
that for each ε > 0, there exists a δ > 0 such that if x2 is a point of X with
d(x1, x2) < δ and A ∈ C(X) is such that x1 ∈ A, then there exists B ∈ C(X)
such that x2 ∈ B and H(A,B) < ε. The continuum X has the property of
Kelley if it has the property of Kelley at each of its points. A continuum X
has the property of Kelley weakly provided that there exists a dense subset
A of C(X) such that X has the property of Kelley at some point of each
A ∈ A [22].

2.1. Remark. Note that the sets HS(X)\{FX} and HS(X)\{TX , FX}
are homeomorphic to C(X)\F1(X) and C(X)\ ({X}∪F1(X)), respectively,
using the appropriate restriction of qX .

3. Preliminary results. We begin by noting that as a consequence of
[35, Theorem 1.8] and [1, Theorem 1, p. 654], we have:

3.1. Theorem. Let X be an arc-like or circle-like continuum. Then X
does not contain weak triods.
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The following lemma appears as Corollary 2.8 of [27], but it is supposed
to be a consequence of a proposition that does not exist. Hence, we decided
to include a proof of it.

3.2. Lemma. Let X be a continuum, let p be a point of X and let A ∈
C({p}, X). If X is connected im kleinen at p, then C(X) is connected im
kleinen at A.

Proof. Let ε > 0. Since X is connected im kleinen at p, there exists a
subcontinuum W of X such that p ∈ IntX(W ) ⊂ W ⊂ Vdε (p). Let δ ∈ (0, ε)
be such that Vdδ (p) ⊂ W . Let B ∈ VHδ (A). Then B ∩ Vdδ (p) 6= ∅ and
B ∩ Vdδ (p) ⊂ B ∩ W . Let α1, α2 : [0, 1] → C(X) be order arcs such that
α1(0) = B, α1(1) = A ∪ B ∪ W , α2(0) = A and α2(1) = A ∪ B ∪ W
[29, (1.8)]. Let DB = α1([0, 1]) ∪ α2([0, 1]). Then DB is a subcontinuum
of C(X) and {A,B} ⊂ DB ⊂ VHε (A). Therefore, by [18, 1.7.9], C(X) is
connected im kleinen at A.

As a consequence of [36, (12.1), p. 18] and [7, Theorem 2], we have:

3.3. Lemma. Let X be a continuum, let p be a point of X and let δ > 0.
If X is not connected im kleinen at p, then there exists a nondegenerate
subcontinuum Y of X such that p ∈ Y ⊂ Vdδ (p) and C(X) is not connected
im kleinen at Y .

3.4. Lemma. Let X be a continuum and let χ ∈ HS(X) \ {FX} be such
that HS(X) \ {FX , χ} is not arcwise connected. If h : HS(X)→ HS(X) is a
homeomorphism such that h(χ) 6= FX , then h(FX) = FX .

Proof. Since HS(X) \ {FX , χ} is not arcwise connected, we see that
HS(X) \ {h(FX), h(χ)} is not arcwise connected. By [20, 4.4], we obtain
FX ∈ {h(FX), h(χ)}. Hence, since h(χ) 6= FX , h(FX) = FX .

3.5. Lemma. If X is a continuum, then HS(X) is locally connected at
both TX and FX .

Proof. Since C(X) is locally connected at X [31, (1.136)], HS(X) is lo-
cally connected at TX by Remark 2.1; and it is locally connected at FX by
[17, 3.2].

A Whitney map is a map µ : C(X)→ [0, 1] such that µ(X) = 1, µ({x}) = 0
for each x ∈ X and µ(A) < µ(B) for all A,B ∈ C(X) such that A ( B.

3.6. Lemma. Let X be a continuum. If FX has an open neighborhood U
in HS(X) such that HS(X) is locally connected at each point of U, then X
is locally connected.

Proof. Suppose X is not locally connected. Then there exists a point
p in X such that X is not connected im kleinen at p. Hence, there exists
δ > 0 such that if V is a neighborhood of p and V ⊂ Vdδ (p), then V is not
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connected. Without loss of generality, we assume that 〈Vdδ (p)〉 ⊂ q−1
X (U),

where 〈Vdδ (p)〉 = {B ∈ C(X) | B ⊂ Vdδ (p)}; it is known [29, (0.13)] that
〈Vdδ (p)〉 is an open subset of C(X).

Let V be a neighborhood of p such that ClX(V ) ⊂ Vdδ (p), and let A′ be
the component of ClX(V ) that contains p. Then, by [36, (12.1), p. 18], we
have:

(1) p ∈ A′;
(2) A′ ⊂ Vdδ (p);
(3) there exist a nondegenerate subcontinuum A of A′ and a sequence
{An}∞n=1 of subcontinua of X such that limAn = A, An ∩Am = ∅ if
n 6= m and An∩A = ∅; in fact, no An is contained in the component
of Vdδ (p) that contains p.

Since A ∈ 〈Vdδ (p)〉\F1(X) ⊂ q−1
X (U\{FX}), and q−1

X (U\{FX}) is locally
connected at each of its points, there exists an open connected subset K of
q−1
X (U \ {FX}) such that A ∈ K ⊂ ClC(X)(K) ⊂ 〈Vdδ (p)〉. Since limAn = A,

there exists N ∈ N such that An ∈ K for all n ≥ N . Let W =
⋃

ClC(X)(K).

Then W is a subcontinuum of X [29, (1.49)] and W ⊂ Vdδ (p). Observe that
for each n ≥ N , An ⊂ W , contrary to the construction of the sequence
{An}∞n=1. Therefore, X is locally connected.

3.7. Lemma. Let X be a decomposable continuum and let U be a neigh-
borhood of X in C(X). Then there exists a neighborhood W of X in C(X)
such that W \ {X} is arcwise connected and W ⊂ U .

Proof. Let A and B be proper subcontinua of X such that X = A ∪ B
and let µ : C(X) → [0, 1] be a Whitney map. Let t ∈ (0, 1) be such that
t > max{µ(A), µ(B)} and µ−1([t, 1]) ⊂ U . We show first that µ−1([t, 1)) is
arcwise connected.

Let α : [0, 1]→ C(X) be an order arc such that α(0) = A and α(1) = X.
Also, let s ∈ [0, 1] be such that µ(α(s)) = t. Since α([s, 1)) is arcwise con-
nected, it is enough to consider L ∈ µ−1([t, 1)) \ α([s, 1)) and show that
there exists an arc A ⊂ µ−1([t, 1)) that contains L and intersects α([s, 1)).
To this end, let r ∈ [s, 1) be such that µ(α(r)) = µ(L). Since µ(L) > µ(B),
we have L * B. Thus, L ∩ A 6= ∅ and L ∩ A ⊂ L ∩ α(r). By [29, (14.8.1)],
there exists an arc A ⊂ µ−1(µ(L)) containing both α(r) and L. This proves
that µ−1([t, 1)) is arcwise connected. Then W = µ−1([t, 1]) has the required
properties.

As a consequence of Lemma 3.7, we have the following:

3.8. Corollary. Let X be a decomposable continuum and let U be a
neighborhood of TX in HS(X). Then there exists a neighborhood V of TX in
HS(X) such that V \ {TX} is arcwise connected and V ⊂ U .
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Proof. By Lemma 3.7, there exists a neighborhood W of X in C(X) \
F1(X) such that W ⊂ q−1

X (U) and W \ {X} is arcwise connected. Now, let
V = qX(W). Then V is a neighborhood of TX in HS(X), V ⊂ U and V\{TX}
is arcwise connected.

