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ORDERINGS OF THE RATIONALS AND DYNAMICAL SYSTEMS

BY

CLAUDIO BONANNO (Pisa) and STEFANO ISOLA (Camerino)

Abstract. This paper is devoted to a systematic study of a class of binary trees
encoding the structure of rational numbers both from arithmetic and dynamical point of
view. The paper is divided into three parts. The first one is mainly expository and consists
in a critical review of rather standard topics such as Stern–Brocot and Farey trees and
their connections with continued fraction expansion and the question mark function. In
the second part we introduce two classes of (invertible and non-invertible) one-dimensional
maps which can be used to generate the binary trees in different ways and study their
ergodic properties. This also leads us to study, in the third part, some random processes
(Markov chains and martingales) which arise in a natural way from the action of the
transfer operators associated to the non-invertible maps.

1. PART ONE: ARITHMETIC

Notational warning : We shall use the following notations:

I := [0, 1], J := [0,∞) ∪ {∞},
Q1 := Q ∩ [0, 1],
Qp := {k/ps : s ∈ N, 0 ≤ k ≤ ps}, p ≥ 2.

1.1. A class of binary trees. We start with the Stern–Brocot (SB)
tree T , which is a way to order (and thus to count) the elements of Q+, the
set of positive rational numbers, so that every number appears (and thus
is counted) exactly once (see [St], [Br] and, for a modern account, [GKP]).
The basic operation needed to construct T is the Farey sum: given p

q and
p′

q′ in Q+ set
p

q
⊕ p′

q′
=
p+ p′

q + q′

One notes that the child p
q ⊕

p′

q′ turns out to be in lowest terms whenever the
parents p

q and p′

q′ are. Moreover, the child always lies somewhere in between

its parents, e.g., assuming p
q <

p′

q′ , we have p
q <

p+p′

q+q′ <
p′

q′ .
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Starting from the ancestors 0 and ∞ (written “in lowest terms”) one
then writes genealogically one generation after the other using the above
operation:
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and so on. The easily verified property which makes the above interesting
and useful is the following fact: if p

q and p′

q′ are consecutive fractions at any
stage of the construction then the unimodular relation qp′ − pq′ = 1 is in
force.

Finally, the subtree F of T having 1
2 as root node and vertex set Q1

is called the Farey tree. It can be obtained exactly in the same way as T
taking as ancestors 0

1 and 1
1 instead of 0

1 and 1
0 .

Lemma 1.1. Let φ : J → I be the invertible map defined by φ(∞) = 1
and

φ(x) =
x

x+ 1
, x ∈ R+.

Then φ(T ) = F .

Proof. It suffices to notice that φ
(

0
1

)
= 0

1 , φ
(

1
0

)
= 1

1 , φ
(

1
1

)
= 1

2 and for
x, x′ ∈ Q+ we have φ(x)⊕ φ(x′) = φ(x⊕ x′).

Another structure we shall deal with is the dyadic tree D, whose first
two levels are as in F and which is then constructed from the root node 1

2

by writing under each vertex p
q the pair 2p−1

2q and 2p+1
2q . The vertex set of D

is Q2. We shall see later how it is related to T and F .

1.2. Continued fractions and the {L,R} coding. Every x ∈ Q+

appears exactly once in the above construction and corresponds to a unique
finite path on T starting at the root node 1

1 and whose number of vertices
equals the depth of x, i.e. the level of T it belongs to. For x ∈ Q1 one may
just consider the path on the subtree F which starts at the root node 1

2 and
whose number of vertices is the rank of x. For x ∈ Q+ we have

depth(x) = [x] + rank({x}) + 1.



RATIONALS AND DYNAMICAL SYSTEMS 167

In order to properly code these paths we start by recalling that every rational
number x ∈ Q+ has a unique finite continued fraction expansion [Kh]

x = a0 +
1

a1 +
1

. . .
+

1
an

≡ [a0; a1, . . . , an]

with a0 ≥ 0, ai ≥ 1 for 1 ≤ i < n and an > 1.

Lemma 1.2. Let x ∈ Q+. Then

x = [a0; a1, . . . , an] ⇒ depth(x) =
n∑
i=0

ai.

Proof. Setting depth
(

0
1

)
= depth

(
1
0

)
= 0 we have depth

(
1
1

)
= 1. Let

now x = [a0; a1, . . . , an] be such that depth(x) = d > 1. Then, in order
to reach the leaf x from the root 1

1 one has to first move a0 steps to the
right, thus reaching the node a0 + 1

1 . Then, moving a1 steps to the left one
reaches a0 + 1

a1+ 1
1

. After a2 further steps to the right one reaches the point

a0 + 1
a1+ 1

a2+1
1

and so on. In this way, one sees that the path to reach x makes

exactly n turns and the length of the blocks between the (i − 1)st and the
ith turn is given by the partial quotient ai for 1 ≤ i < n, whereas the last
block has length an − 1. More precisely, the blocks moving to the left are
related to partial quotients with odd index, and those moving to the right
to those with even index. It then follows at once that d =

∑n
i=0 ai.

The argument sketched above actually allows us to say more. To this end,
we shall first construct a matrix representation of the positive rationals. We
start by noting that a given x ∈ Q+ can be uniquely decomposed as

x =
p

q
⊕ p′

q′
with qp′ − pq′ = 1.

The neighbours p
q and p′

q′ are thus the parents of x as an element of T . We
then identify

x ↔
(
p′ p

q′ q

)
∈ SL(2,Z).

Note that the left column bears on the right parent and vice versa. In this
way, the root node yields the identity matrix:

1
1

=
0
1
⊕ 1

0
↔

(
1 0
0 1

)
.
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Moreover, given M ∈ SL(2,Z) which represents the fraction x ∈ Q+, the
matrix UM U represents the symmetric fraction 1/x, with

U = U−1 =
(

0 1
1 0

)
.

In particular,

1
2
↔

(
1 0
1 1

)
=: L and

2
1
↔

(
1 1
0 1

)
=: R.

More generally, for k ∈ N,

Lk =
(

1 0
k 1

)
↔ 1

k + 1
and Rk =

(
1 k

0 1

)
↔ k + 1.

