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Abstract. Using the notion of cyclically pure injective modules, a characterization
of rings which are locally valuation rings is established. As applications, new characteriza-
tions of Prüfer domains and pure semisimple rings are provided. Namely, we show that a
domain R is Prüfer if and only if two of the three classes of pure injective, cyclically pure
injective and RD-injective modules are equal. Also, we prove that a commutative ring R
is pure semisimple if and only if every R-module is cyclically pure injective.

1. Introduction. Throughout this paper, R denotes a commutative ring
with identity, and all modules are assumed to be left unitary. The notion of
pure injective module has a substantial role in commutative algebra and
model theory. Among various generalizations of this notion, the notion of
cyclically pure injective module has been extensively studied by M. Hochster
[9] and L. Melkersson [14]. Recall that an exact sequence 0 → A → B →
C → 0 of R-modules and R-homomorphisms is said to be cyclically pure if
the induced map R/a⊗RA→ R/a⊗RB is injective for all (finitely generated)
ideals a of R. Also, an R-module D is said to be cyclically pure injective if
for any cyclically pure exact sequence 0 → A → B → C → 0, the induced
homomorphism HomR(B,D)→ HomR(A,D) is surjective. In the following,
we use the abbreviation CP for “cyclically pure”.

More generally, let S be a class of R-modules. An exact sequence 0 →
A→ B → C → 0 of R-modules and R-homomorphisms is said to be S-pure
if for all M ∈ S, the induced homomorphism HomR(M,B)→ HomR(M,C)
is surjective. An R-monomorphism f : A → B is said to be S-pure if the
exact sequence 0 → A

f→ B
nat−→ B/f(A) → 0 is S-pure. An R-module D

is said to be S-pure injective if for any S-pure exact sequence 0 → A →
B → C → 0, the induced homomorphism HomR(B,D) → HomR(A,D) is
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surjective (see [17]). When S is the class of finitely presented R-modules,
S-pure exact sequences and S-pure injective modules are simply called pure
exact sequences and pure injective modules. If S denotes the class of all R-
modules of the form R/Rr, r ∈ R, then S-pure exact sequences and S-pure
injective modules are called RD-exact sequences and RD-injective modules.
For a survey on pure injective and RD-injective modules, we refer the reader
to [6].

Let S be the class of all R-modules M for which there is a cyclic sub-
module G of Rn, for some n ∈ N, such thatM is isomorphic to Rn/G. In [3],
we showed that CP-exact sequences and CP-injective modules coincide with
S-pure exact sequences and S-pure injective modules, respectively. In the
same paper we have systematically investigated the structure of CP-injective
modules and presented several characterizations of this class of modules.

Our aims in this paper are twofold. First, we wish to classify the com-
mutative rings over which the notions of “RD-injective” and “cyclically pure
injective” coincide. Second, we wish to classify the commutative rings over
which the notions of “pure injective” and “cyclically pure injective” coincide.

In Section 2, we show that Rp is a valuation ring (not necessarily a
domain) for all prime ideals p of R if and only if every CP-injective R-module
is RD-injective, if and only if every pure injective R-module is CP-injective.
From this we obtain a characterization of semihereditary rings and also one
for Prüfer domains. Namely, we show that a domain R is Prüfer if and only
if every CP-injective R-module is RD-injective, if and only if every pure
injective R-module is CP-injective. Also, we show that a domain R is Prüfer
if and only if every absolutely CP-module is absolutely pure. Finally, a new
characterization of pure semisimple rings is given. We show that a ring R is
pure semisimple if and only if every R-module is CP-injective, if and only if
every R-module is RD-pure injective.

The first example of a CP-exact sequence which is not pure was presented
in [1]. Our first characterization of Prüfer domains mentioned above shows
that over a non-Prüfer domain R, the class of CP-injective R-modules is
strictly larger than that of RD-injective R-modules and strictly smaller than
that of pure injective R-modules. However, these may be viewed as kind of
implicit strict inclusions. In Section 3, we provide some examples for which
we can explicitly show proper containments. In [3], we proved that in many
aspects CP-injective modules behave similarly to pure injective and RD-
injective modules. But Remark 2.2 and Example 3.5 below display some
differences between the former class and the latter two.