3.9. Lemma. If X is a pseudo-linear continuum, then X is irreducible.

Proof. Let X1 and X2 be two proper subcontinua of X satisfying the
definition of pseudo-linearity. For each j ∈ {1, 2}, let αj : [0, 1] → C(X) be
an order arc such that αj(0) = X1 ∩X2, αj(1) = Xj .

Let j ∈ {1, 2}. Since X1 ∩ X2 is a terminal subcontinuum in both X1

and X2, we find that αj is unique in the sense that whenever M ∈ C(Xj)
and X1 ∩ X2 ⊂ M , we have M = αj(t) for some t ∈ [0, 1]. Note that, by
[16, 3.1], there exists xj ∈ αj(1) \

⋃
t<1 αj(t).

We prove that X is irreducible between x1 and x2. To this end, let
L ∈ C(X) be such that {x1, x2} ⊂ L. Since L ∩ (X \Xj) 6= ∅ for j ∈ {1, 2},
X1 ∩ X2 ⊂ L. Note that for each j ∈ {1, 2}, L ∩ Xj is connected because
X1∩X2 ⊂ L∩Xj and each component of L∩Xj intersects X1∩X2. Hence,
from what we said in the previous paragraph, we deduce that there exists
tj ∈ [0, 1] such that L ∩ Xj = α(tj), j ∈ {1, 2}. Since xj ∈ L ∩ Xj , this
implies that tj = 1. Hence, L ∩ Xj = Xj . Therefore, L = X, and X is
irreducible.

3.10. Lemma. Let X be a decomposable, proper circle-like continuum.
Then there exist Y1, Y2 ∈ C(X) such that X = Y1 ∪Y2, Yj = Cl(Int(Yj)) and
Int(Yj)∩Yk = ∅ whenever {j, k} = {1, 2}. Moreover, Y1∩Y2 has exactly two
components.

Proof. By [1, Theorem 4, p. 655], no subcontinuum of X separates X.
Hence, by [1, Theorem 5, p. 656] we know that X is bicoherent. Since X is
decomposable, there exist two proper subcontinua X1 and X2 of X such that
X = X1∪X2. Let Y1 = ClX(X \X2) and Y2 = ClX(X \Y1) = ClX(X2 \Y1).
It follows from [1, Theorem 4, p. 655] that Y1 and Y2 are subcontinua of X.
Moreover, note that

X = (X1 \X2) ∪X2 ⊂ Y1 ∪X2 = Y1 ∪ (X2 \ Y1) ⊂ Y1 ∪ Y2.

It is easy to see that Yj is a closed domain for each j ∈ {1, 2}. Furthermore,
IntX(Y2) ∩ Y1 ⊂ IntX(X2) ∩ClX(X \X2) = ∅. Similarly, IntX(Y1) ∩ Y2 = ∅.
Since Y1 and Y2 have disjoint (nonempty) interiors, it follows that both are
proper subcontinua of X. Therefore, since X is bicoherent, we conclude that
Y1 ∩ Y2 has exactly two components.

3.11. Lemma. Let X be a decomposable, proper circle-like continuum.
Then X is pseudo-circular.
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Proof. By Lemma 3.10, there exist two subcontinua Y1 and Y2 of X such
that

X = Y1 ∪ Y2, Yj is a closed domain IntX(Yj) ∩ Yk = ∅,

whenever {j, k} = {1, 2}, and Y1∩Y2 has exactly two componentsK1 andK2.

Let r, j ∈ {1, 2} and let s, t ∈ {1, 2} be such that {r, s} = {1, 2} = {j, t}.
We show that Kr is terminal in Yj . Let B1 and B2 be two subcontinua of Yj
such that Kr ⊂ B1 ∩ B2, and suppose that B1 * B2 and B2 * B1. Let
α : [0, 1] → C(Yt) be an order arc such that α(0) = Kr and α(1) = Yt. Let
t0 ∈ (0, 1) be such that α(t0)∩Ks = ∅. It follows that B1, B2 and α(t0) form
a weak triod, contradicting Theorem 3.1. This proves that Kr is terminal in
both Y1 and Y2.

Next, let L ∈ C(X) be such that L ∩ K1 6= ∅ and L ∩ K2 6= ∅. We
show that L contains either Y1 or Y2. As a consequence of [31, 5.2], there
exist k ∈ {1, 2} and a component M of L ∩ Yk such that M ∩K1 6= ∅ and
M ∩ K2 6= ∅. We assume without loss of generality that k = 1, and prove
that Y1 ⊂ M . Suppose that Y1 * M . Thus, since Y1 is a closed domain,
we see that Int(Y1) * M . Hence, there exists y ∈ Int(Y1) \ (M ∪ Y2). This
implies that M ∪ Y2 is a proper subcontinuum of X. Moreover, note that
M∪Y2 is not unicoherent; however, since X is circle-like, this is not possible.
Therefore, Y1 ⊂M ⊂ L.

Now, let µ : C(X)→ [0, 1] be a Whitney map and let ε > 0 be such that
if Z ∈ C(X) and X ⊂ Vε(Z), then µ(Z) > max{µ(Y1), µ(Y2)}. We show
that either K1 ⊂ Z or K2 ⊂ Z. Assume that neither Y1 nor Y2 is contained
in Z (otherwise we are done). By the choice of ε and Z, we have Z \ Y1 6= ∅
and Z \ Y2 6= ∅. Hence, since Z is connected, it follows that Z ∩Kl 6= ∅ for
some l ∈ {1, 2}. We assume without loss of generality that l = 1, and prove
that K1 ⊂ Z. By the preceding paragraph, Z ∩K2 = ∅. Next we show that
Z ∩ Y1 is connected. Since Y2 is a closed domain, Int(Y2) \ Z 6= ∅. Hence,
Z ∪Y1 6= X. Thus, Z ∪Y1 is a proper subcontinuum of X. This implies that
Z ∪ Y1 is unicoherent. Therefore, Z ∩ Y1 is connected. Similarly, Z ∩ Y2 is
connected. Finally, if K1 * Z, then Z ∩ Y1, Z ∩ Y2 and K1 form a weak
triod, contrary to Theorem 3.1. This proves that K1 ⊂ Z and we conclude
that X is pseudo-circular.

3.12. Lemma. Let X be a continuum and let µ : C(X) → [0, 1] be a
Whitney map. Suppose there exists t ∈ (0, 1) such that A ∩ B 6= ∅ when-
ever A,B ∈ µ−1([t, 1)). Then C(X) is locally connected at each point of
µ−1((t, 1]).

Proof. It is known that C(X) is locally connected at X [29, (1.136)], and
{X} = µ−1(1). Let A ∈ µ−1((t, 1)), and let δ > 0 be such that VHδ (A) ⊂
µ−1((t, 1)). Let B ∈ VHδ (A). Then µ(B) > t, A∩B 6= ∅ and A∪B ∈ VHδ (A).
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Let α, β : [0, 1] → C(X) be order arcs such that α(0) = A, α(1) = A ∪ B,
β(0) = B and β(1) = A ∪B [29, (1.8)]. Then α([0, 1]) ∪ β([0, 1]) is a locally
connected continuum such that {A,B} ⊂ α([0, 1]) ∪ β([0, 1]) ⊂ VHδ (A).
Therefore, C(X) is locally connected at each point of µ−1((t, 1]).