Now, the point x considered above has in turn a unique pair of (left and
right) children, given by

m

s
⊕ m+ n

s+ t
and

m+ n

s+ t
⊕ n

t

respectively. Moreover,(
n m

t s

)(
1 0
1 1

)
=
(
m+ n m

s+ t s

)
↔ m

s
⊕ m+ n

s+ t

and (
n m

t s

)(
1 1
0 1

)
=
(
n m+ n

t s+ t

)
↔ m+ n

s+ t
⊕ n

t
.

In other words, the matrices L and R, when acting from the right, move to
the left and right child in T , respectively. Together with the argument of
the proof given above this yields the following result.

Proposition 1.3. To each entry x ∈ T there corresponds a unique
element X ∈ SL(2,Z) for which we have the following two possibilities:

• x = [a0; a1, . . . , an], n even ⇒ X = Ra0La1 · · ·Lan−1Ran−1.
• x = [a0; a1, . . . , an], n odd ⇒ X = Ra0La1Ra2 · · ·Lan−1.

As an easy consequence we have

Corollary 1.4. Let x = [a0; a1, . . . , an] with an > 1 and n even. Then
its left and right children in T are given by x′ = [a0; a1, . . . , an − 1, 2] and
x′′ = [a0; a1, . . . , an + 1], respectively. If instead n is odd , the expansions for
x′ and x′′ are interchanged.

Proof. For n even and larger than one we have x = [a0; a1, . . . , an] ⇔
X = Ra0La1Ra2 · · ·Ran−1. Therefore x′ ↔ X ′ = Ra0La1Ra2 · · ·Ran−1L and
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x′′ ↔ X ′′ = Ra0La1Ra2 · · ·Ran , which yields the claim. A similar reasoning
applies for n = 0 and for n odd.

1.3. The infinite coding. One can extend the above construction by
associating to each x ∈ R+ a unique infinite path in T , or else a unique semi-
infinite word in π(x) ∈ {L,R}N, in the natural way. First, to x ∈ R+ \ Q+

with infinite continued fraction expansion x = [a0; a1, a2, a3, . . . ] there will
correspond the (unique) sequence π(x) = Ra0La1Ra2La3 · · · , where now R
and L are just elements of a binary alphabet. For rational x we can proceed
as follows. First we set π

(
0
1

)
= L∞ and π

(
1
0

)
= R∞. Then note that each

x ∈ Q+ has two infinite paths which agree down to node x: they are those
starting with the finite sequence coding the path to reach x from the root
node according to Proposition 1.3 and terminating with eitherRL∞ or LR∞.
We shall agree that π(x) terminates with RL∞ or LR∞ according to whether
the number of its partial quotients of x is even or odd. Summarizing, we have
the following coding:

• x = [a0; a1, . . . , an], n even ⇒ π(x) = Ra0La1 · · ·RanL∞.
• x = [a0; a1, . . . , an], n odd ⇒ π(x) = Ra0La1 · · ·LanR∞.
• x = [a0; a1, a2, a3, . . . ] ⇒ π(x) = Ra0La1Ra2La3 · · · .
One easily checks that if � denotes the lexicographic order on {L,R}N

then
x > y ⇒ π(x) � π(y).

Finally, from the above it follows that for an irrational x the infinite path
on T converging to x coincides with the slow continued fraction algorithm
(see, e.g., [AO]).

1.4. The (extended) question mark function. Given a number
x ∈ R+ with continued fraction expansion x = [a0; a1, a2, . . . ], one may
ask what is the number obtained by interpreting the sequence π(x) defined
in Section 1.3 as the binary expansion of a real number in (0, 1). The number
so obtained, denoted %(x), reads

(1.1) %(x) = 0 . 11 . . . 1︸ ︷︷ ︸
a0

00 . . . 0︸ ︷︷ ︸
a1

11 . . . 1︸ ︷︷ ︸
a2

. . .

or, what is the same,

%(x) = 1−
∑
k≥0

(−1)k 2−(a0+···+ak).

For instance, %(1/n) = 1/2n and %(n) = 1 − 1/2n for all n ≥ 1. Setting
%(0) = 0 and %(∞) = 1 we see that % : R+ → I satisfies

(1.2) %(x) = ? ◦ φ (x)
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where φ : J → I is the map defined in Lemma 1.1 and ? : I → I is the
Minkowski question mark function [M], which for x = [0; a1, a2, . . . ] is given
by

(1.3) ?(x) = 0 . 00 . . . 0︸ ︷︷ ︸
a1−1

11 . . . 1︸ ︷︷ ︸
a2

00 . . . 0︸ ︷︷ ︸
a3

. . . .

In other words, for x ∈ (0, 1) the number ?(x) is obtained by interpreting
the symbolic sequence corresponding to the path which starts from the root
node 1

2 and approaches x along the Farey tree F as a binary expansion of a
real number in (0, 1).

We now need a simple lemma.

Lemma 1.5.

x = [0; a1, a2, . . . ] ⇔ 1− x =
{

[0; 1 + a2, a3, . . . ] if a1 = 1,
[0; 1, a1 − 1, a2, . . . ] if a1 > 1.

Proof. Apply the identities
1

a+ 1
b

+
1

1 + 1
a−1+ 1

b

= 1 and
1

1 + 1
b+c

+
1

1 + b+ c
= 1.

Proposition 1.6. The functions ? and % satisfy the functional equations

?(x) + ?(1− x) = 1, x ∈ I,
and

%(x) + %(1/x) = 1, x ∈ J.

Proof. The equation for ? follows at once from Lemma 1.5 and (1.3).
That for % then follows from (1.2).

Additional properties of % are inherited via (1.2) from the properties of ?
(see [Sa], [Ki], [VPB], [V]). We only recall that, although singular, ?(x) is
a Hölder continuous function; moreover, x ∈ Q1 iff ?(x) ∈ Q2, and x is a
quadratic irrational iff ?(x) is a (non-dyadic) rational.

For any pair p
q and p′

q′ of consecutive fractions in T the function % (as ?
on F) equates their child to the arithmetic average. For instance we have

%

(
p+ p′

q + q′

)
=

1
2

[
%

(
p

q

)
+ %

(
p′

q′

)]
.