2. A characterization of Prüfer rings. We say that an R-module M
is cyclically presented if there are an integer n ∈ N and a cyclic submodule
G of Rn such that M is isomorphic to Rn/G; we denote the class of all
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cyclically presented R-modules by SCP . Also, in what follows, the class of
all cyclically presented cyclic R-modules will be denoted by SCPC , (so SCPC
is the class of all R-modules M which are isomorphic to R-modules of the
form R/Rr, r ∈ R). Finally, the class of all finitely presented (respectively,
finitely presented cyclic) R-modules will be denoted by SFP (respectively,
SFPC).

Definition 2.1. Let S be a class of R-modules. An exact sequence 0→
A→ B → C → 0 of R-modules and R-homomorphisms is called S-flat if for
all M ∈ S the induced map A⊗RM → B ⊗RM is injective.

Remark 2.2. Let 0 → A → B → C → 0 be an exact sequence of
R-modules and R-homomorphisms.

(i) The above exact sequence is SCPC-pure if and only if it is SCPC-flat
(see [17, Propositions 2 and 3]).

(ii) The above exact sequence is SFP -pure if and only if it is SFP -flat
(see [17, Propositions 2 and 3]).

(iii) By [3, Proposition 2.2], the above exact sequence is SCP -pure if and
only if it is SFPC-flat.

Example 3.5 in the next section shows that there exist SFPC-flat exact
sequences which are not SFPC-pure.

Definition 2.3. Let S be a class of R-modules. An R-module P is said
to be S-pure projective if for any S-pure exact sequence 0→A→B→C→0,
the induced homomorphism HomR(P,B)→ HomR(P,C) is surjective.

Lemma 2.4. Let S and T be two classes of R-modules. The following are
equivalent :

(i) Every T -pure exact sequence is S-pure exact.
(ii) Every S-pure projective R-module is T -pure projective.
(iii) Every element of S is a direct summand of a direct sum of modules

in T .
Moreover , if S and T are both contained in SFP , then the above condi-

tions are equivalent to the following :

(iv) Every S-pure injective R-module is T -pure injective.

Proof. Let U be a class of R-modules. By the definition every element of
U is U-pure projective. In general, by [17, Proposition 1], an R-module M
is U-pure projective if and only if M is a direct summand of a direct sum of
modules in U . Hence the equivalence of (i)–(iii) is immediate.

Next, assume that S and T are both contained in SFP . Let U ⊆ SFP be
a class of R-modules and E an injective cogenerator of R. By [5, Lemma 1.2],
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there is a class U∗ of R-modules such that an exact sequence 0→ A→ B →
C → 0 of R-modules and R-homomorphisms is U-pure if and only if

0→ A⊗RM∗ → B ⊗RM∗ → C ⊗RM∗ → 0

is exact for all M∗ ∈ U∗. Thus by using the adjointness property, it follows
that HomR(M∗, E) is a U-pure injective R-module for all M∗ ∈ U∗.

(iv)⇒(i). Let
(∗) 0→ A→ B → C → 0

be a T -pure exact sequence and M∗ ∈ S∗ an arbitrary element. Since
HomR(M∗, E) is S-pure injective, it is also T -pure injective, by our as-
sumption. Thus, by applying the functor HomR(−,HomR(M∗, E)) to (∗)
and using the adjointness property, we deduce the exact sequence

0→ HomR(C ⊗RM∗, E)→ HomR(B ⊗RM∗, E)
→ HomR(A⊗RM∗, E)→ 0.

Thus, it turns out that the sequence
0→ A⊗RM∗ → B ⊗RM∗ → C ⊗RM∗ → 0

is exact. Therefore (∗) is S-pure exact.
Now, since the implication (i)⇒(iv) clearly holds, the proof is finished.

Lemma 2.5. Assume that every pure injective R-module is CP-injective.
Then an exact sequence l : 0→ A→ B → C → 0 is SFPC-pure exact if and
only if it is CP-exact.

Proof. Assume that l is a CP-exact sequence. Then, by Lemma 2.4, it is
pure exact. Hence it is clearly SFPC-pure, because SFPC ⊆ SFP .