3.13. Corollary. Let X be a continuum and let µ : C(X) → [0, 1]
be a Whitney map. Suppose there exists t ∈ (0, 1) such that A ∩ B 6= ∅
whenever A,B ∈ µ−1([t, 1)). Then HS(X) is locally connected at each point
of qX(µ−1((t, 1])).

The following result is a consequence of the proof of [29, (1.100)]:

3.14. Lemma. Let X be a triod with core K. Then both X and K belong
to a 3-cell in C(X).

3.15. Lemma. Let X be a continuum. Assume that for each ε > 0 and
for each pair p, q ∈ X with p 6= q there exists a finite sequence {Y1, . . . , Ym}
of subcontinua of X such that diam(Yi) < ε, p ∈ Y1, q ∈ Ym and Yi∩Yi+1 6= ∅
for each i < m. Then X is continuum chainable.

Proof. Let ε > 0 and let p, q ∈ X be such that p 6= q. Let {Y1, . . . , Ym} be
such that diam(Yi) < ε, p ∈ Y1, q ∈ Ym and Yi∩Yi+1 6= ∅ for each i < m. Let
np = max{j ∈ {1, . . . ,m} | p ∈ Yj} and let Q = {j ∈ {1, . . . ,m} | q ∈ Yj}.
We may assume that np 6∈ Q.

Define a function ϕ : {1, . . . ,m} → {1, . . . ,m} by

ϕ(k) = max{j ∈ {k, . . . ,m} | Yk ∩ Yj 6= ∅}.

As usual, ϕ0 denotes the identity function and ϕn+1 = ϕ◦ϕn for each n ∈ N.
Note that k + 1 ≤ ϕ(k) for each k < m. Hence:

(a) ϕ(k) < ϕ(ϕ(k)) whenever ϕ(k) < m, and
(b) there exists r ∈ {1, . . . ,m} such that ϕs(np) /∈ Q for each s < r and

ϕr(np) ∈ Q.

Moreover, it follows directly from the definition of ϕ that:

(c) Yk ∩ Yϕ(k) 6= ∅ for each k, and
(d) Yk ∩ Yj = ∅ for each j > ϕ(k).

Thus, using (a), (b), (c) and (d) it is not difficult to see that the sequence
{Ynp , Yϕ(np), . . . , Yϕr(np)} satisfies the conditions of continuum chainability.

4. General results

4.1. Example. If X = [0, 1], then HS(X) is a 2-cell. Hence, HS(X) is
1
2 -homogeneous. Observe that TX and FX belong to the manifold boundary
of HS(X). Thus, TX and FX belong to the same orbit of HS(X).
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4.2. Example. If X = S1, then C(X) is a 2-cell and F1(X) is the man-
ifold boundary of C(X). Hence, HS(X) is a 2-sphere, which is homogeneous.
Therefore, HS(X) is not 1

2 -homogeneous.

4.3. Lemma. If X is a nonlocally connected continuum such that HS(X)
is 1

2 -homogeneous, then OHS(X)(TX) = OHS(X)(FX).

Proof. Since X is not locally connected, there exists χ ∈ HS(X) such
that HS(X) is not locally connected at χ. By Lemma 3.5, HS(X) is locally
connected at both TX and FX . Hence, since HS(X) is 1

2 -homogeneous, we
have OHS(X)(TX) = OHS(X)(FX).

4.4. Theorem. Let X be a decomposable continuum. If HS(X) is 1
2 -ho-

mogeneous, then X is continuum chainable.

Proof. If X is a locally connected continuum, then X is arcwise con-
nected [29, 8.23]. Thus, X is continuum chainable. Hence, we assume that
X is not locally connected.

Let ε > 0 and let p, q ∈ X with p 6= q. Let µ : C(X)→ [0, 1] be a Whitney
map and let t ∈ (0, 1) be such that if L ∈ µ−1([0, t)), then diam(L) < ε/3.

Since HS(X) is 1
2 -homogeneous, by Lemma 4.3, we have OHS(X)(TX) =

OHS(X)(FX). Hence, by Corollary 3.8, there exists a neighborhood V of FX
in HS(X) such that V\{FX} is arcwise connected. Without loss of generality,
we assume that V ⊂ qX(µ−1([0, t))).

Let P,Q ∈ q−1
X (V)\F1(X) be such that p ∈ P and q ∈ Q. We can assume

that P 6= Q. Note that there exists an arc A ⊂ V \ {FX} from qX(P ) to
qX(Q). Let h : [0, 1] → q−1

X (A) be a homeomorphism such that h(0) = P
and h(1) = Q.

Recall that the union map
⋃

: 22X → 2X is uniformly continuous

[29, (1.48)]. Then there exists δ > 0 such that if B,D∈ 22X andH2(B,D)< δ,
then H(

⋃
B,

⋃
D) < ε/3.

Let 0 = a0 < a1 < · · · < an−1 < an = 1 be such that diam(h([aj−1, aj ]))
< δ for each j. Let j ∈ {1, . . . , n} and let Mj =

⋃
h([aj−1, aj ]). Then p ∈

h(0) ⊂ M1 and q ∈ h(1) ⊂ Mn. Moreover, since H2(h([aj−1, aj ]), {h(aj)})
< δ, we obtain that H(Mj , h(aj)) < ε/3. Since h(aj) ∈ q−1

X (A) ⊂ q−1
X (V) ⊂

µ−1([0, t)), it follows, by the choice of t, that diam(Mj) < ε. By [29, (1.49)],
Mj is a subcontinuum of X and h(aj−1) ⊂ Mj−1 ∩ Mj . Therefore, by
Lemma 3.15, X is continuum chainable.

4.5. Corollary. Let X be a decomposable plane continuum with only
finitely many complementary domains. If HS(X) is 1

2 -homogeneous, then X
is arcwise connected.

Proof. By Theorem 4.4, X is continuum chainable. Hence, by [8, Theo-
rem 2], X is arcwise connected.
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4.6. Lemma. If X is an irreducible or an atriodic continuum such that
HS(X) is 1

2 -homogeneous, then OHS(X)(TX) = OHS(X)(FX).

Proof. If X is not locally connected, the result follows from Lemma 4.3.
If X is locally connected and irreducible, then X is an arc and the assertion
follows from Example 4.1. If X is locally connected an atriodic, then X is
an arc or a simple closed curve [31, 8.40(b)] and the lemma follows from
Examples 4.1 and 4.2.

4.7. Theorem. Let X be an atriodic continuum such that HS(X) is 1
2 -

homogeneous. If {TX , FX} is an orbit of HS(X), then X is indecomposable.

Proof. Assume {TX , FX} is an orbit of HS(X). Suppose X is decom-
posable. Hence, there exists a proper subcontinuum A of X such that
IntX(A) 6= ∅. By [7, Theorem 3], C(X) is locally connected at A. Thus,
HS(X) is locally connected at qX(A). Hence, since HS(X) is 1

2 -homogeneous
and {TX , FX} is an orbit of HS(X), HS(X) \ {TX , FX} is locally connected.
Thus, HS(X) is locally connected (Lemma 3.5). This implies thatX is locally
connected [5, 5.1]. Hence, X is an arc or a simple closed curve [31, 8.40(b)].
Since the hyperspace suspension of a simple closed curve is homogeneous
(Example 4.2), we see that X is an arc, a contradiction because {TX , FX}
is not an orbit of HS(X) when X is an arc. Therefore, X is indecompos-
able.

As a consequence of Theorem 4.7 and [23, 6.8], we obtain:

4.8. Theorem. Let X be an atriodic continuum with the property of
Kelley weakly such that HS(X) is 1

2 -homogeneous. Then X is indecomposable
if and only if {TX , FX} is an orbit of HS(X).

