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Abstract. We obtain conditions for L2 and strong consistency of the least square
estimators of the coefficients in a multi-linear regression model with a stationary random
noise. For given non-random regressors, we obtain conditions which ensure L2-consistency
for all wide sense stationary noise sequences with spectral measure in a given class. The
condition for the class of all noises with continuous (i.e., atomless) spectral measures yields
also Lp-consistency when the noise is strict sense stationary with continuous spectrum and
finite absolute pth moment, p ≥ 1 (even without finite variance).

When the spectral measure of the noise is not continuous, we assume that the non-
random regressors are Hartman almost periodic, and obtain a spectral condition for
L2-consistency. An additional assumption on the regressors yields strong consistency for
strictly stationary noise sequences.

We also treat the case when the regressors are random sequences, with trends having
some good averaging properties and with additive stationary ergodic random fluctuations
independent of the noise. When the noise and the fluctuations have disjoint point spectra
and the noise is strict sense stationary, we obtain strong consistency of the LSE.

The results are applied to amplitude estimation in sums of harmonic signals with
known frequencies.

1. Introduction. We consider the multiple linear regression model

(1.1) Yn =
r∑

j=1

β(j)(a(j)
n +X(j)

n ) + Zn, n = 1, 2, . . . ,

where β(1), . . . , β(r) are the unknown regression coefficients, the random
variable Yn is the “observed signal” (or “response”) corresponding to the
random observable regressors a(1)

n +X
(1)
n , . . . , a

(r)
n +X

(j)
n , with random un-

observable “noise” (or error) Zn; the noise is assumed to be independent of
the regressors. We study the L2-consistency and strong consistency of the
least square coefficient estimators β̂(1)

m , . . . , β̂
(r)
m obtained from the first m

observations of the signal and the regressors.
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This problem has received wide attention for a long time. Many authors
(Grenander and Rosenblatt (1957), Rozanov (1969), Kholevo (1969, 1971),
Tempelman (1970, 1973), Drygas (1971, 1976), Anderson and Taylor (1976),
Lai and Robbins (1977), Lai et al. (1978, 1979), Hannan (1978), Chen et al.
(1981), Solo (1981), Novikov (1985), Gaposhkin (1979, 1985), Le Breton and
Musiela (1987), Yajima (1988), Savichev and Tempelman (1990), Chen and
Wu (1993)) have investigated the consistency in the case of non-random
regressors (i.e., X(j)

n ≡ 0 for every 1 ≤ j ≤ r and n ≥ 1), imposing various
conditions on the noise sequence Z := {Zn}, trying to assume minimal
conditions on the regressor sequences a(j) := {a(j)

n }n≥1, 1 ≤ j ≤ r. Of
course, for the least square estimator (LSE) β̂m := (β̂(1)

m , . . . , β̂
(r)
m ) to be

well defined (for non-random regressors), the r×r symmetric matrix Am :=
[
∑m
n=1 a

(i)
n a

(j)
n ]1≤i,j≤r must be invertible (e.g., Rao and Toutenbourg (1994),

Stapleton (1995)). If Am0 is invertible, so is Am for m ≥ m0. The following
statement is a special case of Theorem 5.7 of Tempelman (1973), announced
in Tempelman (1970).

Theorem A. Assume X(j)
n ≡ 0 for 1 ≤ j ≤ r and n ≥ 1, and Am0 is

invertible. Then

(1.2)
∞∑

n=1

∣∣∣
r∑

j=1

αja
(j)
n

∣∣∣
2

=∞ ∀ r-tuples ~α = (α1, . . . , αr) 6= ~0

is a necessary and sufficient condition for the L2-consistency of the LSE
for every uncorrelated noise sequence {Zn} with zero means and common
variance σ2 > 0.

Apparently unaware of Tempelman’s result, Lai et al. (1979) obtained
Theorem A with (1.2) replaced by

(1.3) lim
m→∞

A−1
m = 0,

deducing the necessity from Theorem 4.1(iii) of Drygas (1976). By symmetry
of Am, an equivalent reformulation of (1.3) is

(1.3a) λmin(Am)→∞
(where λmin(Am) is the minimal eigenvalue of Am). The equivalence of (1.2)
and (1.3a) is not hard—see Proposition 2.3.

Clearly, (1.2) leads to the necessary (but not sufficient) condition

(1.4)
∞∑

n=1

|a(j)
n |2 =∞ ∀1 ≤ j ≤ r.

One of the most general conditions imposed on the noise is that the
series

∑∞
n=1 cnZn converges almost surely for every sequence {cn} ∈ l2 (i.e.,

such that
∑∞
n=1 c

2
n < ∞). Lai et al. (1979), who introduced this condition,
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proved that together with (1.3), it yields strong consistency of the LSE for
non-random regressors. It follows that the LSE is strongly consistent when
(1.3) is satisfied and {Zn} is an L2-bounded martingale difference sequence;
see also Lai (1991) and Buldygin and Koval’ (2000) (where the vector-valued
case is considered). Conditions for strong consistency for {Zn} orthogonal
were given by Chen et al. (1981), and Gaposhkin (1985). Jin and Chen (1996,
1999) have recently found conditions for strong consistency of the LSE when
the Zn’s are i.i.d. and possess only a moment of order less than 2. Stringent
conditions on systems satisfying (1.3), which imply strong consistency for
every {Zn} with supn E(|Zn|) <∞, were given by Slabospitskii (1994).

It is known (see Petersen (1983), p. 94) that for every ergodic probability
preserving transformation τ on a non-atomic space there exists f bounded
measurable with 0 expectation, such that

∑∞
n=1 f ◦ τn/n is a.e. divergent.

Thus, Zn = f ◦ τn is a bounded strict sense stationary centered ergodic
sequence, which does not satisfy the above condition of Lai et al. (1979) for
strong consistency; if τ is weakly mixing (Krengel (1985), §2.3), then {Zn}
has continuous (atomless) spectral measure. Thus, the condition of Lai et
al. does not apply to bounded stationary noises, even with good spectral
and ergodic properties, and different conditions are needed. This is done in
Sections 3 and 4.

In this paper, we study the consistency of the LSE when the noise se-
quence {Zn} is a wide sense stationary sequence, or a strict sense stationary
sequence with certain finite moments. Note that if the spectral measure
of the wide sense stationary noise Z is absolutely continuous with bounded
spectral density f , then condition (1.3) is sufficient for L2-consistency of the
LSE’s (and when f > 0 a.e., this condition is also necessary); see §7.0 of
Grenander and Rosenblatt (1957) for r = 1, and Kholevo (1969), Rozanov
(1969), and Tempelman (1973) for r ≥ 1. Theorem 5.2 in Tempelman (1973)
shows that in general condition (1.3) is not sufficient for consistency when
the spectral measure of the noise is absolutely continuous with unbounded
density; Theorem 5.6 therein asserts that in that case, it is sufficient for
L2-consistency to reinforce (1.3) by adding the condition

(1.5) sup
m≥m0

{
|c(kj)m |

m∑

n=1

|a(j)
n |
}
<∞, 1 ≤ k, j ≤ r,

where Am0 is invertible, and Cm := [c(kj)m ] = A−1
m for m ≥ m0.