Therefore the functions % and ? map the SB tree T and the Farey tree
F to the dyadic tree D mentioned above. Note that the set Dk of dyadic
fractions belonging to the first k + 1 levels of D is the uniformly spaced
sequence l/2k, l = 0, 1, . . . , 2k. Reducing to the lowest terms we get

D0 =
(

0
1
,
1
1

)
, D1 =

(
0
1
,
1
2
,
1
1

)
, D2 =

(
0
1
,
1
4
,
1
2
,
3
4
,
1
1

)
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Fig. 1. The function ?

and so on. Hence, an immediate consequence of the fact that %(T )=?(F)=D
is that %(x) and ?(x) are the asymptotic distribution functions of the se-
quences of SB fractions and Farey fractions, respectively.

Theorem 1.7. Set Tk :=
{p
q ∈ T : depth(x) ≤ k

}
. Since∣∣∣∣x− #

{p
q ∈ Dk : pq ≤ x

}
2k

∣∣∣∣ ≤ 2−k

we have ∣∣∣∣%(x)−
#
{p
q ∈ Tk : pq ≤ x

}
2k

∣∣∣∣ ≤ 2−k.

The same holds for ? with Tk replaced by Fk := {pq ∈ F : rank(x) ≤ k}.

In particular, the Fourier–Stieltjes coefficients of % and ? are as in

Corollary 1.8. Let

cn :=
∞�

0

e2πinx d%(x).

Then
cn = lim

k→∞

1
2k
∑
p
q
∈Tk

e
2πin p

q .

The same holds for the coefficients of ? with Tk replaced by Fk.

1.5. Permuted trees. Let X ∈ SL(2,Z) represent a number x ∈ Q+ as
above and write it as X =

∏k
i=1Mi where Mi ∈ {L,R} and k = depth(x).

Let x̂ denote the positive rational number represented by the reversed matrix
product X̂ =

∏1
i=kMi. Clearly depth(x) = depth(x̂), but x = x̂ if and only

if the sequence M1 . . .Mk is a palindrome. The permutation map x 7→ x̂
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yields the permuted version T̂ of the SB tree whose first five levels are
shown below (the ancestors 0

0 and 1
0 are omitted).
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Lemma 1.9. Under the ancestors 0
1 and 1

0 , the permuted SB tree T̂ can
be constructed starting from the root node 1

1 and writing under each vertex
p
q the set of descendants

{ p
p+q ,

p+q
q

}
.

Proof. Note that(
1 0
1 1

)(
n m

t s

)
=
(

n m

n+ s m+ t

)
↔ m+ n

m+ n+ s+ t

and (
1 1
0 1

)(
n m

t s

)
=
(
n+ s m+ t

s t

)
↔ m+ n+ s+ t

s+ t
.

In other words, the matrices L and R, when acting from the left, give the
left and right descendants, respectively.

Also note that if p
q = [a0; a1, . . . , an] then p

p+q = [0; 1, a0, a1, . . . , an] and
p+q
q = [a0 + 1; a1, . . . , an]. Therefore

depth
(

q

p+ q

)
= depth

(
p+ q

q

)
= depth

(
p

q

)
+ 1.

This yields the claim.

Remark 1.10. The tree T̂ has been considered in [CW] where the au-
thors argued that if we read it row by row, and each row from left to right,
then for i ≥ 2 we can write the ith element in the form xi = b(i−2)/b(i−1),
where b(n) is the number of hyperbinary representations of n, that is, the
number of ways of writing the integer n as a sum of powers of two, each
power being used at most twice. For example, 8 = 23 = 22+22 = 22+2+2 =
22 + 2 + 1 + 1 and therefore b(8) = 4. This property plainly entails that if
we read, from left to right, any sequence of fractions with fixed depth, then
the denominator of each fraction is the numerator of its successor.
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We finally define the corresponding permutation of both the Farey tree
F and the dyadic tree D, denoted F̂ and D̂ respectively. Clearly, we have
F̂ = φ(T̂ ) (see Lemma 1.1). Reasoning as above one easily obtains the
following simple genealogical rules:

Lemma 1.11. Under the ancestors 0
1 and 1

1 , the permuted trees F̂ and
D̂ can be constructed starting from the root node 1

2 and writing under each
vertex p

q the sets of descendants
{ p
p+q ,

q
2q−p

}
and

{ p
2q ,

p+q
2q

}
, respectively.

The first five levels of F̂ are

1
2
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11
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and the corresponding levels of D̂ are
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13
32

29
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3
32

19
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11
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27
32

7
32

23
32

15
32

31
32

1.6. Random walks on the permuted trees. We now construct a
sequence of random variables Z1, Z2, . . . on Q+ defined recursively in the
following way: set Z1 = 1

1 and if Zk = p
q then either Zk+1 = p

p+q or Zk+1 =
p+q
q , both with probability 1

2 . The sequence (Zk)k≥1 can be regarded as a

(symmetric) random walk on T̂ (1).

Theorem 1.12. The random walk (Zk)k≥1 enters any non-empty open
interval (a, b) ⊂ R+ almost surely.

(1) After this paper was submitted we became aware of the work [AS], where a result
akin to Theorem 1.12 is proved. See also [CLM] for a different approach.
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Proof. Pick up an irrational number x = [a0; a1, . . . ] ∈ (a, b). Then for
n large enough we can find a closed subinterval A ⊂ (a, b) such that the c.f.
expansion of each element of A starts as [a0; a1, . . . , an, . . . ]. To fix ideas and
with no loss, let n be odd. Then, according to the above and Proposition 1.3
the path on T̂ starting from the root 1

1 and entering A (for the first time)
will eventually end with the word W = Lan−1 · · ·Ra2La1Ra0 . Hence it has
the form UW with prefix U ∈ {L,R}∗ such that UW does not contain
subwords equal to W but W itself.