4.9. Corollary. If X is an indecomposable atriodic continuum with
the weak property of Kelley such that HS(X) is 1

2 -homogeneous, then every
proper nondegenerate subcontinuum of X is decomposable.

Proof. Observe that, by Theorem 4.8, {TX , FX} is an orbit of HS(X).
Suppose there exists a proper nondegenerate indecomposable subcontinuum
Y of X. Then C(X)\{Y } has uncountably many arc components [32, 2.8]. It
is easy to see that C(X) \ ({Y }∪F1(X)) has uncountably many arc compo-
nents. Hence, HS(X) \ {FX , qX(Y )} has uncountably many arc components
[20, 3.3]. Since OHS(X)(qX(Y )) = HS(X) \ {TX , FX}, HS(X) \ {FX , χ} has
uncountably many arc components for each χ ∈ HS(X)\{TX , FX}. This im-
plies that for each such χ, q−1

X (χ) is an indecomposable subcontinuum of X
[20, 4.2]. Hence, X is a hereditarily indecomposable continuum [21, 3.1],
a contradiction to [23, 6.6].

4.10. Theorem. If X is a decomposable continuum such that HS(X) is
finite-dimensional and 1

2 -homogeneous, then X is hereditarily decomposable.
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Proof. Suppose X contains an indecomposable subcontinuum Y . Then
C(X) \ {Y } is not arcwise connected [21, 3.4]. Hence, HS(X) \ {FX , qX(Y )}
is not arcwise connected [20, 3.3]. Note that HS(X)\{TX , χ} is arcwise con-
nected for each χ ∈ HS(X) \ {FX} [19, 4.3]. Since X is decomposable,
HS(X) \ {TX , FX} is arcwise connected [5, 3.3]. Hence, by Lemma 3.4,
there does not exist a homeomorphism h : HS(X) → HS(X) such that
h(qX(Y )) = TX . Thus, OHS(X)(TX) 6= OHS(X)(qX(Y )).

Now, we show that OHS(X)(TX) 6= OHS(X)(FX). Suppose OHS(X)(TX) =
OHS(X)(FX) then there exists a homeomorphism h0 : HS(X)→ HS(X) such
that h0(FX) = TX . Let h1 : HS(X) → HS(X) be a homeomorphism. If
h1(qX(Y )) = FX , then OHS(X)(TX) 6= OHS(X)(FX). Assume that h1(qX(Y ))
6= FX . Then h1(FX) = FX , by Lemma 3.4. Note that h0 ◦ h1 is a home-
omorphism such that h0 ◦ h1(FX) = TX . Since HS(X) \ {FX , qX(Y )} is
not arcwise connected, HS(X) \ {h0 ◦ h1(FX), h0 ◦ h1(qX(Y ))} = HS(X) \
{TX , h0 ◦h1(qX(Y ))} is not arcwise connected. Hence, h0 ◦h1(qX(Y )) = FX
by Lemma 3.4. This implies that X is indecomposable [5, 3.3], a contradic-
tion. Thus, OHS(X)(TX) 6= OHS(X)(FX). This contradicts [23, 6.5]. There-
fore, X is hereditarily decomposable.

4.11. Theorem. If X is an indecomposable continuum with the property
of Kelley weakly such that HS(X) is finite-dimensional and 1

2 -homogeneous,
then every proper nondegenerate subcontinuum of X is decomposable.

Proof. It is the same proof as the one given for Corollary 4.9, using
[23, 6.10] and [21, 3.4] instead of Theorem 4.8 and [32, 2.8], respectively.

4.12. Theorem. Let X be a continuum and let µ : C(X) → [0, 1] be
a Whitney map. Suppose there exists t ∈ (0, 1) such that A∩B 6= ∅ whenever
A,B ∈ µ−1([t, 1)). If HS(X) is 1

2 -homogeneous, then X is locally connected.

Proof. By Corollary 3.13, HS(X) is locally connected at each point of
qX(µ−1((t, 1])). Note that qX(µ−1((t, 1])) is an open neighborhood of TX in
HS(X).

Suppose X is not locally connected. Then there exists χ ∈ HS(X) such
that HS(X) is not connected im kleinen at χ. Note that by Lemma 4.3, we
have OHS(X)(TX) = OHS(X)(FX) 6= OHS(X)(χ). This implies, by the first
paragraph, that FX has an open neighborhood U such that HS(X) is locally
connected at each point of U. Thus, by Lemma 3.6, X is locally connected,
a contradiction. Therefore, X is locally connected.

4.13. Corollary. Let X be a continuum with a cut point. If HS(X)
is 1

2 -homogeneous, then X is locally connected.

Proof. Let p be a cut point of X, and let A,B ∈ C(X) be such that
X = A ∪ B and A ∩ B = {p} [18, 1.7.18]. Let µ : C(X) → [0, 1] be a
Whitney map. Let t ∈ (0, 1) be such that max{µ(A), µ(B)} < t. Thus, if
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D ∈ C(X) and µ(D) > t, then p ∈ D. Hence, by Theorem 4.12, X is locally
connected.

4.14. Remark. Let X be a continuum and let T be a simple triod
in X. Then FX is in the manifold boundary of a 3-cell, since HS(T ) is
homeomorphic to C(T ) [5, 3.2]. In particular, dimFX

(HS(X)) ≥ 3.

4.15. Remark. Let X be a locally connected continuum such that
HS(X) is 1

2 -homogeneous. If X does not contain simple triods, then X is
an arc of a simple closed curve [31, 8.40(b)]. Thus, since the hyperspace
suspension of a simple closed curve is a 2-sphere (Example 4.2), X is an arc.

By a loop in a continuum X we mean a simple closed curve C such that
BdX(C) has exactly one point. Also, for a continuum X define

J (X) = {A ⊂ X | A is a maximal free arc or a loop},
T (X) = {x ∈ X | x is the core of a simple triod in X}.

The following lemma is easy to prove.

4.16. Lemma. Let X be a locally connected continuum and assume
J ∈ J (X). If b ∈ BdX(J), then b ∈ Cl(T (X)).

4.17. Lemma. Let X be a locally connected continuum and assume
J ∈ J (X). If D ∈ C(J) and D ∩ BdX(J) 6= ∅, then D does not have planar
neighborhoods in C(X).

Proof. Let ε > 0. It is enough to show that there exists Dε ∈ C(X) such
that Dε belongs to a 3-cell in C(X) and H(D,Dε) < ε. We consider two
cases.

Case (1): J is a loop. In this case BdX(J) consists of a single point,
say p. Since X is locally connected, X is arcwise connected [31, 8.23]. Let
A be an arc in X such that A ∩ J = {p}. Let Dε ∈ C(J) be an arc such
that p ∈ Dε and H(D,Dε) < ε (if D 6= J , simply take Dε = D). Let B be
a subarc of J such that Dε ⊂ B and B \Dε has two components. It follows
that A∪B is a triod with core Dε. Hence, by Lemma 3.14, we conclude that
Dε belongs to a 3-cell in C(X).

Case (2): J is a maximal free arc. Let p ∈ D∩BdX(J). We assume that
the end points of J are p and e for some e ∈ X. Let Jε be a subarc of J
such that p ∈ Jε ⊂ J \ {e} and H(D,Jε) < ε (if D 6= J , simply let Jε = D).
By Lemma 4.16, we see that p ∈ Cl(T (X)). Suppose p 6∈ T (X); since X
is locally arcwise connected [31, 8.25], we may take q ∈ T (X) \ J and an
arc L in X whose endpoints are q and p, L ∩ J = {p} and diam(L) < ε. If
p ∈ T (X), we let q = p and L = {p}.