In this paper we do not necessarily assume any absolute continuity of the
spectral measure of the stationary noise. In our model we assume that the
regressors are known, and look for conditions on the given regressors which
yield consistency of the LSE for all stationary noise sequences with contin-
uous (i.e., atomless), possibly singular, spectral measure; the point of view
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of Grenander and Rosenblatt (1957) and Kholevo (1969) is different—they
want to find all regressors which yield L2-consistency for a given stationary
noise (with bounded spectral density). For strong consistency, we consider
here systems of regressors for which limm→∞Am/m exists. For such sys-
tems, condition (1.5) is implied by the “asymptotic non-degeneracy” condi-
tion: the matrix limm→∞Am/m is not singular; this condition is often used
in econometrics, e.g., Green (2003), §5.2.1. In §2 we will see that, when the
regressors are non-random, the condition lim infm λmin(Am)/m > 0 (which
is implied by asymptotic non-degeneracy) is sufficient for L2-consistency for
all wide sense stationary noises with continuous (atomless) spectral mea-
sure.

For random regressors, we will make the plausible assumptions that the
random r-dimensional sequence {(X(1)

n , . . . ,X
(r)
n )}n≥1 is ergodic and strict

sense stationary with zero expectation and finite variance, that it is stochas-
tically independent of the noise {Zn}, and that the covariance matrix of
the random vector (X(1)

1 , . . . ,X
(r)
1 ) is invertible. Under different assump-

tions, the problem of consistency for random regressors has been treated,
among others, by Christopeit and Helms (1980), Lai and Wei (1982), and
Wei (1985).

To illustrate the connection between conditions on the regressors and
different classes of stationary noise sequences for which we want consistency
of the LSE, consider the simplest case: the linear regression with r = 1 and
non-random regressors, i.e., Yn = βan + Zn, n = 1, 2, . . . . The LSE for the
regression coefficient based on the first m coordinates is

(1.6) β̂m =
∑m
n=1 anYn∑m
n=1 |an|2

= β +
∑m
n=1 anZn∑m
n=1 |an|2

.

When {Zn} are uncorrelated with zero means and common finite variance,
L2-consistency, i.e., norm convergence to zero of the last ratio, is equiv-
alent to

∑∞
n=1 |an|2 = ∞ (this is a direct proof of Theorem A in this

simple case); under this assumption, Drygas (1976) has shown that if the
{Zn} are i.i.d., we also have a.s. convergence in (1.6). We show in §2 that
(1.5) for r = 1, when added to

∑∞
n=1 |an|2 = ∞, yields L2-consistency for

every mixing noise sequence, but in general these conditions do not im-
ply the L2-consistency for every noise with continuous spectral measure.
We are therefore led to a stronger assumption on the regressors, namely
lim infmm−1∑m

n=1 |an|2 > 0, which is shown to imply L2-consistency for
every stationary noise with continuous (atomless), even singular, spectral
measure.

We remark that if m−1∑m
n=1 |an|2 → ∞, then the LSE sequence is

L2-consistent for every stationary Z. Indeed, let ‖Zn‖ = σ. Then
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‖∑m
n=1 anZn‖∑m
n=1 |an|2

≤ σ
∑m
n=1 |an|∑m

n=1 |an|2
≤ σ

√∑m
n=1 |an|2

√
m∑m

n=1 |an|2
(1.7)

=
σ√

m−1
∑m
n=1 |an|2

→ 0.

The asymptotic non-degeneracy assumption, for r = 1, means that
m−1∑m

n=1 |an|2 converges to a non-zero finite limit. Note that this assump-
tion implies (1.5), by the second inequality in (1.7). With the non-degeneracy
assumption, L2 (strong) consistency of the LSE with a centered wide (strict)
sense stationary noise sequence {Zn} is equivalent to the L2 (almost sure)
convergence to 0 of m−1∑m

n=1 anZn. Limit theorems of this type are called
modulated ergodic theorems.

The paper is organized as follows:
In §2 we study the L2-consistency for non-random regressors. We present

a simple example which shows that in general (1.3) is not sufficient for L2-
consistency (even if the noise has absolutely continuous spectral measure).
Under various (additional) assumptions on the regressor system, we obtain
the L2-consistency for various classes of wide sense stationary noises, defined
in terms of properties of the spectral measure of the noise sequence. The
application of our results when r = 1 is summarized in a table at the end of
the section.

In §3 we prove, for non-random regressors with the non-degeneracy as-
sumption, Lp-consistency for all strictly stationary noises with finite pth
moment and continuous spectrum, even for p ∈ [1, 2) without finite vari-
ance. A necessary and sufficient condition for Lp-consistency when the noise
has non-empty point spectrum is given. An application to amplitude esti-
mation in sums of harmonic signals with known frequencies and unknown
constant phases is presented.

In §4 we use the previous material in order to obtain sufficient condi-
tions for Lp and strong consistency of the LS regression estimators in the
presence of stationary “noise” and additive ergodic stationary “random per-
turbations” of the regressors. These conditions are satisfied if all sequences
have continuous spectral measures. An application to amplitude estimation
in sums of harmonic signals with known frequencies and stationary random
phases is presented.

In Appendix A we show that if in the model (1.1) the random regressors
are ergodic strictly stationary with finite second moments, then for almost
every realization the regressors have the property that m−1Am converges;
the limiting matrix (which does not depend on the realization) is invertible
if and only if X(1)

0 , . . . ,X
(r)
0 are linearly independent in L2.

In Appendix B we state the modulated ergodic theorems used in the
paper.
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2. L2-consistency of the least square estimators of the regression
coefficients

2.1. Description of the model. In this section we consider the multiple
linear regression model with non-random (complex-valued) regressors

(2.1) Yn =
r∑

j=1

β(j)a(j)
n + Zn, n = 1, 2, . . . .

We assume that the r numerical (complex) regressor sequences a(j) are
known, the “regression coefficients” β(j), 1 ≤ j ≤ r, are unknown constants,
and the “pure signal” sequence {vn} = v :=

∑r
j=1 β

(j)a(j) is observed with
some additive (complex-valued) unobservable random “noise” Z = {Zn}, so
the random “response” (or “output”) sequence Y = Z + v is observed. We
assume that {Zn} is wide sense stationary defined on the probability space
(Z, ν), so the response Yn is a random variable in L2(Z, ν). Our goal is to
estimate the regression coefficients.

The least square estimator (LSE) for the regression coefficients is ob-
tained from the random vector (ṽ(m)

1 , . . . , ṽ
(m)
m ), the orthogonal projection

(in Cm) of (Y1, . . . , Ym) on the subspace generated by the set of r constant
vectors Sm := {a(j,m) = (a(j)

1 , . . . , a
(j)
m ) : 1 ≤ j ≤ r}. When the vectors

in Sm are linearly independent (possible only if m ≥ r), there is a unique
representation (ṽ(m)

1 . . . , ṽ
(m)
m ) =

∑r
j=1 β̂

(j)
m a(j,m), and we take β̂(j)

m as the
mth estimator for β(j). Note that if Sm0 is linearly independent, so is Sm
for every m ≥ m0.

We now describe the actual computation of the LSE, which is valid also
for the complex case (standard texts in statistics usually give proofs valid
only for the real-valued case). In order to deal with the complex case, the

matrix Am of the introduction should be defined by Am = [
∑m
n=1 a

(i)
n a

(j)
n ]

(which is now symmetric over C). When we assume that the Gram matrix
Am is non-singular (for m ≥ m0), which is equivalent to the linear indepen-
dence of Sm (e.g., Davis (1975), p. 178), we use its inverse Cm = [c(ij)m ] = A−1

m

to obtain (e.g., Davis (1975), p. 176)

(2.2) β̂(k)
m =

r∑

j=1

c(jk)
m 〈Y,a(j)〉 =

r∑

j=1

c(jk)
m

m∑

n=1

Yna
(j)
n .

Thus, computation of the LSE requires invertibility of Am, and we obtain

(2.3) β̂(k)
m − β(k) =

r∑

j=1

c(jk)
m

m∑

n=1

Zna
(j)
n =

m∑

n=1

( r∑

j=1

c(jk)
m a

(j)
n

)
Zn.