We now proceed by induction on the length ` of W , writing W` for words
of length `. If ` = 1 then there is exactly one prefix U of length k for each
k ≥ 1 (e.g. if W1 = L then U = Rk is the only possible prefix) occurring with
probability 2−k. Summing over the prefixes we get

∑
k≥1 2−k = 1. Therefore

the claim is true for ` = 1.
Now suppose it is true for ` = m. When passing to ` = m + 1, we

have either Wm+1 = WmL or Wm+1 = WmR, hence we have two families
of paths UWmL and UWmR, one of which being UWm+1 and thus, by the
induction hypothesis, having probability 1

2 . We are now left with all paths
starting with the “bad” ones and eventually ending with Wm+1. But then
we can use the self-similarity of the tree and iterate the above construction.
Suppose for instance that the “bad” set was UWmR, that is, Wm+1 = WmL.
Then at some point we will end up with the alternative UWmRU

′WmL and
UWmRU

′WmR for some U ′ ∈ {L,R}∗, and the “good” set UWmRU
′WmL

has probability 1
2 ·

1
2 . Iteration of this argument yields the probability 1

22 +
1
23 + · · · = 1

2 , which has to be added to the probability 1
2 of the initial “good”

set UWmL.

Remark 1.13. The above result can be easily extended to both F̂ and D̂.
However, it seems to be specific to the particular permutation which defines
these trees, in particular it is plainly false for the original Stern–Brocot tree
T (as well as for F and D). We shall see later a further improvement (see
Corollary 3.7).

2. PART TWO: DYNAMICS

We shall now be dealing with a class of transformations which generate
the permuted trees T̂ , F̂ and D̂, either one generation after the other or in
genealogical way, i.e. producing elements with increasing depth.

2.1. Rank one ergodic transformations with dense orbits of ra-
tionals. It was noticed in [N] that the sequence xi of elements of T̂ satisfies
the iteration

(2.1) xi+1 =
1

1− {xi}+ [xi]
, i ≥ 0.
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We are thus led to study the map (2) R : J → J given by R(∞) := 0 and

R(x) :=
1

1− {x}+ [x]
, x ∈ R+.

Proposition 2.1.

(i) R is a Borel bijection of R+ onto itself.
(ii) For any x ∈ R+, R(x) ∈ Q+ if and only if x ∈ Q+.
(iii) R enumerates the set Q+ ∪ {0} ∪ {∞} in the following sense: let

xi be the sequence obtained by reading T̂ row by row and each row
from left to right (except the zero-th one). Then xi = Ri(1

0).

Proof. One easily checks that R is one-to-one and onto, with inverse

R−1(x) = 2n+ 1− 1
x
,

1
n+ 1

≤ x < 1
n
, n ≥ 0.

This proves (i). Statement (ii) is immediate. Moreover, if x ∈ N then R(x) =
1/(x+ 1) so that depth(R(x)) = depth(x) + 1. If instead x = [a0; a1, . . . , an]
with n ≥ 1 then R(x) = 1/(a0 + 1 − {x}) so that depth(R(x)) = depth(x)
since depth(1/x) = depth(x) and rank({x}) = rank(1 − {x}). This yields
the first part of statement (iii).

To see the second part we start by observing that if we write x in the
form x = (kq+r)/q with k ≥ 0 and 0 ≤ r < q we have R(x) = q/(kq+q−r).
Now if k = 0 then x = r/q and R(x) = q/(q − r), namely x and R(x) are
left and right descendants of the fraction r/(q − r). If instead k > 0 then
x is the right descendant of x′ = ((k − 1)q + r)/q whereas R(x) is the left
descendant of x′′ = q/(kq − r), and x′′ = R(x′).

Remark 2.2. Note that, although the sequence (xi)i≥0 defined in (2.1)
is dense in R+, it “diffuses” only logarithmically. Indeed, we have xi = n for
i = 2n and therefore sup0<i≤n xi = O(log n). In fact, from what is proved
below it follows that all orbits {Ri(x) : i ≥ 0}, x ∈ R+, are dense and have
this property. An automorphism of the unit circle with similar properties
has been constructed in [Bo].

We now restrict to the unit interval and consider two automorphisms on
it. The first one is the map S : I → I defined by (see Lemma 1.1)

(2.2) S(x) := φ ◦R ◦ φ−1(x)

or else by S(1) = 0 and

S(x) =
1

2−
{

x

1− x

}
+
[

x

1− x

] , x ∈ [0, 1).

(2) The study of this map was suggested to one of us (C.B.) by Don Zagier.
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Its inverse is

S−1(x) =
2nx− 1

(2n+ 1)x− 1
,

1
n+ 1

≤ x < 1
n
, n ≥ 1.

The second is the classical von Neumann–Kakutani transformation T : I→ I
given by T (1) := 0 and

T (x) := x+
3
2n
− 1, 1− 1

2n−1
≤ x < 1− 1

2n
, n ≥ 1.

It was defined in [VN] and is also called van der Corput’s transformation or
else dyadic rotation.

Fig. 2. The maps S (left) and T (right)

Theorem 2.3. We have the commutative diagram

J
R−−−−→ J

φ

y yφ
I

S−−−−→ I

?

y y?

I
T−−−−→ I

Proof. The upper square follows immediately from (2.2). To check the
lower square, let x ∈ (0, 1) be given by x = [0; a1, a2, . . . ]. We have x

1−x =
[0; a1 − 1, a2, . . . ] so that[

x

1− x

]
=

{
a2 if a1 = 1,

0 if a1 > 1,

{
x

1− x

}
=

{
[0; a3, a4, . . . ] if a1 = 1,

[0; a1 − 1, a2, . . . ] if a1 > 1,
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and therefore

S(x) =

{
(2 + a2 − [0; a3, a4, . . . ])−1 if a1 = 1,

(2− [0; a1 − 1, a2, . . . ])−1 if a1 > 1.

By Lemma 1.5 this becomes

(2.3) S(x) =
{ [0; a2 + 1, 1, a3 − 1, a4, . . . ] if a1 = 1,

[0; 1, 1, a1 − 2, a2, . . . ] if a1 > 1,

where for ak ≥ ` ≥ 1 for some k ≥ 1 we set

[a0; a1, a2, . . . , ak−1, ak − `, ak+1, . . . ] = [a0; a1, a2, . . . , ak−1 + ak+1, . . . ]

if ak = `. On the other hand, the map T (x) is also named the dyadic rotation
because of the following fact (see, e.g., [PF, p. 120]): if we expand x ∈ [0, 1]
in base two, i.e. we write x =

∑∞
k=0 ωk2

−k−1 = 0.ω1ω2 . . . with ωk ∈ {0, 1},
it acts as T (0.111 . . . ) = 0.000 . . . , and for n ≥ 1,

T (0. 11 . . . 1︸ ︷︷ ︸
n−1

0ωn+1ωn+2 . . . ) = 0. 00 . . . 0︸ ︷︷ ︸
n−1

1ωn+1ωn+2 . . .