Now, assume that l is SFPC-pure exact. Let E be an injective cogenerator
of R and (·)∨ denote the faithfully exact functor HomR(−, E). Let l∨ denote
the induced exact sequence 0 → C∨ → B∨ → A∨ → 0. Let I be a finitely
generated ideal of R. Since R/I is finitely presented, the two R-modules
R/I⊗RM∨ and HomR(R/I,M)∨ are naturally isomorphic for all R-modules
M . So the exact sequence l∨ is CP-exact. Hence l∨ is pure exact, by Lemma
2.4. Let N ∈ SCP . Then by Remark 2.2(ii), the sequence N ⊗R l∨ is exact.
The exact sequences

0→ N ⊗R C∨ → N ⊗R B∨ → N ⊗R A∨ → 0

and
0→ HomR(N,C)∨ → HomR(N,B)∨ → HomR(N,A)∨ → 0

are naturally isomorphic. Thus the second sequence is also exact, and so
0→ HomR(N,A)→ HomR(N,B)→ HomR(N,C)→ 0

is an exact sequence, because (·)∨ is a faithfully exact functor. Therefore l
is a CP-exact sequence.
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Lemma 2.6. Let a be an ideal of R. Assume that every CP-injective
R-module is RD-injective. Then every CP-injective R/a-module is an RD-
injective R/a-module.

Proof. Set T = R/a. Let M = Tn/V , where n ∈ N and V is a cyclic
T -submodule of Tn. So, there are b1, . . . , bn ∈ R such that

V = T (b1 + a, . . . , bn + a).

Let N = Rn/U , where U = R(b1, . . . , bn). We show that M and N ⊗R T are
naturally isomorphic as T -modules. To this end, let φ : M → N ⊗R T be the
map defined by

(x1 + a, . . . , xn + a) + V 7→ ((x1, . . . , xn) + U)⊗ (1 + a)

for all (x1 + a, . . . , xn + a) + V ∈M . Also, we define ψ : N ⊗R T →M by

((x1, . . . , xn) + U)⊗ (r + a) 7→ (rx1 + a, . . . , rxn + a) + V.

It is a routine check to see that φ and ψ are well defined T -homomorphisms
and that ψφ = idM and φψ = idN⊗RT . Now, as − ⊗R T commutes with
direct sums, the conclusion is immediate by Lemma 2.4(iii)⇔(iv).

Recall that a valuation ring (not necessarily a domain) is a commutative
ring whose ideals are linearly ordered by inclusion.

Theorem 2.7. The following are equivalent :

(i) Rp is a valuation ring for all prime ideals p of R.
(ii) Every pure injective R-module is RD-injective.
(iii) Every CP-injective R-module is RD-injective.
(iv) Every pure injective R-module is CP-injective.
(v) Every pure projective R-module is RD-projective.
(vi) Every CP-projective R-module is RD-projective.
(vii) Every pure projective R-module is CP-projective.

Proof. By Lemma 2.4, the equivalences (ii)⇔(v), (iii)⇔(vi) and (iv)⇔(vii)
are obvious. Also, the implications (ii)⇒(iii) and (ii)⇒(iv) are clear.

(i)⇒(v). As mentioned in the proof Lemma 2.4, for a given class U of
R-modules, an R-module M is U-pure projective if and only if M is a direct
summand of a direct sum of modules in U . So, to deduce (v), it is enough
to show that every finitely presented R-module is RD-projective. By [6, VI,
Lemma 12.3], a finitely presented R-module M is RD-projective if and only
if Mm is an RD-projective Rm-module for all maximal ideals m of R. Hence
(v) follows by [19, Theorem 1].