Since in our model the regressors are known, the problem is to find for
which wide sense stationary noise sequences {Zn} we have L2-consistency
of the LSE (i.e., the L2(Z, ν)-convergence of β̂(k)

m to β(k), for 1 ≤ k ≤ r).
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We mention that Hannan (1978) and Gaposhkin (1979) obtained condi-
tions for strong consistency (i.e., almost sure convergence) when the noise
is centered wide sense stationary with bounded spectral density. Condition
(1.3) is always assumed.

2.2. L2-consistency of the LSE. We now obtain sufficient conditions on
the given sequence {Am}, which ensure L2-consistency of the LSE for the
class of all wide sense stationary noise sequences with a certain property
of the spectral measure. We deal with the following classes (listed in in-
creasing order): absolutely continuous spectral measure with density in Lp
(p > 1), absolutely continuous spectral measure (density in L1), mixing spec-
tral measure (i.e., its Fourier coefficients tend to 0), continuous (atomless),
even singular, spectral measure. Of course, consistency for a larger class of
noises requires stronger assumptions on {Am}. Except for the class of all
stationary noises with bounded density (Theorem 2.1), which is discussed
for the sake of completeness, our results are new. We give some examples
which show the limitations of the sufficient conditions for consistency when
the class of noises is enlarged. The results when r = 1 are tabulated at the
end of this section.

Recall (e.g., Doob (1953), §X.1; Krengel (1985), p. 32) that to any
complex-valued wide sense stationary process {Zn}n≥0 we can associate an
isometry U (the shift isometry) defined on the closed subspace generated by
{Zn}, such that Zn = UnZ0. Recall also (e.g., Doob (1953), §X.3; Krengel
(1985), p. 95) that there exists a unique finite measure µ on the Borel sets
of [−π, π), called the spectral measure of {Zn}, such that

µ̂(n) :=
π�

−π
eint dµ(t) = E(ZnZ0), n = 0, 1, . . . .

If {Zn} is centered, {µ̂(n)} is its covariance sequence. An easy computation
shows that we have

(2.4)
∥∥∥

N∑

j=0

bjZj

∥∥∥
2

=
π�

−π

∣∣∣
N∑

j=0

bje
ijt
∣∣∣
2
dµ(t).

For t0 ∈ [−π, π) this yields, by Lebesgue’s bounded convergence theorem,
∥∥∥∥

1
N

N−1∑

j=0

e−ijt0Zj

∥∥∥∥
2

=
π�

−π

∣∣∣∣
1
N

N−1∑

j=0

e−ijt0eijt
∣∣∣∣
2

dµ(t) −−−→
N→∞

µ({t0}).

Theorem 2.1. The LSE sequences given by (2.2) are L2-consistent for
every wide sense stationary {Zn} with absolutely continuous spectral mea-
sure with bounded density if and only if (1.3) holds.
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Proof. The sufficiency of (1.3) was proved by Kholevo (1969). To prove
the necessity, take {Zn} centered i.i.d.; the spectral measure is a multiple
of Lebesgue’s measure, so by the consistency we have convergence to 0 in
(2.3), which by the orthogonality and Lemma 2.2 below yields (1.3) (we do
not need here the second part of Kholevo’s theorem, since we are free to use
any noise sequence from the class of noises with bounded density).

Remark. If we have L2-consistency for all stationary noises with abso-
lutely continuous spectral measure having as density a trigonometric poly-
nomial, then by taking {Zn} centered i.i.d. as before, we see that (1.3) must
hold. Thus, (1.3) is in a sense a minimal assumption on the regressors.

As mentioned in the introduction, (1.3) is not sufficient for L2-consis-
tency for all stationary noises with absolutely continuous spectral measure.
In fact, examples are easy to construct (though this construction does not
yield the full result of Tempelman (1973), Theorem 5.2).

Example 1. Regressors satisfying (1.3) and stationary noises with ab-
solutely continuous spectral measure, with no L2-consistency of the LSE.

We first note that given 0 ≤ f ∈ L1([−π, π), dt) there is a strict sense
stationary centered sequence {Zn} with second moment such that its spec-
tral measure is absolutely continuous with density f ; the existence of a wide
sense sequence follows from applying Theorem II.3.1 of Doob (1953) to the
function r(k, n) := � π−π ei(k−n)tf(t) dt (with µ(n) ≡ 0 in Doob’s notation),
and the existence of a strict sense (Gaussian) sequence follows from the
discussion on p. 95 of Doob (1953).

Now let f be a positive integrable function on [−π, π) which is not in
L2([−π, π), dt), and let {Zn} be stationary having absolutely continuous
spectral measure µ with density f . Then

∑∞
n=0 |µ̂(n)|2 = ∞, and we put

an = µ̂(n). Now (1.3), which for r = 1 is just
∑
n |an|2 = ∞, is clearly

satisfied. For r = 1, (2.3) becomes β̂m − β = (
∑m
k=1 |ak|2)−1∑m

n=1 anZn.
But with our choice of {an}, we have 〈β̂m−β,Z0〉 = E((β̂m−β)Z0) = 1 for
every m, so there is no consistency. Note that µ̂(n) → 0 by the Riemann–
Lebesgue lemma, so m−1∑m

n=1 |an|2 → 0, and if f ∈ Lp([−π, π), dt) for
some 1 < p < 2, then

∑∞
n=1 |an|q <∞ for q = p/(p− 1), by the Hausdorff–

Young Theorem (e.g., Zygmund (1968), Vol. II, p. 101).

Below we will obtain a condition that should be added to (1.3) in order to
obtain consistency for all noises with absolutely continuous spectral measure;
this requires some additional notations. First, we set an := (a(1)

n , . . . , a
(r)
n )

∈ Cr, so (2.1) becomes Yn = 〈~β,an〉+ Zn.
In the r-dimensional complex Hilbert space Cr we denote by ek the kth

unit vector, and by ‖ · ‖ the usual Euclidean norm (it will be clear from
the context whether we deal with r-dimensional vectors or with random
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variables, for which the norm is the L2-norm). With the usual inner product
in Cr we have ‖b‖2 =

∑r
j=1 |〈b, ej〉|2 for b = (b1, . . . , br).

For an r × r matrix B, we define ‖B‖ := max{‖B(b1, . . . , br)T ‖ :
‖(b1, . . . , br)‖ ≤ 1} (i.e., the norm of B as an operator on Cr), so obvi-
ously ‖BbT ‖ ≤ ‖B‖ · ‖b‖ for b ∈ Cr, and ‖B1B2‖ ≤ ‖B1‖ ‖B2‖ for any
r × r matrices.

If a symmetric matrix B is non-negative definite, then ‖B‖ equals the
maximal eigenvalue of B, denoted by λmax(B). If in addition B is invertible,
then its minimal eigenvalue λmin is positive, and ‖B−1‖ = λmax(B−1) =
1/λmin(B). It is well known that the trace of a symmetric matrix B (the
sum of its diagonal elements) equals the sum of the eigenvalues with their
multiplicity (i.e., the trace of the diagonalization of B).

Lemma 2.2. trace(Cm)=
∑m
n=1 ‖anCm‖2 :=

∑m
n=1

∑r
j=1 |〈anCm, ej〉|2.

Proof. We compute the trace from Cm = CmAmCm:

[CmAm]k,j =
r∑

i=1

c(k,i)m

m∑

n=1

a(i)
n a

(j)
n =

m∑

n=1

(CmaTn )ka
(j)
n ,

and we then have

[CmAmCm]k,l =
r∑

j=1

[ m∑

n=1

(CmaTn )ka
(j)
n

]
c(j,l)m

=
m∑

n=1

(CmaTn )k
r∑

j=1

a
(j)
n c(j,l)m =

m∑

n=1

(CmaTn )k(anCm)l.