Let Dε = Jε ∪L. Then H(D,Dε) < ε. Also, let T be a simple triod with
core {q} such that e 6∈ T . This implies that (J∪L∪T )\Dε has at least three
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components; i.e., J ∪L∪ T is a triod with core Dε. Hence, by Lemma 3.14,
Dε belongs to a 3-cell in C(X).

A proof of the following lemma may be found in [34, Lemma 4.24].

4.18. Lemma. Let X be a locally connected continuum such that X is
not a simple closed curve. If L is a free arc in X, then there exists J ∈ J (X)
such that L ⊂ J .

Given an n-cell A, i(A) denotes the manifold interior of A.

4.19. Theorem. If X is a continuum containing a free arc, then HS(X)
is 1

2 -homogeneous if and only if X is an arc.

Proof. If X is an arc, then the result is clear by Example 4.1.
Suppose HS(X) is 1

2 -homogeneous. Note that X is not a simple closed

curve by Example 4.2. Let

L(X) = {χ ∈ HS(X) | χ has a 2-cell neighborhood in HS(X)},
K(X) = {K ⊂ L(X) | K is a component of L(X)}.

We consider two cases.

Case (1): FX ∈ L(X). Since FX has a 2-cell neighborhood in HS(X),
by Lemma 3.6, X is locally connected. By Remark 4.14, X does not contain
simple triods. Hence, by Remark 4.15, X is an arc.

Case (2): FX 6∈ L(X). Let A be a free arc in X and let B ∈ i(HS(A)).
Note that B ∈ L(X) and that L(X) is invariant under homeomorphisms of
HS(X) onto itself. Thus, since in this case L(X) is a proper and nonempty
subset of HS(X) and HS(X) is 1

2 -homogeneous, it follows that the two orbits

of HS(X) are L(X) and HS(X) \ L(X). Moreover, since HS(X) is locally
connected at both FX and any point of L(X), we deduce that HS(X) is
locally connected. Hence, X is locally connected [5, 5.1].

By Lemma 4.18, there exists J ∈ J (X) such that A ⊂ J . Since X is
locally connected we have

BdHS(X)(HS(J)) \ {FX} = {Z ∈ HS(J) \ {FX} | q−1
X (Z) ∩ BdX(J) 6= ∅}.

Hence, by Lemma 4.17, we find that BdHS(X)(HS(J)) ∩ L(X) = ∅. Thus,
since IntHS(X)(HS(J)) is a connected subset of L(X), it follows that

IntHS(X)(HS(J)) ∈ K(X).

Moreover, since ClHS(X)(IntHS(X)(HS(J))) ⊂ HS(J), which is either a 2-cell
or a 2-sphere, we see that

ClHS(X)(IntHS(X)(HS(J))) is 2-dimensional.

Since L(X) is an orbit of HS(X), and since IntHS(X)(HS(J)) ∈ K(X), we
deduce that K is open in HS(X) for each K ∈ K(X). Hence, K(X) is count-
able. Furthermore, using again the fact that L(X) is an orbit of HS(X), since
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IntHS(X)(HS(J)) ∈ K(X) and ClHS(X)(IntHS(X)(HS(J))) is 2-dimensional, we
find that ClHS(X)(K) is 2-dimensional for each K ∈ K(X).

Now, we show that

HS(X) =
⋃

K∈K(X)

ClHS(X)(K).

To this end, let χ ∈ HS(X) \ L(X) and let χ0 ∈ BdHS(X)(IntHS(X)(HS(J))).
Since HS(X) \ L(X) is an orbit of HS(X) that contains both χ and χ0,
and since IntHS(X)(HS(J)) ∈ K(X), there exists K0 ∈ K(X) such that χ ∈
ClHS(X)(K0). This proves the equation.

Finally, since ClHS(X)(K) is 2-dimensional for each K ∈ K(X) and K(X)
is countable, by the Sum Theorem [10, III 2, p. 30], we deduce that HS(X) is
2-dimensional. This implies that X contains no simple triods (Remark 4.14).
Therefore, by Remark 4.15, X is an arc.

4.20. Corollary. Let X be an atriodic, decomposable continuum. Then
HS(X) is 1

2 -homogeneous if and only if X is an arc.

Proof. If X an arc, then the result is clear by Example 4.1.

Suppose HS(X) is 1
2 -homogeneous. By Theorem 4.4, X is continuum

chainable. Hence, since X is atriodic, X is arcwise connected [9, Theo-
rem 3]. Thus, by [15, Theorem 11], X contains a free arc. Therefore, by
Theorem 4.19, X is an arc.

4.21. Corollary. Let X be a compactification of a ray (or the real
line). Then HS(X) is 1

2 -homogeneous if and only if X is an arc.

4.22. Corollary. Let X be a hereditarily decomposable C-H contin-
uum. Then HS(X) is 1

2 -homogeneous if and only if X is an arc.

Proof. By [28, (1.1)], each hereditarily decomposable C-H continuum
contains a free arc. Now the corollary follows from Theorem 4.19.

4.23. Corollary. Let X be a locally connected continuum satisfying
either

(1) dim(HS(X)) <∞, or
(2) X is contractible.

Then HS(X) is 1
2 -homogeneous if and only if X is an arc.

Proof. If X an arc, then the result is clear by Example 4.1.

Suppose HS(X) is 1
2 -homogeneous. Note that if X does not contain a free

arc, then dim(HS(X)) =∞ by [5, 3.4] and [29, (1.98)]. Hence, if we assume
that dim(HS(X)) <∞, then the corollary follows from Theorem 4.19.
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Assume now that X is contractible. If X does not contain a free arc, then
HS(X) is homeomorphic to the Hilbert cube [5, 5.4], which is homogeneous
[25, 6.1.6], contradicting our assumption. Thus, X contains a free arc and
the corollary follows from Theorem 4.19.

As a consequence of Corollaries 4.13 and 4.23, we have the following:

4.24. Corollary. Let X be a continuum with a cut point. If either

(1) dim(HS(X)) <∞, or
(2) X is contractible,

then HS(X) is 1
2 -homogeneous if and only if X is an arc.

4.25. Theorem. If X is a decomposable continuum which is irreducible
about a finite set, then HS(X) is 1

2 -homogeneous if and only if X is an
arc.

Proof. If X is an arc, then the result is clear by Example 4.1.

We show the converse. By Theorem 4.4, X is continuum chainable.
Hence, by [9, Theorem 3], X is a tree. Now the result follows from The-
orem 4.19.

Note that Theorem 4.25 cannot be extended to the whole class of con-
tinua which are irreducible about a finite set, because if Σ is a solenoid,
then Σ is indecomposable, and hence it is a continuum which is irreducible
about a finite set and such that HS(Σ) is 1

2 -homogeneous [23, 6.2].

Since chainable continua are irreducible [31, 12.5], we obtain:

4.26. Corollary. If X is a decomposable chainable continuum, then
HS(X) is 1

2 -homogeneous if and only if X is an arc.

As a consequence of Lemma 3.9 and Theorem 4.25, we have:

4.27. Corollary. If X is a pseudo-linear continuum, then HS(X) is
1
2 -homogeneous if and only if X is an arc.

4.28. Theorem. If X is a pseudo-circular continuum, then HS(X) is
not 1

2 -homogeneous.

