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BESOV SPACES AND 2-SUMMING OPERATORS

BY

M. A. FUGAROLAS (Santiago de Compostela)

Abstract. Let II2 be the operator ideal of all absolutely 2-summing operators and
let I, be the identity map of the m-dimensional linear space. We first establish upper
estimates for some mixing norms of I,,. Employing these estimates, we study the embed-
ding operators between Besov function spaces as mixing operators. The result obtained is
applied to give sufficient conditions under which certain kinds of integral operators, acting
on a Besov function space, belong to Ils; in this context, we also consider the case of the
square Il o Ils.

1. Introduction. Let us start with some preliminaries. For the general
theory of operator ideals we refer the reader to the monograph [14].

The class of all (bounded linear) operators between arbitrary Banach
spaces is denoted by £, while L(E, F) stands for the space of those operators
acting from FE into F', equipped with the usual operator norm

IS =115 : B — F| := sup{[|Sz[| : [lx]| < 1}.

The set F,,(E, F') consists of all S€ L(E, F) such that S(E):={Sz:z€E}
is at most n-dimensional. The dual of E is denoted by E’, the value of a € E’
at ¢ € E by (x,a), and the identity map of the m-dimensional linear space
by I..

In the following, by [Ms ., ps | and [y, 7qp), with 1 < r < s < 0o
and 1 < p < ¢ < o0, we denote the normed operator ideals of (s, 7)-mixing
and absolutely (g, p)-summing operators, respectively. For p = ¢ we have the
normed operator ideal [I1,,, 7] of absolutely p-summing operators. The basic
facts related to them are established in [14, Chapters 17 and 20]. Further
information is also given in [6] and [7].

For 0 < p,u < oo the Lorentz sequence space [, ,, consists of all bounded
sequences = = () having a finite quasi-norm

> 1/u
(Z[nl/pfl/“sn(a:)}”) if 0 < u < o0,
Ap,u(T) 1= n=1
sup [n'/?s, ()] if u = o0,

n
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where (s, (x)) is the non-increasing rearrangement of x. For p = u we get
the classical space of p-summable sequences, denoted by [,,.

If T € L(E,F) and n = 1,2,..., then the nth approzimation number
and Weyl number are defined by

an(T) := inf{||T — L||: L € Fr.u1(E, F)},
2n(T) == sup{a,(TX) : X € L(I5, E), | X| <1}
respectively. We write T' € Eé’?t(E, F)if (,(T)) € lp,u, and we define
LEWT) = Apou(2a(T))-
Then [Ej(fi, Lgft&] is a quasi-normed operator ideal, introduced by A. Pietsch
in [12] (see also [15, Chapter 2]).
If 1 < p < oo, then the dual exponent p’ is determined by 1/p+1/p" = 1.
By ¢, c1,co,... we always denote positive constants, possibly depending

on certain exponents or operators, but not on other quantities like natural
numbers.

2. Inequalities for mixing norms. First, we have

LEMMA 2.1. Let 2 < q,s < oo with 1/2 —1/s > 1/q. Let E and F be
Banach spaces and let T € F,(E,F) forn=1,2,.... Then

ps,2(T) < en'/271s= Vi o(T).
Proof. If 1/t+1/s = 1/2, from [3] we have Egﬁ) C M 2. Combining the

above inclusion with well-known inequalities of Lewis type related to Weyl
numbers (see [12]), we arrive at

pa(T) < e L{%(T) < /' =YL (T) < /' =07, 5(T)
since 0 < ¢ < ¢ < 00 and LY (T) < m,.2(T), which also follows by [12].

We are now in a position to give

PROPOSITION 2.2. Let
1/p—1/q if 1<p<qg<2,

1/r=q¢1/p—1/2 if 1<p<2<qg<oo,
0 if 2<p<q<oo.
(i) If 2<s<o0and 1/2—1/s > 1/r, then

ps2(Ip 1 Iy —17) < enl/2=1/s=1/r

forn=1,2,..., whenever 2 < r < co.
(ii) If 2<s< o0 and 1/2—1/s < 1/r, then
,U'S,Q(ITL : l; - lg) S C2
form=1,2,....
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Proof. (i) By [1] and [2] (see also [15, (1.6.7)]), the embedding operator
I from I, into [, satisfies I € I, 2(l,,l,). Hence

mra(ln iy — 1)) < ez i=mea(l 1, — 1)
forn=1,2,.... Since 2 < r < 00, in view of Lemma 2.1 we have

s 2(Ly l;j — lg) < Cn1/271/371/rm72(1n : l;j — lg) < 063n1/2*1/s*1/’",

which is the desired estimate with ¢; := ccs.

(i) Ifl<p<g<2and1<p<2<q< oo, from [3] we know that
the above embedding [ satisfies I € M 2(lp,ly), whenever 1/2 —1/s < 1/r.
Consequently,

ps2(In o Iy — 1) < ez = pso(I 1y — 1)
forn=1,2,....Inthecase2 <p < g<oowehave 0 <1/2—-1/s<1/r =0,
hence s = 2 and

[MS,Qaus,Z] = [Ev || ”]7

and the inequality follows with co :=1. =

REMARK. By [14, (22.3.7)] we know that the operator ideals M, o and
II; 5, with 1/s + 1/t = 1/2, have the same limit order. Using [4] (see also
[14, (22.6.8)]) for the limit order of II; 2, one sees that the estimates given
in Proposition 2.2 are the best possible.