Hence (CmaTn )T = anCTm = anCm yields

trace(Cm) = trace(CmAmCm) =
r∑

k=1

m∑

n=1

(CmaTn )k(anCm)k =
m∑

n=1

‖anCm‖2.

Proposition 2.3. Each of the conditions (1.2) and (1.3) is equivalent
to

(2.5) lim
m→∞

m∑

n=1

r∑

j=1

|〈anCm, ej〉|2 = lim
m→∞

m∑

n=1

‖anA−1
m ‖2 = 0.

Proof. Since
m∑

n=1

∣∣∣
r∑

j=1

αja
(j)
n

∣∣∣
2

=
m∑

n=1

r∑

j=1

r∑

i=1

αiαja
(i)
n a

(j)
n =

r∑

j=1

r∑

i=1

αiαjAm(i, j)

= 〈Am~α, ~α〉
converges monotonely, the compactness of the unit ball of Cr and Dini’s
theorem imply that (1.2) is equivalent to (1.3a).
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Since the symmetric matrix Am is positive definite (for large enough m),
so is Cm = A−1

m , and all its eigenvalues are positive. Hence

‖Cm‖ = λmax(Cm) ≤ trace(Cm) ≤ r‖Cm‖,

and the previous lemma yields the equivalence of (1.3) and (2.5).

Theorem 2.4. The following are equivalent for a system of regressors
{a(j)}1≤j≤r with Am0 invertible:

(i) For every wide sense stationary noise sequence {Zn} with absolutely
continuous spectral measure, the LSE sequences are L2-consistent.

(ii) The system {a(j)}1≤j≤r satisfies (1.3) and

(2.6) sup
−π≤t<π

sup
m≥m0

∥∥∥
( m∑

n=1

aneint
)
A−1
m

∥∥∥ <∞.

(iii) The system {a(j)}1≤j≤r satisfies (2.6) and

(2.7)
∥∥∥
( m∑

n=1

aneint
)
A−1
m

∥∥∥→ 0 in dt-measure on [−π, π).

(iv) For every strict sense stationary centered noise sequence {Zn} with
finite second moment and absolutely continuous spectral measure,
the LSE sequences are L2-consistent.

Proof. (ii)⇒(iii). We show that (1.3) implies (2.7). Since anCm is a
(row) vector in Cr, we have

m∑

n=1

‖anA−1
m ‖2 =

r∑

k=1

m∑

n=1

|〈anCm, ek〉|2,

which converges to 0 by (2.5) and the previous proposition. On [−π, π)
we define φm,k(t) :=

∑m
n=1〈anCm, ek〉eint. Then its L2([−π, π), dt)-norm

is ‖φm,k‖2 =
∑m
n=1 |〈anCm, ek〉|2, and it tends to 0 as m → ∞. Denote

the function on the left hand side of (2.7) by ψm(t). Then [ψm(t)]2 =∑r
k=1 |φm,k(t)|2, so � π−π |ψm(t)|2 dt =

∑r
k=1 ‖φm,k‖2 → 0, which implies

(2.7).
(iii)⇒(i). Let {Zn} be wide sense stationary with absolutely continuous

spectral measure µ. Then (2.7) implies that ψm(t) → 0 in µ-measure and
therefore for every k also φm,k(t)→ 0 in µ-measure, as m→∞. By (2.3),

(2.8) ‖β̂(k)
m − β(k)‖2 =

∥∥∥
m∑

n=1

〈anCm, ek〉Zn
∥∥∥

2
,
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so by (2.4),

(2.9) ‖β̂(k)
m −β(k)‖2 =

π�

−π

∣∣∣
m∑

n=1

〈anCm, ek〉eint
∣∣∣
2
dµ(t) =

π�

−π
|φm,k(t)|2 dµ(t).

The integrand converges to 0 in measure, and is uniformly bounded, by (2.6),
so Lebesgue’s bounded convergence theorem yields limm→∞ ‖β̂(k)

m − β(k)‖
= 0.

Clearly (i)⇒(iv).
(iv)⇒(ii). Theorem 2.1 yields the necessity of (1.3). Any non-negative

f ∈ L1([−π, π), dt) can be the density of the spectral measure of some cen-
tered strict sense stationary sequence with second moment (see Example 1).

By (2.9), the L2-consistency implies that limm � π−π |φm,k(t)|2f(t) dt = 0
for every f ∈ L1([−π, π)), so the functionals {|φm,k|2} are norm bounded
in L∞. Since the φm,k are continuous, supm≥m0

supt |φm,k(t)| < ∞ for 1 ≤
k≤r. The equality |ψm(t)|2 =

∑r
k=1 |φm,k(t)|2 yields supm≥m0

supt |ψm(t)|2
<∞, which is (2.6).

Remark. Tempelman’s condition (1.5) implies (2.6), since
∥∥∥
( m∑

n=1

aneint
)
A−1
m

∥∥∥
2

=
r∑

k=1

∣∣∣
m∑

n=1

〈anCm, ek〉eint
∣∣∣
2

≤
r∑

k=1

( m∑

n=1

|〈anCm, ek〉|
)2

≤
r∑

k=1

( m∑

n=1

r∑

j=1

|a(j)
n | |c(jk)

m |
)2
.

Thus, the result of Tempelman (1973) follows from Theorem 2.4. We will
later show (see Remarks following Theorem 2.6) that (1.5) is not necessary
for (2.6).

Example 2. Regressor systems satisfying (1.3) but not (2.6).
Let r = 1. If an ≥ 0 with an → 0 and

∑∞
n=1 a

2
n = ∞, then (1.3) holds.

For ε > 0 there is N such that an < ε for n > N , so for m > N we have
∑m
n=1 a

2
n∑m

n=1 an
≤
∑N
n=1 a

2
n + ε

∑m
n=N+1 an∑m

n=1 an
≤ ε+

∑N
n=1 a

2
n∑m

n=1 an
,

which yields lim supm
∑m
n=1 a

2
n/
∑m

n=1 an ≤ ε, since (
∑m
n=1 an)2 ≥∑m

n=1 a
2
n

→∞. Hence (2.6) fails.

Remark. Theorem 2.4 implies that the sequences in Example 1, which
satisfy (1.3), do not satisfy (2.6). Example 2 shows easier constructions, but
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except for unboundedness, we have no additional information on the density
of the absolutely continuous noise for which the LSE is not L2-consistent.

Theorem 2.5. For a fixed 1 < p < ∞ with dual index q = p/(p − 1),
the following are equivalent for a system of regressors {a(j)}1≤j≤r with Am0

invertible:

(i) For every wide sense stationary noise sequence {Zn} with absolutely
continuous spectral measure having a density in Lp([−π, π), dt), the
LSE sequences are L2-consistent.

(ii) The system {a(j)}1≤j≤r satisfies (1.3) and

sup
m≥m0

∥∥∥
( m∑

n=1

aneint
)
A−1
m

∥∥∥
L2q(dt)

<∞.

Proof. (i)⇒(ii) is proved like (iv)⇒(ii) of the previous theorem, except
that now for each 1 ≤ k ≤ r the sequence of functionals {|φm,k|2} is bounded
in Lq(dt)-norm, and (ii) follows from

sup
m≥m0

‖ |ψm|2‖q ≤
r∑

k=1

sup
m≥m0

‖ |φm,k|2‖q <∞.