(v)⇒(i). This follows by [17, Proposition 1] and [19, Theorem 3].
(iii)⇒(i). Assume that there exists a prime ideal p of R so that Rp is

not a valuation ring. Let N = (Rp)n/G, where n ∈ N and G is a cyclic
Rp-submodule of (Rp)n. Clearly N is equal to the localization at p of an
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element of SCP . Hence, as localization at p commutes with direct sums,
by Lemma 2.4, we may and do assume that R is a local ring which is not
a valuation ring. Denote by m the maximal ideal of R. Since R is not a
valuation ring, there are two elements a, b ∈ R such that Ra * Rb and
Rb * Ra. Set I := ma + mb. Lemma 2.6 implies that every CP-injective
R/I-module is an RD-injective R/I-module. Replace R, a and b by R/I,
a+ I and b+ I, respectively. So we can assume that R is a local ring which
is not a valuation ring and that there are two elements a, b ∈ R such that
Ra * Rb, Rb * Ra, ma = mb = 0 and Ra ∩ Rb = 0. In view of the
proof of [19, Theorem 2], it becomes clear that M := (R⊕R)/R(a,−b) is a
noncyclic indecomposable R-module. Lemma 2.4 implies that M is a direct
summand of a direct sum of cyclic modules. Now, by [18, Proposition 3], over
a commutative local ring, any indecomposable direct summand of a direct
sum of cyclic modules is cyclic. We have achieved a contradiction.

(iv)⇒(i). By Lemmas 2.4 and 2.5, it follows that every finitely presented
R-module is a direct summand of a direct sum of cyclic modules. Now, we
assume that (i) does not hold and search for a contradiction. Then there is
a prime ideal p of R such that Rp is not a valuation ring. Hence, by [19,
Theorem 2], there exists an indecomposable finitely presented Rp-moduleM
which is not cyclic. Since every finitely presented Rp-module is the local-
ization at p of a finitely presented R-module, we deduce that M is a direct
summand of a direct sum of cyclic Rp-modules. But then by [18, Proposi-
tion 3], M should be a cyclic Rp-module.

Definition 2.8.

(i) A ring R is said to be a projective principal ring (P.P.R.) if every
principal ideal of R is projective (see [4]).

(ii) A ring R is said to be semihereditary if every finitely generated ideal
of R is projective.

(iii) An R-module M is said to be absolutely pure (resp. absolutely cycli-
cally pure) if it is pure (resp. cyclically pure) as a submodule in every
extension of M (see [11]).

(iv) An R-moduleM is said to be divisible if for every r ∈ R and x ∈M ,
AnnR r ⊆ AnnR x implies that x ∈ rM (see [5]). (This is equivalent
to the usual definition when R is a domain.)

In the proof of the following lemma we use the methods of the proofs of
[12, Proposition 1 and Corollary 2].

Lemma 2.9. Let M be an R-module.

(i) M is absolutely cyclically pure if and only if Ext1R(N,M) = 0 for all
N ∈ SCP .
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(ii) M is absolutely cyclically pure if and only if for any diagram

P ′
α→ P

↓ β
M

with P ′ cyclic, α monic and P projective, there exists a homomor-
phism γ : P →M such that γα = β.

Proof. (i) Let L be an extension of M and N ∈ SCP . From the exact
sequence 0→M ↪→ L→ L/M → 0, we deduce the following exact sequence

(∗) 0→ HomR(N,M)→ HomR(N,L)→ HomR(N,L/M)
→ Ext1R(N,M)→ Ext1R(N,L).

Assume that M is an absolutely CP-module and let L be an injective exten-
sion ofM . Then by Remark 2.2(iii) and (∗), we conclude that Ext1R(N,M)=0
for all N ∈ SCP .

Now, assume that Ext1R(N,M) = 0 for all N ∈ SCP . Let L be an ex-
tension of M . Then Remark 2.2(iii) and (∗) imply that the exact sequence
0→M ↪→ L→ L/M → 0 is CP-exact.

(ii) We may assume that P is a finitely generated free R-module. Then
the result follows by using (i) and the exact sequence

HomR(P,M)→ HomR(P ′,M)→ Ext1R(P/α(P ′),M)→ 0.

Lemma 2.10. The following are equivalent :

(i) R is a P.P.R.
(ii) Every cyclic submodule of a projective R-module is projective.
(iii) Every quotient of an absolutely CP-module is also an absolutely CP-

module.

Proof. (i)⇔(ii) follows by [4, Theorem 3.2].
(ii)⇔(iii). In view of Lemma 2.9, the proof is immediate by adapting the

argument of [12, Theorem 2] and replacing the phrases “absolutely pure” and
“finitely generated submodule” with “absolutely cyclically pure” and “cyclic
submodule”, respectively.