Therefore if x = [0; a1, a2, . . . ] then using (1.3) we find

T (?(x)) =


0. 00 . . . 0︸ ︷︷ ︸

a2

1 00 . . . 0︸ ︷︷ ︸
a3−1

11 . . . 1︸ ︷︷ ︸
a4

. . . if a1 = 1,

0. 1 00 . . . 0︸ ︷︷ ︸
a1−2

11 . . . 1︸ ︷︷ ︸
a2

. . . if a1 > 1,

which is identical to what we obtain by applying ? to (2.3).

We now derive some consequences of the above theorem.

Corollary 2.4. The maps S and T enumerate the sets Q1 and Q2,
respectively. More specifically , let for instance yi be the sequence obtained
by reading F̂ row by row and each row from left to right (except the zero-th
one). Then yi = Si

(
1
1

)
. A similar statement holds for D̂ and T .

Proof. Follows at once from Proposition 2.1 and Theorem 2.3.

Corollary 2.5. The systems (J,R) and (I, S) are uniquely ergodic and
hence (J,R, d%) and (I, S, d?) are ergodic.

Proof. The first statement follows from the above as topological conju-
gacy preserves unique ergodicity and the system (I, T ) has this property.
Moreover, the Lebesgue measure dx is T -invariant so that by the above
and (1.2) the maps R and S preserve the measures d% and d? respec-
tively.
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Corollary 2.6. The systems (J,R) and (I, S) are of rank one. More-
over , they have the same spectrum which is discrete with eigenvalues e2πiα

for any dyadic rational α.

Proof. The system (I, T ) has this property. Let us briefly recall how this
is obtained. One starts by setting A(1, n) = [0, 2−n) for n ≥ 0 and noticing
that T maps in an affine way A(i, n) = T i−1A(1, n) onto A(i + 1, n) for
i = 1, . . . , 2n. Clearly, these intervals are not ordered lexicographically but
in the way induced by T . For example, for n = 3 we have 000 7→ 100 7→
010 7→ 110 7→ 001 7→ 101 7→ 011 7→ 111. One may then write the intervals
so ordered one above the other, thus making a stack which partitions the
whole space. The action of T is then that of climbing up one level in the
n-stack but is not defined on the top level. At step n+ 1, i.e. looking at the
action of the iterates of T on A(1, n + 1), the stack is cut into two equal
halves and the right half is stacked on top the left half. This defines the
action of T on a finer partition of the space. This procedure eventually leads
to determining T on the whole space. Finally, to get the same property for
(I, S) it will suffice to follow the above procedure with the family of inter-
vals B(i, n) = ?−1(A(i, n)) (stacked in the same order). Clearly, although
all the intervals A(i, n), i = 1, . . . , 2n, have the same length 2−n, the cor-
responding B(i, n) do not. A similar construction can be done for (J,G)
with the intervals C(i, n) = φ−1(B(i, n)). The last assertion follows again
from the same property for (I, T ) along with topological conjugacy (see, e.g.,
[PF, p. 23]).

2.2. Non-invertible Markov maps. We now introduce three non-in-
vertible maps which generate the trees T̂ , F̂ and D̂ genealogically, i.e. via
descendants. With the notations of Theorem 2.3, the first one is the map
G : J → J given by

G(x) =

{ x

1− x
if 0 ≤ x < 1,

x− 1 if x ≥ 1.
The second is the modified Farey map F : I → I given by

F (x) =


x

1− x
if 0 ≤ x < 1/2,

2− 1/x if 1/2 ≤ x ≤ 1,

and the third is the doubling map D : I → I given by

D(x) = 2x (mod 1).

They are expansive orientation preserving piecewise analytic endomor-
phisms such that the sets G−1(x), F−1(x) and D−1(x) consist of exactly
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two points for each x. More specifically,

G−1(x) =
{

x

1 + x
, x+ 1

}
, x ∈ J,

F−1(x) =
{

x

1 + x
,

1
2− x

}
, D−1(x) =

{
x

2
,
x

2
+

1
2

}
, x ∈ I.

Both F andD fix the boundary points 0 and 1, but for F these are indifferent
fixed points, i.e. F ′(0) = F ′(1) = 1. More specifically, 0 is a weakly repelling
fixed point whereas 1 is weakly attracting . On the other hand, we can say
that G has two indifferent fixed points at 0 and ∞.

Theorem 2.7. The permuted tree T̂ can be constructed genealogically
from its root 1

1 by writing under each leaf x the set of descendants G−1(x).
The same can be done for F̂ and D̂ starting from their root 1

2 with the sets
of descendants F−1(x) and D−1(x), respectively. Furthermore, we have the
commutative diagram

J
G−−−−→ J

φ

y yφ
I

F−−−−→ I

?

y y?

I
D−−−−→ I

Proof. The first assertion follows from Lemma 1.9, equation (3.4) and
Lemma 1.11. The proof of the conjugation between G and F is immediate.
That for F and D can be obtained by reasoning along the same lines as
in the proof of Theorem 2.3, starting from the observation that D acts as
the shift on binary expansions whereas the action of F is the Farey shift
[0; a1, a2, . . . ] 7→ [0; a1−1, a2, . . . ] on the interval [0, 1/2] and [0; 1, a2, . . . ] 7→
1− [0; a2, . . . ] on (1/2, 1]. Then use Lemma 1.5. We leave the details to the
interested reader.

Remark 2.8. Conversely, using the maps G, F and D one can retrace
the path from a leaf x in any of the trees T , F or D back to the root.
For instance, for x ∈ T let X =

∏k
i=1Mi be the element which uniquely

represents x in SL(2,Z) with k = depth(x), according to Proposition 1.3.
One then sees that the following rule is in force: if G(i−1)(x) < 1 then
Mi = L, and ifG(i−1)(x) > 1 thenMi = R for i = 1, . . . , k with k = depth(x)
such that Gk(x) = 1.