3. Besov spaces and mixing operators. Let —co < ¢ < oo and
1 <p,u < co. The Besov sequence space by ,, consists of all scalar sequences
x = (§m,n), with the index set

{(m,n) :m=0,1,...;n=1,...,2"}

lexicographically ordered, such that the norm
o 2™ 1/pquN 1/u
lellig, = (X 277 (X lemnl?) 7))
m=0 n=1

is finite; see [13] and [15, (5.4.1)]. In the cases when p = oo or u = oo the
usual modifications are required.

According to [15, (5.4.1)] we have b7, := [lu,2m(’lgm], and using [14,
(C.4.2)] we obtain (b7 )" =b,7, if —0o <o <ooand 1< p,u<oo.

In order to prove the next proposition, an auxiliary result is required.

LEMMA 3.1. Let —oc0 < 0,7 < o0, 1 < p,q,u,v < o0 and 0 — 7 >
max (1/q — 1/p,0). Let [A, A] be a normed operator ideal. Assume there
exist constants ¢, > 0 such that o — 7 > o and

A(Izm : l;m R lg'm) S C2m0¢
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form =0,1,2,.... Then I € A} ,,by ,), where I is the natural embedding
Jrom by, into by ,,.
Proof. We consider the canonical operators Jom € ﬁ(lgm,b;v) and Qam
€ L(b] 5 lf,m) defined by
Jom (§1y ooy &om) :=(0;...50,...,0;&1,...,&m;0,...,0;...),
QQm (fO,l; . ;Em,h e ,{m’zm; . ) = (fm,l, . 7£m,2m)'

Then ||Jom || = 2™ and ||Q2m | = 27™7. Hence

Z A(J2’"LI277LQ27!L) S Z HJQm

m=0 m=0

<ec i om(atT=0) g

m=0

A(I27n)

| Q 2m

Therefore Y~ Jom Iom Qam is convergent in the Banach space A(bg 507 )
and since I = > Jom Iom Qom in L(b7,,b7 ), it follows that

p7u7 q?U
TeA®],,b,) =

Let 0 > 0 and 1 < p,u < co. The Besov function space [By ,(0,1), E]
consists of certain E-valued functions defined on the unit interval [0, 1] (see
[15, (6.4)]). If E is the scalar field, then we simply write By ,(0,1).

For m > 0+1—1/p, the Ciesielski transform, denoted by C,,, establishes
an isomorphism between

Bg,(0,1) and I7@bg /rrl/2,

Further information is also given in [15, (6.4)], where the original papers [5]
and [16] with the complete proof of this deep result are quoted.

For the embedding operator Ip from By ,(0,1) into By ,(0,1)", which
exists if o +7 > 1/p+1/q — 1, we state

PrOPOSITION 3.2. Leto,7 > 0,1 <p,u< o0 and 1 <q,v < oo. Let
Ip—=1/q" if1<p<q <2,
1/t:=¢1/p—1/2 if 1<p<2<q < oo,
0 if 2<p<q <oo
Consider the following two cases:
(i)2<s<00,2<t<00,1/2—1/s> 1/t and
o+7—1/p—1/g+1>1/2—-1/s—1/t.
(i) 2<s<o0,1/2—-1/s <1/t and
o+17—1/p—1/g+1>0.
If either (1) or (ii) is satisfied, then
Ip € M,2(By ,(0,1),B7,(0,1)).
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Proof. In (i) and (ii) we have 0 +7 > 1/p+1/g — 1. Let m > max (o +
1—-1/p,7+1—1/q). From [15, (6.4.13)] the embedding Ip is related to
embedding operators I,,, and I, acting between sequence spaces by

o I T
By ..(0,1) = By ,(0,1)

C'm l TC;—L

g — I'rn@l T—
lgb & bp,ul/p+1/2 Im®l (l;n)/ @ (bq,vl/q+1/2)/

(i) In this case, by Proposition 2.2(i) we have

frs2(Iom : 27 —12") < c2me

for m = 0,1,2,..., with a := 1/2 — 1/s — 1/t. We have (b, 9"/?) =

bq_,TvJ,rl/ a1/ ?, and from Lemma 3.1 it follows that
o—1/p+1/2 3—7+1/q—1/2
Iy € Ms’z(bp,u L by v )
where Jp is the natural embedding from bg;l/ p+1/2 into b;,:,rl/ a—1/2, Hence,

in view of the above diagram we obtain
Ip € M, o(By ,(0,1),B7 ,(0,1)").
(ii) Now, it follows from Proposition 2.2(ii) that
fs,2(Lam : l,%m — 137”) <c
form=0,1,2,..., and by Lemma 3.1 for the embedding J, we get
J, € MS,Q(bng/p+l/2 b—‘r+1/q—1/2)'