Now, it is time to present our main result which is a new characterizations
of Prüfer domains. In the literature, there are several characterizations of
Prüfer domains. In particular, by [6, Chapter XIII, Theorem 2.8], it is known
that a domain R is Prüfer if and only if every pure injective R-module is
RD-injective. Also, it is known by [6, Chapter IX, Proposition 3.4] that a
domain R is Prüfer if and only if every divisible R-module is absolutely pure.

Corollary 2.11. Assume that R is a P.P.R. (respectively , domain).
The following are equivalent :
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(i) R is a semihereditary ring (respectively , Prüfer domain).
(ii) Every pure injective R-module is RD-injective.
(iii) Every CP-injective R-module is RD-injective.
(iv) Every pure injective R-module is CP-injective.
(v) Every divisible R-module is absolutely pure.
(vi) Every absolutely CP-module is absolutely pure.
(vii) Every pure projective R-module is RD-projective.
(viii) Every CP-projective R-module is RD-projective.
(ix) Every pure projective R-module is CP-projective.

Proof. Since a domain R is Prüfer if and only if it is semihereditary, it
is enough to prove the claim only for P.P.R. rings. Note that every domain
is a P.P.R. As mentioned in the proof of Theorem 2.7, by Lemma 2.4, the
equivalences (ii)⇔(vii), (iii)⇔(viii) and (iv)⇔(ix) are obvious.

Now, assume that R is semihereditary. Let p be a prime ideal of R. Then
Rp is also a semihereditary ring. Hence for each nonzero element a of Rp,
the Rp-module aRp is a nonzero free Rp-module. Thus, we conclude that Rp

is a domain. But it is known that a domain is semihereditary if and only if it
is Prüfer. So Rp is a valuation domain for all prime ideals p of R. Therefore
the implication (i)⇒(ii) and the equivalences (ii)⇔(iii) and (iii)⇔(iv) are
immediate by Theorem 2.7.

(ii)⇒(v). Let M be a divisible R-module and E denote the injective en-
velope of M . Then [5, Lemma 2.2] implies that the sequence 0 → M ↪→
E → E/M → 0 is RD-exact. Hence, by Lemma 2.4, it is pure and so
Ext1R(N,M) = 0 for all N ∈ SFP . Thus, by [12, Proposition 1], M is abso-
lutely pure.

(v)⇒(vi). Let M be an absolutely CP-module. Then, by Lemma 2.9(i),
Ext1R(N,M) = 0 for all N ∈ SCP . In particular, Ext1R(R/Rr,M) = 0 for
all r ∈ R, and so M is a divisible R-module by [5, Lemma 2.2]. Thus M is
absolutely pure, as required.

Finally, we prove (vi)⇒(i). Since R is a P.P.R., Lemma 2.10 implies
that every quotient of an absolutely CP-module is again an absolutely CP-
module. So, if (vi) holds, then every quotient of an absolutely pure module
is again absolutely pure. Thus (i) follows by [12, Theorem 2].

Let CRDR denote the class of all RD-injective R-modules. Also, let CCPR
and CPR denote the class of all CP-injective R-modules and of all pure
injective R-modules, respectively. It follows from Theorem 2.7 that if two
of the three classes CRDR, CCPR and CPR are equal, then all three classes are
equal. The following result shows that if any of these three classes is equal
to the class of all R-modules, then the other two are also equal to the class
of all R-modules. First, we recall from [15] the following definition (see also
[7] and [8]).
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Definition 2.12. A ring R is said to be pure-semisimple if every R-
module is a direct sum of finitely generated R-modules.

There are many characterizations of pure-semisimple rings in the litera-
ture (see e.g. [7], [8], [10] and [16]). In particular, it is known that a ring R is
pure-semisimple if and only if it is Artinian and of finite representation type,
that is, has only a finite number of pairwise nonisomorphic indecomposable
finitely generated R-modules.