Proof. Suppose HS(X) is 1
2 -homogeneous. Since X is pseudo-circular,

it has a 2-cell neighborhood in C(X) [14, Corollary 9]. Hence, TX has a 2-cell
neighborhood in HS(X). We show that X is locally connected. Suppose it is
not. Then there exists χ ∈ HS(X) such that HS(X) is not locally connected
at χ [5, 5.1]. By Lemma 4.3 we deduce that OHS(X)(TX) = OHS(X)(FX) 6=
OHS(X)(χ). Hence, FX has a 2-cell neighborhood in HS(X). This implies
by Lemma 3.6 that X is locally connected, a contradiction. Therefore, X is
locally connected.
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Let X1, X2, K1 and K2 be subcontinua of X satisfying the pseudo-
circularity of X. Since X is locally connected, there exists an arc A in X
intersecting both K1 and K2. Hence, either X1 ⊂ A or X2 ⊂ A. In either
case, it follows that either X1 or X2 is an arc with nonempty interior. Then
X is an arc by Theorem 4.19, a contradiction, since, clearly, an arc is not
pseudo-circular.

As a consequence of Theorem 4.28 and Lemma 3.11, we have:

4.29. Corollary. If X is a decomposable proper circle-like continuum,
then HS(X) is not 1

2 -homogeneous.

5. Dendroids. A dendroid is an arcwise connected and hereditarily
unicoherent continuum. A point p in a dendroid X is a ramification point if
p is the common part of three otherwise disjoint arcs. The set of ramification
points of X is denoted by R(X). A point e of a dendroid X is and end point
of X if e does not separate any arc that contains it. The set of end points
of X is denoted by E(X). A fan is a dendroid with only one ramification
point. Given two points x and x′ in a dendroid, xx′ denotes the unique arc
joining x and x′. A dendrite is a locally connected dendroid.

A continuum X is hereditarily unicoherent at a point p provided that the
intersection of any two subcontinua of X each containing p is connected.

We start with a consequence of Theorem 4.4.

5.1. Corollary. Let X be a decomposable continuum that is heredi-
tarily unicoherent at a point p. If HS(X) is 1

2 -homogeneous, then X is a
dendroid.

Proof. By Theorem 4.4, X is continuum chainable. Hence, by [9, Corol-
lary, p. 252], X is a dendroid.

A continuum X is semi-hereditarily unicoherent provided that, if A and
B are subcontinua of X such that IntX(A \ B) 6= ∅ and IntX(B \ A) 6= ∅,
then A ∩B is connected.

5.2. Lemma. Let X be a semi-hereditarily unicoherent, decomposable
continuum. If HS(X) is 1

2 -homogeneous, then X is a dendroid.

Proof. By Theorem 4.4, X is continuum chainable. Hence, since X is
semi-hereditarily unicoherent, by [3, Lemma 1.1 and Theorem 1.4], X is a
dendroid.

A λ-dendroid is a hereditarily decomposable and hereditarily unicoherent
continuum.

5.3. Corollary. Let X be a λ-dendroid. If HS(X) is 1
2 -homogeneous,

then X is a dendroid.
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Let X be a dendroid and let p ∈ X. We say that p is a strong center if
there exist two open subsets U and V of X such that every arc from U to V
contains p.

5.4. Corollary. Let X be a dendroid that contains a strong center.
Then HS(X) is 1

2 -homogeneous if and only if X is an arc.

Proof. Suppose HS(X) is 1
2 -homogeneous. Let p be a strong center and

let U and V be open subsets of X such that every arc from U to V contains p.
Let u ∈ U , v ∈ V and let ε > 0 be such that Vdε (u) ⊂ U and Vdε (v) ⊂ V .

Let µ : C(X) → [0, 1] be a Whitney map and let t ∈ (0, 1) be such

that µ−1([t, 1]) ⊂ VHε (X). Let A ∈ µ−1([t, 1]). Then H(A,X) < ε. Hence,
A ∩ U 6= ∅ and A ∩ V 6= ∅. Let a1 ∈ A ∩ U and let a2 ∈ A ∩ V . Since
both X and A are dendroids, the arc from a1 to a2 is contained in A. Thus,
since p is a strong center, we obtain that p ∈ A. Thus, by Theorem 4.12, we
deduce that X is locally connected. Hence, X is a dendrite. In particular, X
is contractible. Therefore, by Corollary 4.23, we conclude that X is an arc.

The reverse implication follows from Example 4.1.

5.5. Corollary. Let X be a planar dendroid. Then HS(X) is 1
2 -homo-

geneous if and only if X is an arc.

Proof. The corollary follows from the fact that every planar dendroid
contains a strong center [26, Theorem 3.11] and Corollary 5.4.

5.6. Lemma. If X is a fan, then X has a strong center.

Proof. Let v be the ramification point of X. Since X is a fan, there exist
two subfans X1 and X2 of X such that X = X1 ∪X2 and v ∈ X1 ∩X2. Let
x1 ∈ X1 \X2 and let x2 ∈ X2 \X1. Let ε > 0 be such that Vdε (x1) ⊂ X1 \X2

and Vdε (x2) ⊂ X2 \X1. Note that if z1 ∈ Vdε (x1) and z2 ∈ Vdε (x2), then, by
the construction of z1 and z2, the only arc joining z1 and z2 must contain v.
Therefore, v is a strong center of X.

As a consequence of Corollary 5.4 and Lemma 5.6, we have:

5.7. Corollary. If X is a fan, then HS(X) is not 1
2 -homogeneous.

Recall that the null comb is the union of the line segments in the plane
from (0, 0) to (1, 0) and from (1/n, 0) to (1/n, 1/n) for each positive inte-
ger n. The point q = (0, 0) is called the follicle of the null comb.

5.8. Notation. If Z is a continuum, then

∆(Z) = {D ⊂ Z | D is an n-cell for some n ≥ 3, or a Hilbert cube}.
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If X is a dendroid, then:

A(X) = {B ∈ C(X) | B is a maximal arc such that i(B) ∩R(X) = ∅},
Ω1(X) = {D ∈ C(X) | D ∈ D, for some D ∈ ∆(C(X))},
Ω2(X) = C(X) \Ω1(X),

Λ1(X) = {D ∈ C(X) | C(X) is connected im kleinen at D},
Λ2(X) = C(X) \ Λ1(X),

ORL(X) = {x ∈ X | x ∈ i(B) for some B ∈ A(X)},
N(X) = {x ∈ X | x is the follicle of a null comb in X}.

5.9. Remark. Let X be a dendroid. Note that if R(X) 6= ∅ and B ∈
A(X), then B ∩ (N(X) ∪R(X)) ⊂ E(B) and (N(X) ∪R(X)) ∩ E(B) 6= ∅.
Moreover, X \ (R(X) ∪ E(X)) = ORL(X) ∪N(X).

Recall the following theorem by Sorgenfrey [35, 3.2]:

5.10. Theorem. Every nondegenerate unicoherent continuum X which
is not a triod is irreducible.

5.11. Remark. Since arcwise connected irreducible continua are arcs,
it follows by Theorem 5.10 that if Y is a dendroid which is not an arc, then
Y is a triod. Thus, by Lemma 3.14, Y ∈ Ω1(Y ). Hence, if X is a dendroid
and Y ∈ Ω2(X), then Y is an arc or a point.