Remark 2.9. The map D preserves the Lebesgue measure dx on I,
whereas the map F preserves the a.c. infinite measure µ(dx) = dx/x(1−x) =(
d
dx log φ−1(x)

)
dx on I, as one easily checks. This entails that G preserves
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the (infinite) measure ν(dx) = µ◦φ(dx) = dx/x on J . Each of these invariant
measures is ergodic and exact [Th1], [Z]. On the other hand, from the above
theorem it follows that also the measure d? is invariant under F (just as d%
for G) and the entropy of (I, F, d?) is log 2. Therefore d? is the measure of
maximal entropy for (I, F ) (as is d% for (J,G)).

3. TRANSFER OPERATORS, MARKOV CHAINS AND MARTINGALES

To the map G we associate a generalised transfer operator Lq acting on
f : J → C as

(Lqf)(x) =
∑

y∈G−1(x)

f(y)
|G′(y)|q

or else

(3.1) (Lqf)(x) =
1

(1 + x)2q
f

(
x

1 + x

)
+ f(x+ 1)

where q is a real or complex parameter. We point out that a continuous
fixed function for Lq satisfies the functional equation

f(x) = f(x+ 1) +
1

(1 + x)2q
f

(
x

1 + x

)
which is called the Lewis–Zagier three-term functional equation and is re-
lated to the spectral theory of the hyperbolic laplacian on the modular
surface (see [LeZa] and references therein).

In the same way, the operators associated to D and F act on f : I → C
as

(3.2) f(x) 7→ 1
2q
f

(
x

2

)
+

1
2q
f

(
x

2
+

1
2

)
and

(3.3) f(x) 7→ 1
(1 + x)2q

f

(
x

1 + x

)
+

1
(2− x)2q

f

(
1

2− x

)
respectively. For the spectral theory of an operator closely related to (3.3)
see [I] and [BGI].

Let Φs, s ∈ {0, 1}, be the inverse branches of G, i.e.

(3.4) Φ0(x) =
x

1 + x
, Φ1(x) = x+ 1.

They satisfy

(3.5) Φs(1/x) =
1

Φ1−s(x)
, s ∈ {0, 1}.

Let moreover ps(·), s ∈ {0, 1}, be a pair of positive Borel functions
such that p0(x) + p1(x) = 1 for all x ∈ J . We now want to study the
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Markov chain with state space J where at each step, starting from a state
x ∈ J , two transitions are possible towards the states Φ0(x) and Φ1(x),
with probabilities p0(x) and p1(x) respectively. Note that for x = 1

1 and
pi(x) = 1

2 , i = 0, 1, this Markov chain reduces to the random walk on T̂
discussed in Theorem 1.12.

We now briefly adapt to our context some basic facts about canonical
Markov chains associated to Markov transfer operators (see [CoRa1], also
[CoRa2] for an application to the dyadic transfer operator (3.2) and [Ra]).
Let P : L∞(J)→ L∞(J) be the Markov operator acting as

(Pf)(x) = p0(x)f(Φ0(x)) + p1(x)f(Φ1(x)).

A measurable function h : J → C satisfying Ph = h is called P -harmonic.
We shall make the further assumption that the transition probabilities sat-
isfy

(3.6) ps(1/x) = p1−s(x), s ∈ {0, 1}, ∀x ∈ J.

The symmetries (3.5) and (3.6) yield at once the following

Lemma 3.1. The averaging operator A : L∞(J)→ L∞(J) acting as

(Af)(x) =
f(x) + f(1/x)

2
commutes with P . In particular , if h : J → C is a bounded P -harmonic
function then Ah has the same property.

A positive measure ν is called P -invariant if νP = ν, i.e.
	
J Pf dν =	

J f dν for all measurable f : J → C. In turn, one readily realizes that this
condition is equivalent to

d(ν ◦ Φs)
dν

= ps(·), s ∈ {0, 1}.

Now, for Ω := {0, 1}N, an n-dimensional cylinder of Ω is a subset of
the type C(i1, . . . , in) = {ω ∈ Ω : ω1 = i1, . . . , ωn = in}. The cylinder sets
generate the topology of Ω and its Borel σ-algebra F .

Given x ∈ J let U(x) be the closure of the set of all possible paths
starting at x, i.e.

U(x) =
⋃
ω∈Ω
{Φωn ◦ · · · ◦ Φω1(x) : n ≥ 1}.

This is clearly a compact invariant set, in the sense that if y ∈ U(x) then
Φi(y) ∈ U(x), i ∈ {0, 1}. More generally, a compact subset V of J is called
invariant if for all x ∈ V and all i ∈ {0, 1} such that pi(x) > 0 we have
Φi(x) ∈ V .
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A first basic fact (see [CoRa1, Sec. 3.4]; or else [Jo, Chap. 2.4]) is that
for each x ∈ J there is a unique probability measure Px on Ω such that

Px(C(i1, . . . , in)) =
n∏
k=1

pik(Φiki1 (x))

where we have used the notation

Φiki1 := Φik ◦ · · · ◦ Φi1 .
The symmetries (3.5) and (3.6) entail the following

Lemma 3.2. For each x ∈ J we have

Px(C(i1, . . . , in)) = P1/x(C(1− i1, . . . , 1− in)).

For ω ∈ Ω let Xk(ω) = ωk be the kth coordinate function on Ω and Zn
the subalgebra of C(Ω) generated by the first n coordinates {Xk : 1≤ k≤ n}.
The Zn form a filtration in that Zn ⊂ Zn+1. Note that if X ∈ Zn then

Ex[X] =
∑

(ω1,...,ωn)∈{0,1}n

n∏
k=1

pωk
(Φωk

ω1
(x))X(ω1, . . . , ωn).

In particular, if there is h : J → C such that

X(ω1, . . . , ωn) = h(Φωn
ω1

(x))

then

(3.7) Ex[X] = (Pnh)(x)

since

(Pnf)(x) =
∑

(ω1,...,ωn)∈{0,1}n

[ n∏
j=1

pωj (Φωj−1
ω1 (x))

]
f(Φωn

ω1
(x)).