Vg v
Thus, the preceding diagram also yields
Ip € M;2(B,,(0,1),B7 (0, 1)). =

4. Integral operators, Besov spaces and II5. A kernel K defined on
the unit square [0, 1] x [0, 1] belongs to
[Bp.u(0,1), B ,(0,1)]
if the function-valued function
belongs to [B ,(0,1), B7 ,(0,1)].
We observe that the above type of kernel was introduced by A. Pietsch
in [13] (see also [15, (6.4.17)]) in order to establish an important result

concerning the distribution of eigenvalues of integral operators.
We formulate
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THEOREM 4.1. Let o,7 > 0,1 < p,u < o0 and 1 < ¢q,v < 00. Let
s :=max (p,u) and

1/p—1/¢ if 1<p<q <2,
1/t:=41/p—1/2 f1<p<2<q <oo,
0 if 2<p<q <oo.
Consider the following two cases:
(i)2<s<00,2<t<00,1/2—1/s> 1/t and
o+1—-1/p—1/¢g+1>1/2—-1/s—1/t.
(i) 2<s<o0,1/2—-1/s <1/t and
o+17—-1/p—1/¢g+1>0.
Suppose that either (i) or (i) is satisfied. If K € [By ,(0,1), B7 ,(0,1)], then

1

Ty : f(n) = | K(&n)f(n)dn

0
satisfies Trc € IIa(By ,,(0,1), By ,,(0,1)).
Proof. The operator Tk admits the factorization Tx = Sk Ip:
Tx : B3, (0,1) 22 By (0,1) 2% B7 (0,1),

where Sk (a) := (KX(-), a), and from [15, (6.4.16)] we get

Sk € II4(B] ,(0,1)', By ,(0,1)).
Applying Proposition 3.2, in both cases (i) and (ii), we obtain

Ip € M, o(By ,(0,1),B7 ,(0,1)).

Now the formula
[Hsaﬂ-s]o[Ms 27#5 2] [H2,7T2]

(see [14, (20.2.1)]) completes the proof. m
A variant of the above result is

THEOREM 4.2. Let o,7 > 0,1 < p,u < o0 and 1 < g,v < 0o be such
that ¢ < p. Let s :== max (¢’,u). Suppose that 2 < s < co and

o+17—-1/p—1/¢+1/2+1/s > 0.
If K € [B7,(0,1),B7,(0,1)], then

1

Tx : f(n) — | K(&mn)f(n)dn
0
0

satisfies T € II2(Bg, ,(0,1), By ,(0,1)).
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Proof. Since 1 < ¢’ < p < oo, from [15, (6.4.4)] we have the (obvious)
inclusion
[By,u(0,1), By, (0, 1)] € [Bg (0, 1), By, (0, 1)},
hence K € [BY, ,(0,1), B ,(0,1)]. Moreover, if a :=1/2 —1/s then o + 7 —
1/p—1/q+1> a, and Theorem 4.1(i) yields the assertion. m

Let (I13)? be the square II5 o Iy (see [14, (7.1)]). Finally, we get

THEOREM 4.3. Let 0,7 > 0,1 <p,u<2and 1 <q,v < oo. Let

[ 12-1/p+1/q if 1<q <2,
S li-1/p if 2<q <oo.
Suppose that o +71—1/p—1/q+1> p. If K € [B],(0,1), B7 ,(0,1)], then

Ty : f(n) = | K(&n)f(n)dn
0

satisfies Txe € (I12)*(Bg,(0,1), BS ,(0,1)).
Proof. From [14, (22.4.9)] we have

mo(Iom : lgm — lg,m) = omb

form =0,1,2,.... Therefore, by Lemma 3.1 the natural embedding J; from

ba—l/p+1/2 . —74+1/q—1/2

Dot into b, satisfies

J, € Hz(bz,zl/”“/2,bq‘/fjl/q_m).
Using the diagram given in the proof of Proposition 3.2 we now obtain
Ip € H2(Bg,u(07 1)a B;—,v(oa 1),)

It remains to recall the factorization Ty = SgklIp given in the proof of
Theorem 4.1, with Sk € II5(B7 ,(0,1)', B],(0,1)). =

REMARKS. (i) We recall two important properties of (I12)?: (a) as proved
by H. Konig [10] (see also [11, (4.a.6)] and [15, (4.2.30)]) this operator ideal
admits a spectral trace, and (b) every (II)?-operator is nuclear (see [14,
(24.6.5)]).

(ii) In [8] and [9] sufficient conditions for kernels of Besov type to generate

operators belonging to the ideals IT; and (Hz)gal) respectively are established.

Here, (Hz)éal) denotes the collection of all operators whose approximation
numbers with respect to the 2-summing norm are in [3 1; this operator ideal
has the above properties (a) and (b).

(iii) There is a translation of the previous results from the continuous
into the discrete case: one can obtain the corresponding results for matrix
operators of Besov type. For further information on these matrix operators
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and operator ideals different from [T, and (I13)?, one can see [8], [9], [13]
and [15, (5.4)].
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