(ii)⇒(i). For a wide sense stationary noise sequence with absolutely con-
tinuous spectral measure µ with density f , for 1 ≤ k ≤ r, (2.9) yields

‖β̂(k)
m − β(k)‖2 =

π�

−π
|φm,k(t)|2f(t) dt,

which, by Theorem 2.1, converges to 0 when f is essentially bounded. Since
the assumption of the theorem implies that the sequence of functionals
{|φm,k|2}m is bounded in Lq(dt)-norm, the above convergence to 0 holds
for every f ∈ Lp([−π, π), dt).

Definition. We call a wide sense stationary sequence {Zn} mixing if
limn→∞E(ZnZ0) = 0. For centered sequences, this means that the corre-
lation function tends to 0. By Foguel (1963), this is equivalent to Zn =
UnZ0 → 0 weakly in L2, where U is the isometry corresponding to the shift.
In terms of the spectral measure µ of {Zn}, we have µ̂(n) = � π−π eint dµ =
E(ZnZ0) → 0. A measure µ on [−π, π) with lim|n|→∞ µ̂(n) = 0 will be
called mixing.

In particular, every wide sense stationary sequence with absolutely con-
tinuous spectral measure is mixing, by the Riemann–Lebesgue Lemma. Wie-
ner’s Lemma (Zygmund (1968), p. 108, Krengel (1985), p. 96) shows that
a mixing stationary sequence has a continuous (atomless) spectral measure.
When τ is a strongly mixing probability preserving transformation, the sta-
tionary sequence {f ◦τn} defined by f ∈ L2 with zero expectation is mixing.
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Theorem 2.6. Let {a(j)}1≤j≤r be a system of regressors with Am0 in-
vertible, satisfying condition (1.3) and

(2.10) sup
m≥m0

m∑

n=1

r∑

k=1

|〈anCm, ek〉| = sup
m≥m0

m∑

n=1

r∑

k=1

∣∣∣
r∑

j=1

a
(j)
n c(j,k)

m

∣∣∣ <∞.

Then for every mixing wide sense stationary noise sequence {Zn} the LSE
sequences are L2-consistent.

Proof. For m ≥ m0 and 1 ≤ k ≤ r, define α(k)
m,n :=

∑r
j=1 c

(j,k)
m a

(j)
n for

1 ≤ n ≤ m, and α
(k)
m,n := 0 for n > m. Then (2.3) becomes

(2.11) β̂(k)
m − β(k) =

∞∑

n=1

α(k)
m,nZn.

We want to obtain the consistency when {Zn} is mixing from the generalized
Blum–Hanson theorem (Theorem 8.1.3 in Krengel (1985)). Since

∞∑

n=1

|α(k)
m,n| =

m∑

n=1

∣∣∣
r∑

j=1

c(j,k)
m a

(j)
n

∣∣∣

we have supm≥m0

∑∞
n=1 |α

(k)
m,n| <∞ for each k ≤ r, by (2.10).

By the definition, α(k)
m,n = 〈anCm, ek〉 for n ≤ m. Hence by the Cauchy–

Schwarz inequality and Lemma 2.2 we obtain

sup
n≥1
|α(k)
m,n| = sup

1≤n≤m
|α(k)
m,n| ≤ sup

1≤n≤m
‖anCm‖

≤

√√√√
m∑

n=1

‖anCm‖2 =
√

trace(Cm) ≤
√
r‖Cm‖.

Thus (1.3) implies that supn≥1 |α(k)
m,n| → 0 as m→∞ for each fixed k ≤ r.

Whenever {Zn} is mixing, the proof of Theorem 8.1.3 in Krengel (1985)
now yields the norm convergence to 0, as m→∞, of the right hand side of
(2.11).

Remarks. 1. Since for each k we have
m∑

n=1

∣∣∣
r∑

j=1

c(j,k)
m a

(j)
n

∣∣∣ ≤
m∑

n=1

r∑

j=1

|c(j,k)
m a

(j)
n | =

r∑

j=1

|c(j,k)
m |

m∑

n=1

|a(j)
n |,

(2.10) is implied by (1.5). Thus the theorem improves the result of Tempel-
man (1973), who proved the L2-consistency, for systems satisfying (1.3) and
(1.5), only for noise sequences with absolutely continuous spectral measure.

2. For r = 1, (2.10) is equivalent to (1.5). In general, for r > 1, (2.10)
is weaker than (1.5), as shown by the example for r = 2 with a

(1)
n = 1 for
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n ≥ 1, a(2)
1 = 0 and a

(2)
n = 1 for n ≥ 2. The rows of A−1

m are (1,−1) and
(−1,m/(m− 1)). Then (1.5) fails since |c(1,1)

m |∑m
n=1 |a

(1)
n | = m, and (2.10)

holds since 〈anCm, e1〉 = 0 and 〈anCm, e2〉 = 1/(m − 1) for n ≥ 2. In
this example, the consistency of the LSE depends on the first observation;
without it, we can only estimate β(1) + β(2).

3. (2.10) implies (2.6), by Theorems 2.6 and 2.4; however, this implication
follows directly, since for each k we obtain

sup
−π≤t<π

sup
m≥m0

∣∣∣
〈( m∑

n=1

aneint
)
Cm, ek

〉∣∣∣ = sup
−π≤t<π

sup
m≥m0

∣∣∣
m∑

n=1

〈anCm, ek〉eint
∣∣∣

≤ sup
m≥m0

m∑

n=1

|〈anCm, ek〉|,

which is finite by (2.10); summing over k yields (2.6).
4. (2.10) (or even (1.5)) does not imply (1.3): for r = 1, take {an} with∑∞
n=1 |an| < ∞. Then also

∑∞
n=1 |an|2 < ∞, so (1.5) is obviously satisfied,

and (1.3) is not. However, (2.10) always implies supm≥m0
‖A−1

m ‖ <∞, since
Lemma 2.2 and the proof of Proposition 2.3 yield

‖A−1
m ‖ ≤

m∑

n=1

‖anCm‖2 =
r∑

k=1

( m∑

n=1

|〈anCm, ek〉|2
)

≤
r∑

k=1

( m∑

n=1

|〈anCm, ek〉|
)2
.

Theorem 2.7. Let {a(j)}1≤j≤r be a system of regressors satisfying

(2.12) lim inf
m→∞

λmin(Am)
m

> 0 (i.e., lim sup
m→∞

m‖A−1
m ‖ <∞).

Then for every wide sense stationary noise sequence {Zn} with continuous
(i.e., atomless) spectral measure the LSE sequences are L2-consistent.

Proof. By (2.8) we have

‖β̂(k)
m − β(k)‖2 =

∥∥∥
m∑

n=1

〈anCm, ek〉Zn
∥∥∥

2

=
m∑

n=1

m∑

l=1

〈anCm, ek〉〈alCm, ek〉E(ZnZl).

Applying the Cauchy–Schwarz inequality (to the double sum) and using
Lemma 2.2, we obtain
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‖β̂(k)
m − β(k)‖2

≤
( m∑

n,l=1

|〈anCm, ek〉|2|〈alCm, ek〉|2
)1/2( m∑

n,l=1

|µ̂(n− l)|2
)1/2

=
( m∑

n=1

|〈anCm, ek〉|2
)( m∑

n,l=1

|µ̂(n− l)|2
)1/2

≤
( m∑

n=1

‖anCm‖2
)( m∑

n,l=1

|µ̂(n− l)|2
)1/2

= trace(Cm)
( m∑

n,l=1

|µ̂(n− l)|2
)1/2

≤ r‖Cm‖
( m∑

n=−m
(m− |n|)|µ̂(n)|2

)1/2

≤ rm‖Cm‖
(

1
m

m∑

n=−m
|µ̂(n)|2

)1/2

.