Now, having fixed x ∈ J , define

(3.8) W0(x, ω) := x and Wn(x, ω) := Φ
Xn(ω)
X1(ω) (x), n ≥ 1.

The process {Wn(x, · ) : n ≥ 0} defined on (Ω,F ,Px) is a Markov chain on
J with initial state x and for any measurable function f : J → C we have

lim
n→∞

(Pnf)(x) = lim
n→∞

Ex[f(Wn(x, · ))].

Moreover, if h : J → C is a measurable bounded P -harmonic function
then

Ex[h(Wn+1(x, · )) | Zn] =
∑

ωn+1∈{0,1}

pωn+1(x)h(Φωn+1
ω1

(x))

= (Ph)(Φωn
ω1

(x)) = h(Φωn
ω1

(x)) = h(Wn(x, · )).
In other words, the sequence of random variables {h(Wn(x, · )) : n ≥ 0} on
(Ω,F ,Px) is a bounded martingale (relative to the filtration {Zn : n ≥ 1})
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and therefore it converges pointwise Px-a.e. The limit random variable
H(x, · ) = limn→∞ h(Wn(x, · )) satisfies

(3.9) H(x, ω) = H(Φω1(x), σω)

where σ : Ω → Ω is the left shift acting as (σω)i = ωi+1. A bounded
measurable function H : J ×Ω → C satisfying (3.9) is said to be a cocycle.
Conversely, by (3.7), h may be recovered from the cocycle H as

(3.10) h(x) = Ex[H(x, · )].

Remark 3.3. Note that P : L∞(J) → L∞(J) has norm one. Therefore
if h ∈ L∞(J) is an eigenfuction of P corresponding to a real and posi-
tive eigenvalue then the sequence {h(Wn(x, · )) : n ≥ 0} on (Ω,F ,Px) is a
supermartingale, which again converges Px-a.e. to a limit cocycle H.

Remark 3.4. As pointed out in [Jo, p. 50], (3.10) can be thought of as
an analogue of the classical result about the existence of boundary functions
for bounded harmonic functions via Poisson integral.

We now discuss two specific Markov chains of the above type, denoted
MC0 and MC1, corresponding to the choices q = 0 and q = 1 in (3.1).

3.1. The Markov chain MC0. Setting q= 0 in (3.1) we have 1
2L01 = 1.

One can then consider the Markov (i.e. normalised) operator P0 acting as
P0f = 1

2L0f . More explicitly,

(P0f)(x) =
1
2
f

(
x

1 + x

)
+

1
2
f(x+ 1).

Lemma 3.5. Let % be as in (1.1). The probability measure d% on J is
P0-invariant.

Proof. From the fact that the function % is the distribution function of
the (permuted) Stern–Brocot fractions (cf. Theorem 1.7 ) and Lemma 1.9
one readily finds that % satisfies the functional equation

2%(x) =

 %

(
x

1− x

)
if 0 < x < 1,

%(x− 1) + 1 if x ≥ 1.

The claim now follows directly.

Setting p0(x) = p1(x) = 1/2 we see that there is only one compact
invariant set, the set J , and according to [CoRa2, Sec. IV] the only bounded
continuous P0-harmonic functions are the constants. Moreover, the unique
probability measure P(0)

x on Ω such that

P(0)
x (C(i1, . . . , in)) = 2−n
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is atomless for each x ∈ J . The Markov chain MC0 is then defined as in
(3.8) on the probability space (Ω,F ,P(0)

x ). We summarise the above in the
following

Theorem 3.6. For f ∈ L1(R+, d%) we have P(0)
x -a.s.

lim
n→∞

(P0
nf)(x) = lim

n→∞
E(0)
x [f(Wn(x, · ))] =

∞�

0

f d%.

Taking f = 1(a,b), (a, b) ⊂ R+, one gets the following improvement of
Theorem 1.12.

Corollary 3.7. The random walk (Zk)k≥1 visits any non-empty open
interval I = (a, b) ⊂ R+ a.s. with asymptotic frequency %(I).

3.2. The Markov chain MC1. Setting q = 1 in (3.1) we have L1g = g
where g(x) = 1/x is the G-invariant density. We then consider the Markov
operator P1 acting as P1f = g−1L1(f · g), or

(P1f)(x) =
1

x+ 1
f

(
x

1 + x

)
+

x

1 + x
f(x+ 1).

The validity of L1g = g is equivalent to the fact that the infinite measure
ν(dx) = dx/x on J is P1-invariant.

Set

(3.11) p0(∞) = p1(0) = 0, p0(0) = p1(∞) = 1

and

(3.12) p0(x) =
1

x+ 1
, p1(x) =

x

x+ 1
, x ∈ (0,∞).

These transition probabilities plainly satisfy the symmetry (3.6) although,
unlike the previous case, they are not strictly positive.

The Markov chain MC1 is now defined as in (3.8) on the probability
space (Ω,F ,P(1)

x ), where P(1)
x is the transition measure on Ω arising from

the probabilities (3.11) and (3.12). It satisfies the following

Lemma 3.8. For x ∈ (0,∞) the measures P(1)
x have no atoms. On the

other hand , both P(1)
0 and P(1)

∞ are purely atomic with P(1)
0 = δ0∞ and

P(1)
∞ = δ1∞.

Proof. From (3.4) and (3.12) it follows that the path of length n starting
at x ∈ [1,∞) and having largest probability is that corresponding to the
word ω = 1 · · · 1. If instead 0 < x < 1, it corresponds to ω = 0 · · · 0. On the
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other hand, we have

P(1)
x (C(1, . . . , 1)) = P(1)

1/x(C(0, . . . , 0)) =
n−1∏
k=0

x+ k

x+ k + 1
=

x

x+ n
→ 0

as n→∞, proving the first assertion. The other one is straightforward.