5.12. Lemma. Let X be a dendroid and let x ∈ N(X). If A ∈ C({x}, X),
then A ∈ Ω1(X).

Proof. By Remark 5.11, we may assume that A is an arc or a one-point
set. Let K be a null comb in X such that x is the follicle of K. Note that
K ∪ A is a locally connected continuum [12, Theorem 1, p. 230] and that
x is not in the interior (relative to K ∪ A) of any finite graph in K ∪ A.
Hence, by [4, Theorem 4], we deduce that C({x},K ∪ A) is a Hilbert cube.
Therefore, A ∈ Ω1(X).

5.13. Lemma. Let X be a dendroid, let B ∈ A(X) and let Z ∈ C(B). If
Z ∩ (N(X) ∪R(X)) = ∅, then Z ∈ Ω2(X).

Proof. Suppose that Z ∈ Ω1(X). Let D ∈ ∆(C(X)) be such that Z ∈ D.
By Remark 5.9, we assume that D is small enough so that D ∩ (N(X) ∪
R(X)) = ∅ for each D ∈ D. By [29, (1.49)],

⋃
D is a subcontinuum of X

that contains Z. Moreover, note that (
⋃
D) ∩ (N(X) ∪ R(X)) = ∅. Hence,

by Remark 5.9,
⋃
D ⊂ B. Thus, D ⊂ C(B), which is impossible since C(B)

is a 2-cell. Therefore, Z ∈ Ω2(X).

5.14. Lemma. Let X be a nonlocally connected dendroid such that
A(X) 6= ∅. If HS(X) is 1

2 -homogeneous, then qX(Ω1(X))∪{FX}= qX(Λ1(X))
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∪{FX}, qX(Ω2(X))\{FX} = qX(Λ2(X))\{FX} and these are the two orbits
of HS(X).

Proof. By [29, (1.208.2)], there exists Z ∈ Λ2(X) \ F1(X). Then we
have qX(Λ2(X)) \ {FX} 6= ∅. Since X ∈ Λ1(X) [29, (1.136)], it follows
that qX(Λ1(X)) 6= ∅. Since HS(X) is connected im kleinen at χ if and only
if χ ∈ qX(Λ1(X)) ∪ {FX}, we obtain that the two orbits of HS(X) are
qX(Λ1(X)) ∪ {FX} and qX(Λ2(X)) \ {FX}.

Since X is not locally connected, by Remark 5.11, we have X ∈ Ω1(X).
Then qX(Ω1(X)) 6= ∅. Let B ∈ A(X) and let L be an arc such that L ⊂
B \ E(B) ⊂ B \ (N(X) ∪ R(X)) (Remark 5.9). Thus, by Lemma 5.13,
L ∈ Ω2(X). This implies that qX(Ω2(X)) \ {FX} 6= ∅.

Observe that the elements of qX(Ω1(X)) \ {FX} belong to elements of
∆(HS(X)), and that the elements of qX(Ω2(X)) \ {FX} do not have this
property. Moreover, by Lemma 4.3, OHS(X)(TX) = OHS(X)(FX). Therefore,

since HS(X) is 1
2 -homogeneous, the two orbits of HS(X) are qX(Ω1(X)) ∪

{FX} and qX(Ω2(X)) \ {FX}. Now the theorem follows from the first para-
graph.

5.15. Lemma. Let X be a dendroid such that HS(X) is 1
2 -homogeneous

and A(X) 6= ∅. If A ∈ C(X) and A ∩R(X) 6= ∅, then A ∈ Λ1(X).

Proof. Let r ∈ A ∩ R(X). Then there exist three arcs A1, A2, A3 in X
such that Ai ∩Aj = {r} whenever i 6= j. We prove first that X is connected
im kleinen at r. Suppose that it is not, and let W be a neighborhood of r
such that no connected neighborhood of r is contained in W . Without loss of
generality, we assume that Aj \W 6= ∅ for each j ∈ {1, 2, 3}. By Lemma 3.3,
there exists a nondegenerate subcontinuum Y of X such that r ∈ Y ⊂ W
and C(X) is not connected im kleinen at Y . Now, note that (

⋃3
j=1Aj) \ Y

has at least three components. Thus, Y ∪
⋃3
j=1Aj is a triod with core Y .

By Lemma 3.14, this implies that Y ∈ Ω1(X). Hence, as a consequence of
Lemma 5.14, Y ∈ Λ1(X), a contradiction. Therefore, X is connected im
kleinen at r. It follows from Lemma 3.2 that A ∈ Λ1(X).

5.16. Lemma. Let X be a dendroid and let B ∈ A(X). Suppose there
exists e ∈ E(X) ∩ E(B), let L ∈ C({e}, B) \ {B, {e}}, and let M ∈ C(B) \
F1(X) be such that M ∩ E(B) = ∅. Then qX(L) does not belong to the
manifold interior of any 2-cell in HS(X), but qX(M) does.

Proof. Suppose that qX(L) ∈ i(D) for some 2-cell D in HS(X). We may
assume that FX /∈ D. By Remark 5.9, we assume that D is small enough so
that D∩ (N(X)∪R(X)) = ∅ for each D ∈ q−1

X (D). By [29, (1.49)], we know

that
⋃
q−1
X (D) is a subcontinuum of X that contains L. Moreover, note that

(
⋃
q−1
X (D)) ∩ (N(X) ∪ R(X)) = ∅. Hence, by Remark 5.9,

⋃
q−1
X (D)⊂B.
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Thus, q−1
X (D) ⊂ C(B). Furthermore, L ∈ q−1

X (i(D)) = i(q−1
X (D)) ⊂ i(C(B)),

a contradiction since e ∈ L ∩ E(B). Therefore, qX(L) /∈ i(D).

Observe that M ∈ i(C(B)). Then qX(M) belongs to the manifold interior
of the 2-cell HS(B).

5.17. Lemma. Let X be a dendroid, let B be an arc in X such that
i(B)∩R(X) = ∅ and let e ∈ E(X)∩E(B). If X is not connected im kleinen
at any point of i(B) ∪ {e}, then there exist L,M ∈ C(B) \ F1(X) such that
e ∈ L, e 6∈M and C(X) is connected im kleinen at neither L nor M .

Proof. Let e and b be the end points of B. Let w ∈ i(B) and let δ > 0
be such that δ < min{d(e, b), d(w,E(B))}. By Lemma 3.3, there exist non-
degenerate subcontinua L and M of X such that:

(1) e ∈ L ⊂ Vdδ (e),
(2) w ∈M ⊂ Vdδ (w), and
(3) C(X) is connected im kleinen at neither L nor M .

It follows from the choice of δ that b 6∈ L∪M . Hence, since X is a dendroid,
we have L,M ∈ C(B) \ F1(X). Now, since δ < d(w, e), by (2), we conclude
that e 6∈M .

5.18. Lemma. Let X be a dendroid and let B ∈ A(X). If there exists
e ∈ E(X) ∩ E(B) and HS(X) is 1

2 -homogeneous, then X is an arc.

Proof. Suppose first that X is not connected im kleinen at any point
of i(B) ∪ {e}. Let b ∈ E(B) \ E(X) and let L,M ∈ C(B) \ F1(X) be such
that e ∈ L, e /∈ M , and C(X) is connected im kleinen at neither L nor
M (Lemma 5.17). Also assume that b /∈ L ∪M . By Lemma 5.13, we know
that L,M ∈ Ω2(X). Moreover, Lemma 5.16 implies that OHS(X)(qX(L)) 6=
OHS(X)(qX(M)). Since HS(X) is locally connected at FX by Lemma 3.5, we
obtain OHS(X)(qX(L)) 6= OHS(X)(FX) 6= OHS(X)(qX(M)). This contradicts

the 1
2 -homogeneity of HS(X). Hence, X is connected im kleinen at some

point of i(B) ∪ {e}. Therefore, X contains a free arc and the result follows
from Theorem 4.19.