By Wiener’s lemma m−1∑m
n=−m |µ̂(n)|2 → 2

∑
t µ({t})2 as m→∞. Since

µ is continuous, the limit is 0, and together with (2.12) we obtain the L2-
consistency.

Remarks. 1. The above proof provides also an upper bound for the rate
of convergence:

E(|β̂(k)
m − β(k)|2) ≤ 2rm‖Cm‖

[
1
m

m∑

n=0

|E(ZnZ0)|2
]1/2

≤ K
[

1
m

m∑

n=0

|E(ZnZ0)|2
]1/2

.

2. Condition (2.12) is not sufficient for L2-consistency of the LSE when
the spectral measure of Z has an atom: let r = 1 and take an = (−1)n and
Zn = (−1)nZ0 for every n, with Z0 6= 0. Note that {Zn} is always ergodic
(its spectral measure has no atom at 0).

3. As shown in Appendix A, when the regressors are obtained as real-
izations of linearly independent strict sense stationary processes, condition
(2.12) is satisfied.

Corollary 2.8 Let {a(j)}1≤j≤r be a system of regressors such that
m−1Am converges to a non-singular matrix (i.e., the system is asymptot-
ically non-degenerate). Then for every wide sense stationary noise sequence
{Zn} with continuous spectral measure the LSE sequences are L2-consistent.

Proof. (2.12) holds since by assumption mA−1
m converges to an invertible

matrix.
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Application. Amplitude estimation in sums of harmonic signals with
known frequencies.

A harmonic signal with amplitude V > 0, frequency ω (real), and phase
ϕ ∈ [−π, π) is given at time t by V ei(ωt+ϕ). Assume that we are sampling
the sum of r harmonic signals with known frequencies and unknown phases
and amplitudes, so the observed signal at time n is

Yn =
r∑

j=1

Vje
i(ωjn+ϕj) + Zn.

We put β(j) := Vje
iϕj and a

(j)
n = (eiωj )n. When the frequencies are all

different, it is easy to compute that m−1Am converges to the r × r identity
matrix Ir; hence Corollary 2.8 can be applied. The estimate for Vj is V̂j,m :=
|β̂(j)
m |; since | |β(j)| − |β̂(j)

m | | ≤ |β(j) − β̂(j)
m |, for every wide sense stationary

noise sequence {Zn} with continuous spectral measure we have

‖Vj − V̂j,m‖ ≤ ‖β(j) − β̂(j)
m ‖ −−−→

m→∞
0.

Remarks. 1. Clearly (2.12) implies (1.3). Using twice the Cauchy–
Schwarz inequality and then Lemma 2.2, we have

m∑

n=1

∣∣∣
r∑

j=1

a
(j)
n c(j,k)

m

∣∣∣ =
m∑

n=1

|〈anCm, ek〉| ≤
m∑

n=1

‖anCm‖

≤ √m
( m∑

n=1

‖anCm‖2
)1/2

=
√
m
√

trace(Cm) ≤ √r
√
m‖Cm‖,

which shows that (2.12) implies also (2.10), which in turn implies (2.6).

2. The condition of Corollary 2.8 implies (1.5): |c(k,j)
m | = |〈ejCm, ek〉| ≤

‖Cm‖, and
∑m
n=1 |a

(j)
n |2 = [Am]j,j = |〈ejAm, ej〉| ≤ ‖Am‖. Together with

the Cauchy–Schwarz inequality this yields

|c(k,j)m |
m∑

n=1

|a(j)
n | ≤ ‖Cm‖

√
m
( m∑

n=1

|a(j)
n |2

)1/2
≤ ‖mCm‖(‖m−1Am‖)1/2,

which converges by assumption.
3. For r = 1, let an = 1 if n is a square, and an = 0 otherwise. Then (1.3)

and (2.10) hold, but m−1∑m
n=1 |an|2 → 0. Thus, (1.3) and (2.10) together

do not imply (2.12).
4. Any weakly mixing invertible probability preserving transformation

which is not strongly mixing (see category theorems in Halmos (1956), or
the example of Chacon (1969)), and f ∈ L2 with zero integral, yield ex-
amples of strictly stationary centered ergodic noise sequences with continu-
ous (atomless) spectral measure, which are not mixing.
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5. The convergence of {m−1Am} to a non-singular matrix easily implies
that the regressors satisfy the set of Grenander’s conditions for asymptotic
efficiency when the noise has continuous spectral density (e.g., Grenander
and Rosenblatt (1957), §7.2, pp. 233–234); for r = 1 Grenander’s conditions
are (1.3) and limm→∞ |am|2/

∑m
n=1 |an|2 = 0. In Example 1 Grenander’s

conditions are satisfied, the noise is stationary with absolutely continuous
spectral measure, but there is no L2-consistency of the LSE.

Example 3. The condition

(2.13) lim sup
m→∞

λmin(Am)
m

> 0 (i.e., lim inf
m→∞

m‖A−1
m ‖ <∞).

does not imply L2-consistency for all absolutely continuous spectral mea-
sures.

We give an example for r = 1. We construct {an} inductively by blocks.
Let a1 = a2 = 1 and m1 = 2; at the kth step take a block of 1’s of length
m′k − mk−1 such that the average (m′k)−1∑m′k

n=1 |an|2 is more than 0.75,
followed by a block of the constant value 1/k of length mk −m′k such that
m−1
k

∑mk
n=1 |an|2 < 2/k2. Since all the mk terms constructed are at least 1/k,

we have m−1
k

∑mk
n=1 |an| ≥ 1/k. It is easy to check that (1.5) does not hold;

since an > 0 for every n, this means that also (2.6) fails, though (1.3) holds.
By Theorem 2.4, there exist a strict sense stationary centered sequence with
second moment and absolutely continuous spectral measure for which the
LSE is not L2-consistent.

Remarks. 1. The representation 〈Am~α, ~α〉 =
∑m
n=1 |

∑r
j=1 αja

(j)
n |2 for

α ∈ Cr (computed in Proposition 2.3) shows that λmin(Am) (which equals
inf{〈Am~α, ~α〉 : ‖α‖ = 1}) is increasing in m. Hence (2.13) implies (1.3), so
by Theorem 2.1 the density of the absolutely continuous spectral measure
obtained in Example 3 is not essentially bounded.

2. By the previous remark and Theorem 2.6, (2.13) and (1.5) together
imply L2-consistency of the LSE for noises with mixing spectral measure.
We saw before that we may have m−1∑m

n=1 |an|2 → 0 for {an} satisfying
(1.3) and (1.5).

Example 4. Conditions (2.13) and (1.5) together do not imply L2-
consistency for all continuous (atomless) spectral measures.

We will give an example for r = 1. Fix integers q ≥ 3, l ≥ 1, let q1 = ql,
and inductively put qj+1 = qqj . First, we define a1 = 1, and an = 0 if n > 1
is not a power of q. For n a power of q, in general an = 1, except when n = qj ,
in which case aqj = √qj . Since |aqj |2 = qj , we have q−1

j

∑qj
n=1 |an|2 ≥ 1, so

lim supm→∞ λmin(Am)/m = lim supmm
−1∑m

n=1 |an|2 > 0. We now show
by induction that (q1 + · · · + qj)/qj ≤ q2/(q2 − 2). This is clear for j = 1.
Since the function f(x) = x/qx is decreasing for x ≥ 1, we have qj/qj+1 =
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f(qj) ≤ 2/q2, so using the induction hypothesis we obtain

q1 + · · ·+ qj+1

qj+1
= 1 +

q1 + · · ·+ qj
qj

· qj
qj+1

≤ 1 +
q2

q2 − 2
· 2
q2 =

q2

q2 − 2
.