Now, a path starting somewhere in J and converging to 0 corresponds to
a sequence of the form (ω1, . . . , ωn, 0, 0, . . . ) for some n ≥ 1. The symmetric
sequence (1 − ω1, . . . , 1 − ωn, 1, 1, . . . ) yields a corresponding path which
converges to ∞. By Lemma 3.2, if we let the first path start at x and the
second one at 1/x, all finite equal portions of them have the same probability.
We can thus concentrate on the paths starting at x and converging to 0.
In turn, these can be put in a one-to-one correspondence with Q2 via the
mapping

Q2 3 a =
n∑
i=1

ωi2−i 7→ ω(a) = (ω1, . . . , ωn, 0, 0, . . . ).

Another copy of Q2 is obtained via the mapping

1−Q2 3 1− a =
n∑
i=1

(1− ωi)2−i + 2−n

7→ ω(1− a) = (1− ω1, . . . , 1− ωn, 1, 1, . . . ).
With the identification a↔ ω(a) we set

P(1)
x (Q2) =

∑
a∈Q2

P(1)
x (ω(a))

so that Lemma 3.8 can be rephrased in the form

(3.13) P(1)
x (Q2) + P(1)

x (1−Q2) = δ0x + δ∞x .

Remark 3.9. Having fixed x, y ∈ J let B(x, y) be the tail event

B(x, y) := {ω ∈ Ω : lim
n→∞

Wn(x, ω) = y}.

According to (3.10), the cocycle H1 associated to h1 is

H1(x, ω) = 1B(x,0)∪B(x,∞)(ω).

Note that (3.13) can be further rephrased as

P(1)
x [B(x, 0)] + P(1)

x [B(x,∞)] = δ0x + δ∞x .

The following is now a consequence of previous results and of [CoRa2,
Sec. IV]).

Theorem 3.10. The only bounded continuous P1-harmonic functions
are the constants.
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Proof. This follows by repeating the same argument as in Proposition 4.1
and Theorem 4.2 in [CoRa2]. In particular, there exists a set Ω0 ⊂ Ω

such that P(1)
x (Ω0) = 1 for all x ∈ J , and for each ω ∈ Ω0 the sequence

h(Wn(1, ω)) is convergent for any bounded continuous P1-harmonic func-
tion h. This implies that there exists a compact invariant set C which
contains the accumulation points A(ω) of the sequence {Wn(1, ω)} for all
ω ∈ Ω0, that is, ⋃

ω∈Ω0

( ⋂
N≥1

{Wn(1, ω) : n ≥ N}
)
⊂ C,

and such that any bounded continuous harmonic function is completely de-
termined by its values on C. Moreover, the set C can be written as a disjoint
union of compact invariant sets on which all bounded continuous harmonic
functions are constant, each of the sets A(ω) being contained in one of these
components. On the other hand, from (3.11) it follows that the singletons
{0} and {∞} are two disjoint compact invariant sets and from (3.12) one
sees that they are the only invariant sets of this type (alternatively one can
use Theorem 1.12 along with (3.11)). Therefore the only possible decompo-
sition of C into disjoint compact invariant sets is C = J . It follows that the
only bounded continuous P1-harmonic functions are the constants.

Finally, the limit properties of the chain MC1 are stated in the following

Theorem 3.11. For any f ∈ L1(R+, dν) with ν(dx) = dx/x, there is a
sequence an ∼ n/log n such that

lim
n→∞

1
an

n−1∑
k=0

(Pn1 f)(x) =
∞�

0

f dν

uniformly on compact subsets of (0,∞).

Proof. One can first prove the corresponding statement for the dynami-
cal system (I, F, µ) defined above and then the result can be carried over to
(J,G, ν) and to the associated Markov chain MC1 via the diffeomorphism φ.
On the other hand, for a large class of infinite measure-preserving interval
maps this result has been obtained by several authors, notably by Thaler
in [Th2] (see also [ADU], [Z]). So we only have to check that the conditions
used there are satisfied for (I, F, µ).

The Perron–Frobenius operator M associated to the interval map F acts
on a function f : I → C as (cf. (3.3) with q = 1)

(Mf)(x) =
1

(1 + x)2
f

(
x

1 + x

)
+

1
(2− x)2

f

(
1

2− x

)
=: u(0, x)f(Ψ0(x)) + u(1, x)f(Ψ1(x))

where we have set F−1(x) = {Ψ0(x), Ψ1(x)}.
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Denoting x0 = 0 and x1 = 1 the two indifferent fixed points of the map
F we have

(3.14) F (x) = x+ (−1)s(x− xs)2 + o(|x− xs|2), x→ xs, s = 0, 1.

We recall that from a general result proved in [Th1] it follows that the
infinite measure µ(dx) = h(x)dx with h(x) := 1/x(1− x) is the unique a.c.
measure invariant for (I, F ). Now set

u(s1 · · · sn, x) :=
n∏
k=1

u(sk, Ψsk
◦ · · · ◦ Ψs1(x)), sk ∈ {0, 1}, k = 1, . . . , n,

and un(s, x) := u(s · · · s, x), s ∈ {0, 1}. Given ε > 0 set moreover

Aε := I \
⋃

s∈{0,1}

(xs − ε, xs + ε).

Lemma 3.12. For each ε > 0 there exists a constant C = C(ε) such that
for all n ≥ 1 and all s1, . . . , sn ∈ {0, 1}n we have

n∑
j=1

|u′(s1 · · · sn, x)| ≤ C, x ∈ Aε.

Proof. Since the second derivative F ′′ is strictly monotone on each in-
terval of monotonicity of F , it will suffice to check the property for un(s, x),
s = 0, 1. We have

un(0, x) =
n−1∏
k=0

(
1 +

x

1 + kx

)−1

= (1 + nx)−2

so that u′n(0, x) = 2n/(1 + nx)3. On the other hand,

un(1, x) =
n−1∏
k=0

(
k + 1− kx

k + 2− (k + 1)x

)
= (n+ 1− nx)−2

so that |u′n(1, x)| = 2n/(n+ 1− nx)3.

From now on the proof can follow word for word the path traced in [Th2].
In particular, the asymptotic identification of the normalising sequence fol-
lows from (3.14).

Acknowledgements. We thank the referee for valuable suggestions.
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[Ra] A. Raugi, Théorie spectrale d’un opérateur de transition sur un espace métrique
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