Theorem 2.13. The following are equivalent :
(i) Every R-module is RD-pure injective.
(ii) Every R-module is CP-injective.
(iii) Every R-module is pure injective.
(iv) R is pure-semisimple.
Proof. The implications (i)⇒(ii) and (ii)⇒(iii) are clear.
Assume that (iii) holds. Then every pure exact sequence of R-modules

splits, and so it follows from [8] that every R-module is a direct sum of
finitely generated R-modules. Thus (iii) implies (iv).

Now, we prove the implication (iv)⇒(i). By [7, Theorem 4.3], R is an
Artinian principal ideal ring and every R-module is a direct sum of cyclic
R-modules. Hence, since every ideal of R is principal, it follows that every
R-module is a direct sum of modules of the form R/Rr, r ∈ R. From this we
can conclude that every RD-exact sequence splits. Therefore, everyR-module
is RD-injective.

3. Some examples. Theorem 2.7 shows that if R is not Prüfer, then
CRDR  CCPR  CPR. In this section, we present some explicit examples for
these strict containments.

Example 3.1. (i) Let Z be the ring of integers and p a prime integer.
Since every ideal of Z is principal, the notions of RD-injectivity and of CP-
injectivity coincide for Z-modules. Hence by [3, Theorem 3.6], D = Z/pZ is
an RD-injective Z-module, while it is not an injective Z-module.

(ii) By [1, Example 1], there are an Artinian local ring R and an R-algebra
S containing R such that the inclusion map R ↪→ S is cyclically pure, but
not pure. It is known that every Artinian R-module is pure injective (see
e.g. [13, Corollary 4.2]). Hence R is a pure injective R-module. But R is
not CP-injective, because otherwise by [3, Theorem 3.4], the inclusion map
R ↪→ S splits.

Lemma 3.2. Let R be a domain, B a torsion-free R-module and 0 →
K ↪→ B → M → 0 an exact sequence of R-modules. The following are
equivalent :
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(i) M is torsion-free.
(ii) The inclusion map K ↪→ B is RD-pure.

Proof. It is easy to see that an R-module L is torsion-free if and only if

TorR1 (R/Rr, L) = 0 for all r ∈ R.

Since B is torsion-free for any r ∈ R, from the exact sequence 0 → K ↪→
B →M → 0 we deduce the exact sequence

0→ TorR1 (R/Rr,M)→ (R/Rr)⊗R K → (R/Rr)⊗R B
→ (R/Rr)⊗RM → 0.

Therefore, the assertion follows by Remark 2.2(i).

Lemma 3.3. Let R be a domain and D an RD-injective R-module. Then
Ext1R(M,D) = 0 for all torsion-free R-modules M .

Proof. Let M be a torsion-free R-module. Consider an exact sequence
0→ K

i
↪→ F →M → 0, in which F is a free R-module. Then, by Lemma 3.2,

the inclusion map i is RD-pure. Now, from the exact sequence

0→ HomR(M,D)→ HomR(F,D)→ HomR(K,D)

→ Ext1R(M,D)→ 0,

we deduce that Ext1R(M,D) = 0. Note that since D is RD-injective, the map
HomR(i, idD) is surjective.

Example 3.4. Let (R,m) be a local Noetherian domain with dimR > 1.
Since R is not a Prüfer domain, it turns out that R possesses an ideal a which
is not projective. Thus

Ext1R(a, R/m) 6= 0,

by [2, Proposition 1.3.1]. Now, by [3, Theorem 3.6], R/m is a CP-injective
R-module, while by Lemma 3.3, R/m is not RD-injective.

The following example shows that the notions of SFPC-flatness and
SFPC-pureness are not the same.

Example 3.5. Assume that R is a Noetherian domain such that dimR
> 1. Hence R is not Prüfer, and so by Corollary 2.11, there exists an ab-
solutely CP-module M which is not injective. So, there is an ideal a such
that

Ext1R(R/a,M) 6= 0.

Let E denote the injective envelope of M . Then from the exact sequence

(∗) 0→M ↪→ E
π→ E/M → 0,
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we deduce the exact sequence

0→ HomR(R/a,M)→ HomR(R/a, E)→ HomR(R/a, E/M)

→ Ext1R(R/a,M)→ 0.

Hence the map HomR(idR/a, π) is not surjective. Thus (∗) is an SFPC-flat
sequence which is not SFPC-pure.
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