Let m = qJ − 1. There are qJ−1 non-negative powers of q which are less
than m, so

∑m
n=1 |an|2 = qJ−1 − J + 1 +

∑J−1
j=1 qj . Arguments like those

in Example 1 show that every finite measure µ on [−π, π) is the spectral
measure of some strict sense stationary centered sequence {Zn} with finite
second moment. Let µ be the Lebesgue–Cantor measure obtained with con-
stant ratio of dissection 1/q with q odd, for which all the Fourier coefficients
µ̂(qk) have the same value c 6= 0 (see Zygmund (1968), p. 196). The measure
µ is continuous (but obviously not mixing), and by our construction of {an}
and (2.3) we have, for m = qJ − 1,

〈β̂m − β,Z0〉 =
∑m
n=1 anµ̂(n)∑m
k=1 |an|2

= c ·
qJ−1 − J + 1 +

∑J−1
j=1
√
qj

qJ−1 − J + 1 +
∑J−1
j=1 qj

.

When we divide the numerator and denominator by qJ−1, we get more than
1 in the new numerator, and the new denominator is bounded above by
1 + q2/(q2 − 2); hence β̂m − β does not converge to 0 in L2.

In addition to (1.3), (2.12) implies

(2.14) lim inf
m→∞

‖Am‖
m

= lim inf
m→∞

λmax(Am)
m

> 0.

When r = 1, (2.14) and (2.12) are equivalent. However, the next proposition
shows that in general (1.3) and (2.14), even reinforced by the condition
lim supm→∞ ‖Am‖/m <∞, do not yield the consistency for all noises with
atomless spectral measure, hence do not imply (2.12).

Proposition 2.9. Let {Zn} be a wide sense stationary sequence with
µ({0}) = 0 which is not mixing. Then there exists a system {a(1),a(2)}
satisfying (1.3) and (1.5), for which limm→∞ ‖Am‖/m exists and is not
zero, such that the LSE sequence {β̂(2)

m } for {Zn} is not L2-consistent.

Proof. The condition µ({0}) = 0 means that ‖m−1∑m
n=1 Zn‖ → 0 as

m→∞, by the mean ergodic theorem (consequence of (2.4)). Since {Zn}
is not mixing, for some ε > 0 there is a strictly increasing sequence {kj}
of integers such that either Re(〈Zkj , Z0〉) > ε (or the reverse inequality for
every kj), or Im(〈Zkj , Z0〉) > ε (or the reverse inequality for every kj), and
we may take only a subsequence of {kj} of density 0 (still denoted by {kj}).
This shows that lim infl ‖l−1∑l

j=1 Zkj‖ > 0. Define a(1)
n = 1 if n 6∈ {kj}, and

otherwise a(1)
n = 0, and put a(2)

n = 1− a(1)
n . Then Am is a diagonal matrix,

with a
(1,1)
m =

∑m
n=1 a

(1)
n = |{n ≤ m : n 6∈ {kj}| and a

(2,2)
m =

∑m
n=1 a

(2)
n =
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|{n ≤ m : n ∈ {kj}|. Hence a
(1,1)
m /m → 1 and a

(2,2)
m /m → 0, showing

‖Am‖/m→ 1. The above limits yield λmin(Am) = a
(2,2)
m for large m, which

tends to∞ since {kj} is infinite, so (1.3) holds. Form = kl we have a(2,2)
m = l,

so ‖Ckl‖ = l−1. For m = kl, (2.8) yields

‖β̂(2)
m − β(2)‖ =

∥∥∥
m∑

n=1

〈anCm, e2〉Zn
∥∥∥ =

∥∥∥
l∑

j=1

Zkj

∥∥∥/l,

which does not converge to 0 by construction. It is easy to verify that (1.5)
holds. We can see directly that (2.12) does not hold.

Remark. For {Zn} as in the proposition, there exists a sequence {an}
which satisfies (1.3) and (1.5), such that the LSE is not L2-consistent: Propo-
sition 8.1.2 in Krengel (1985) yields the existence of a strictly increasing
sequence of integers {kj} such that ‖l−1∑l

j=1 Zkj‖ does not converge to 0.
Let akj = 1, and for n 6∈ {kj} put an = 0. Then (1.3) obviously holds, and
(1.5) holds since a2

n = an ≥ 0. But by construction

lim sup
l→∞

∥∥∥∥
∑kl
n=1 anZn∑kl
n=1 |an|2

∥∥∥∥ = lim sup
l→∞

∥∥∥∥
1
l

l∑

j=1

Zkj

∥∥∥∥ > 0.

Choosing {Zn} with continuous spectral measure but not mixing, we see
that (1.3) and (1.5) are not sufficient for L2-consistency for every atomless
spectral measure.

For 0 < α < 1, an intermediate condition between (1.3) and (2.12) is
given by

(2.15) lim
m→∞

mα‖A−1
m ‖ = 0.

However, even for r = 1, (2.15) does not yield consistency for every ab-
solutely continuous spectral measure: take 0 < δ < (1 − α)/2, and de-
fine an = n−δ. Estimating sums by integrals shows that mα/

∑m
n=1 a

2
n =

O(mα+2δ−1) → 0 and
∑m
n=1 an/

∑m
n=1 a

2
n = O(mδ) → ∞, so (2.15) holds

and (2.6) fails; by Theorem 2.4 there is a noise with absolutely continuous
spectral measure for which the LSE is not L2-consistent.

Proposition 2.10. Let 1 < p ≤ 2. If the system of regressors satisfies

(2.16) lim inf
m→∞

λmin(Am)
m1/p

> 0 (i.e., lim sup
m→∞

m1/p‖A−1
m ‖ <∞),

then for every wide sense stationary sequence having an absolutely continu-
ous spectral measure with density in Lp([−π, π), dt), the LSE sequences are
L2-consistent.

Proof. Let q = p/(p−1). For a noise with absolutely continuous spectral
measure µ we use the formula obtained in the proof of Theorem 2.7, Hölder’s
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inequality for the double sum, and (since 1 ≤ p ≤ 2) the inequality ‖ · ‖p ≤
‖ · ‖2 in probability spaces, to obtain

‖β̂(k)
m − β(k)‖2 =

m∑

n=1

m∑

l=1

〈anCm, ek〉〈alCm, ek〉E(ZnZl)

≤
( m∑

n,l=1

|〈anCm, ek〉|p|〈alCm, ek〉|p
)1/p( m∑

n,l=1

|µ̂(n− l)|q
)1/q

=
( m∑

n=1

|〈anCm, ek〉|p
)2/p( m∑

n=−m
(m− |n|)|µ̂(n)|q

)1/q

= m2/p
(

1
m

m∑

n=1

|〈anCm, ek〉|p
)2/p(

m

m∑

n=−m

(
1− |n|

m

)
|µ̂(n)|q

)1/q

≤ m2/p+1/q
(

1
m

m∑

n=1

‖anCm‖2
)( m∑

n=−m
|µ̂(n)|q

)1/q

= m1/p · trace(Cm)
( m∑

n=−m
|µ̂(n)|q

)1/q

≤ m1/pr‖Cm‖
( m∑

n=−m
|µ̂(n)|q

)1/q
.