5.19. Lemma. Let X be a dendroid such that HS(X) is 1
2 -homogeneous.

If X is not locally connected and A(X) 6= ∅, then qX(Ω2(X)) \ {FX} =
{χ ∈ HS(X) \ {FX} | q−1

X (χ) ⊂ B \ (N(X) ∪R(X)) for some B ∈ A(X)}.

Proof. Let L ∈ C(X) be such that qX(L) ∈ qX(Ω2(X)) \ {FX}. Then
L ∈ Ω2(X) \F1(X). Hence, by Lemmas 5.12, 5.15 and 5.14, we deduce that
L∩ (N(X)∪R(X)) = ∅. This implies that L is an arc (L is nondegenerate).
By [2, (3.6)], there exists a maximal arc Y in X such that L ⊂ Y . Hence,
since L ∩ (N(X) ∪ R(X)) = ∅, there exists B ∈ A(X) such that L ⊂ B.
This proves that qX(Ω2(X)) \ {FX} ⊂ {χ ∈ HS(X) \ {FX} | q−1

X (χ) ⊂
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B \ (N(X) ∪R(X)) for some B ∈ A(X)}. The other inclusion follows from
Lemma 5.13.

5.20. Lemma. Let X be a dendroid such that HS(X) is 1
2 -homogeneous.

If X is not locally connected, A(X) 6= ∅ and χ1 ∈ qX(Ω2(X)) \ {FX}, then
there exists B ∈ A(X) such that χ1 ∈ i(HS(B)). Furthermore, if K is the
arc component of qX(Ω2(X)) \ {FX} that contains χ1, then K = i(HS(B)).

Proof. By Lemma 5.19, there exists B ∈ A(X) such that q−1
X (χ1) ⊂

B \ (N(X) ∪ R(X)). By Lemma 5.18, we have E(B) ⊂ N(X) ∪ R(X).
Thus, q−1

X (χ1) ⊂ i(B). Then χ1 ∈ i(HS(B)). Since B is an arc, we see that
i(HS(B)) is a 2-cell (Example 4.1), in particular, it is arcwise connected.
Hence, by Lemma 5.19, we obtain i(HS(B)) ⊂ K. Next, suppose there exists
χ ∈ K \ i(HS(B)). Then there exists an arc L ⊂ K whose end points are
χ1 and χ. By [29, (1.49)],

⋃
q−1
X (L) is a subdendroid of X that contains

both q−1
X (χ1) and q−1

X (χ). Since q−1
X (χ1) ⊂ i(B) and q−1

X (χ) \ i(B) 6= ∅, it

follows that E(B) ∩
⋃
q−1
X (L) 6= ∅. Let χ0 ∈ L be such that ∅ 6= q−1

X (χ0) ∩
E(B) ⊂ q−1

X (χ0) ∩ (N(X) ∪ R(X)). Thus, by Lemma 5.19, we have χ0 ∈
HS(X) \ (qX(Ω2(X)) \ {FX}) ⊂ HS(X) \ L. This contradiction proves that
i(HS(B)) = K.

5.21. Theorem. Let X be a dendroid and assume there exists an arc L
such that i(L)∩R(X) = ∅. Then HS(X) is 1

2 -homogeneous if and only if X
is an arc.

Proof. Suppose HS(X) is 1
2 -homogeneous. By [2, (3.6)], there exists a

maximal arc Y in X such that L ⊂ Y . Hence, there exists B ∈ A(X) such
that L ⊂ B.

We prove that X is locally connected. Suppose that X is not locally con-
nected. Then R(X) 6= ∅. By Remark 5.9, we have B ∩ (N(X) ∪R(X)) 6= ∅.
It follows from Lemmas 5.19 and 5.14 that qX(B) ∈ qX(Ω1(X)) ∪ {FX}.
Since X ∈ Ω1(X) (Remark 5.11), both TX and qX(B) belong to the orbit
qX(Ω1(X)) ∪ {FX} (Lemma 5.14). Note that qX(B) ∈ ClHS(X)(i(HS(B))).
Thus, by Lemma 5.20, there exists an element B1 ∈ A(X) such that TX ∈
ClHS(X)(i(HS(B1))) ⊂ HS(B1). This implies that X = B1, a contradiction
to the assumption that X is not locally connected. Therefore, X is locally
connected; i.e., X is a dendrite. Since dendrites are planar [31, 10.37], the
result now follows from Corollary 5.5.

The reverse implication is a consequence of Example 4.1.

Throughout this section we have given partial answers to Question 7.6
below.

6. A theorem for C(X). We present a result for C(X) analogous to
Theorem 5.21. The proof of the following lemma is similar to the one given
for Lemma 5.16.
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6.1. Lemma. Let X be a dendroid and let B ∈ A(X). Let y ∈ i(B) and
let M ∈ C(B)\F1(B) be such that M ∩E(B) = ∅. Then {y} does not belong
to the manifold interior of any 2-cell in C(X), but M does.

6.2. Theorem. Let X be a dendroid and suppose there exists an arc L
in X such that i(L) ∩ R(X) = ∅. Then C(X) is 1

2 -homogeneous if and only
if X is an arc.

Proof. If X is an arc, then the result is clear by [32, Proposition 1.1].

Suppose C(X) is 1
2 -homogeneous. By [2, (3.6)], there exists a maximal

arc Y in X such that L ⊂ Y . Hence, there exists B ∈ A(X) such that
L ⊂ B.

Suppose X is not connected im kleinen at some point y ∈ i(B). By
Lemma 3.3, there exists M ∈ C(B)\F1(B) such that y ∈M , M ∩E(B) = ∅
and C(X) is not connected im kleinen at M .

Note that, by Lemma 6.1, OC(X)({y}) 6= OC(X)(M). Also note that, by
Remark 5.9, B ∩ (N(X) ∪ R(X)) ⊂ E(B). Hence, by Lemma 5.13, we see
that both {y} and M belong to Ω2(X).

Since X ∈ Ω1(X) (Remark 5.11), we obtain

OC(X)({y}) 6= OC(X)(X) 6= OC(X)(M).

This contradicts the 1
2 -homogeneity of C(X). Thus, X is connected im

kleinen at some point of i(B). Hence, X contains a free arc. The theorem
now follows from [23, 3.14].

7. Questions. The following questions seem natural and interesting:

7.1. Question. Is there a decomposable, nonlocally connected contin-
uum X such that HS(X) is 1

2 -homogeneous?

More generally:

7.2. Question. Is the arc the only decomposable continuum with 1
2 -ho-

mogeneous hyperspace suspension?

7.3. Remark. Note that, by [23, 6.13], if X is a decomposable homo-
geneous continuum and HS(X) is 1

2 -homogeneous, then HS(X) is infinite-
dimensional.

7.4. Question. Is there an infinite-dimensional continuum with 1
2 -ho-

mogeneous hyperspace suspension?

7.5. Question. Are solenoids the only indecomposable continua with
1
2 -homogeneous hyperspace suspension?

7.6. Question. If X is a dendroid such that HS(X) is 1
2 -homogeneous,

then is X an arc?
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[22] S. Maćıas and S. B. Nadler, Jr., Various types of local connectedness in n-fold hy-

perspaces, Topology Appl. 154 (2007), 39–53.
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