Since µ has density f ∈ Lp and 1 < p ≤ 2, (2.9) and the Hausdorff–Young
theorem yield

π�

−π
|φm,k(t)|2f(t) dt = ‖β̂(k)

m − β(k)‖2 ≤ r ·m1/p‖Cm‖ ‖f‖p,

with φm,k defined in the proof of Theorem 2.4. The hypothesis (2.16) yields

sup
m≥m0

π�

−π
|φm,k(t)|2f(t) dt ≤ r‖f‖p sup

m≥m0

m1/p‖Cm‖ ≤ K‖f‖p

for every 0 ≤ f ∈ Lp, which shows that the sequence {|φm,k|2}m≥m0 of func-
tionals is Lq-norm bounded. Clearly (2.16) implies (1.3). Now the conditions
of Theorem 2.5(ii) are satisfied, which proves the claimed consistency.

Remarks. 1. The condition in the previous proposition is not necessary.
For r = 1, let an = 1 if n is a cube, and an = 0 otherwise. Then (1.3) and
(1.5) hold, so we have consistency for every mixing noise, but for 1 < p ≤ 2

we have (m3)1/p/
∑m3

n=1 a
2
n = m3/p−1 →∞.
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2. Let r = 1. For p = 2, the sequence an = n−1/4 satisfies (2.16) but not
(2.15). By Example 2, (2.6) and (1.5) fail.

Example 5. Condition (2.15) for every 0 < α < 1 does not imply
L2-consistency for all absolutely continuous spectral measures.

Let r = 1, and define a1 = 2, an = 1/logn for n ≥ 2. Since {an} is
decreasing, for any 0 < α < 1 we have

m−α
m∑

n=1

|an|2 ≥ m−αm/(logm)2 →∞,

so (2.15) holds for α. By Example 2, (2.6) fails, so there exists a stationary
noise with absolutely continuous spectral measure for which the LSE is not
L2-consistent; its density is not in any Lp with p > 1, since by Proposition
2.10, the LSE is L2-consistent for every stationary noise with density in⋃
p>1 Lp([−π, π), dt).

Definition. A wide sense stationary sequence {Zn} is called mean er-
godic if limm→∞ ‖m−1∑m

n=1 Zn‖ = 0; this means that the spectral measure
of {Zn} on [−π, π) has no atom at 0. In particular, every centered ergodic
stationary sequence is mean ergodic.

Theorem 2.11. The following are equivalent for a system of regressors
{a(j)}1≤j≤r with Am0 invertible:

(i) For every wide sense stationary mean ergodic noise sequence {Zn},
the LSE sequences are L2-consistent.

(ii) The system {a(j)}1≤j≤r satisfies (2.6) and

(2.17)
∥∥∥
( m∑

n=1

aneint
)
A−1
m

∥∥∥→ 0 for every 0 6= t ∈ [−π, π).

Proof. The proof of (ii)⇒(i), using the spectral representation (2.4) and
the Lebesgue dominated convergence theorem, is similar to that of (iii)⇒(i)
in Theorem 2.4.

By Theorem 2.4, (i) implies (2.6). Fix 0 6= t ∈ [−π, π). The sequence
Zn = eintZ0, with Z0 non-zero with finite second moment, is clearly mean
ergodic. If we put this sequence in (2.8), the consistency assumption (i)
yields ‖∑m

n=1〈anCm, ek〉eint‖2 → 0 as m→∞ for each k ≤ r, which yields
(2.17).

Remarks. 1. (2.17) together with (1.3) does not imply (2.6), even for
r = 1: Let an = n−1/4 for n ≥ 1. Then (1.3) is obviously satisfied. By
Example 2, (2.6) fails. By Theorem 2.6 on p. 4 of Zygmund (1968), for t 6= 0,∑m
n=1 ane

int converges as m → ∞, so
∑m
n=1 ane

int/
∑m
n=1 |an|2 converges

to 0 as m→∞ for t 6= 0, which is (2.17).
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2. Conditions (2.6) and (2.7) do not imply condition (2.17). One can even
make (2.17) fail on a dense countable subset of [−π, π). The example is for
r = 1. Let {cj} be a sequence of complex numbers with |cj| > 0 for every
j ≥ 1 and

∑∞
j=1 |cj | < ∞, and take a dense countable set {tj} ⊂ [−π, π).

Define an =
∑∞
j=1 cje

intj . Then {an} is a bounded almost periodic sequence,
so m−1∑m

n=1 |an|2 →
∑∞
j=1 |cj |2 > 0. Thus

∑∞
n=1 |an|2 =∞, so (1.3) holds.

Cauchy’s inequality in (1.7) shows that (1.5), which implies (2.6), also holds.
By Theorems 2.4 and 2.6, (2.7) also holds. However, condition (2.17) fails,
since for t = −tj we have

∑m
k=1 ake

−iktj
∑m
k=1 |ak|2

−−−→
m→∞

cj∑∞
n=1 |cn|2

> 0.

In this example also (2.12), which implies (2.10), holds. However, if for tj 6= 0
we put Zn = eintjZ0 with Z0 centered with second moment finite, then {Zn}
is mean ergodic, but the LSE is not L2-consistent.

3. If all we want is failure of (2.17), it is enough to fix t0 with 0 < |t0| < π,
and let an = eint0 . Then |an| = 1 for every n, so (1.3) and (1.5) hold, but
(2.17) fails at t = −t0.

4. A necessary and sufficient condition for L2-consistency for every wide
sense stationary noise is obtained by removing the restriction t 6= 0 from
(2.17).

Example 6. Conditions (2.6) and (2.17) together do not imply (2.10).
Let {εn} be the Rudin–Shapiro ±1 sequence defined in Rudin (1959),

for which there exists a constant C such that

(2.18)
∣∣∣
N∑

n=1

εne
int
∣∣∣ ≤ C

√
N, t ∈ [−π, π), N = 1, 2, . . . .

We take r = 1 (so (1.5) and (2.10) are equivalent), and define an = εnn
−1/8.

Summation by parts, monotonicity of n−1/8, and (2.18) yield (see Zygmund
(1968), pp. 3–4)

(2.19)
∣∣∣
N∑

n=1

ane
int
∣∣∣ =

∣∣∣
N∑

n=1

εnn
−1/8eint

∣∣∣ ≤ max
1≤k≤N

∣∣∣
k∑

n=1

εne
int
∣∣∣ ≤ C

√
N

for every t ∈ [−π, π) and N ≥ 1. Since
∑N
n=1 |an|2 ≥ 4

3 [N3/4 − 1], (2.19)
shows that (2.17) holds uniformly in t, and so also (2.6) holds. It is easy to
compute that (1.5), which in this case is equivalent to (2.10), fails (see also
Example 2).

Remarks. 1. By Theorem 2.11, the regressor sequence defined in the
previous example satisfies the conclusion of Theorems 2.6 and 2.7, though
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(2.10), and hence also (2.12), are not satisfied. Thus (2.10) is not neces-
sary for consistency for all mixing noises, and (2.12) is not necessary for
consistency for all noises with continuous spectral measure.

2. For r = 1, condition (2.15) with α = 1/p implies, by Hölder’s in-
equality, that

∑∞
n=1 |an|2q = ∞ (where q = p/(p − 1) is the dual index).

Note that when an ≥ 0 for every n, Theorem 2.4 and Example 2 imply
that this divergence is necessary for L2-consistency for every noise with ab-
solutely continuous spectral measure. However, if we take an = n−1/4εn in
Example 6, similar estimates show that (2.6) holds. Since (1.3) holds, by
Theorem 2.4 we have L2-consistency for every noise with absolutely con-
tinuous spectral measure. On the other hand,

∑∞
n=1 |an|2q < ∞ for every

q > 2.

Proposition 2.12. If limm→∞m‖A−1
m ‖ = 0, then for every noise se-

quence {Zn} with supn ‖Zn‖p = K <∞ for some fixed 1 ≤ p <∞ the LSE
sequences are Lp-consistent.

Proof. Using (2.3), the triangle inequality, the Cauchy–Schwarz inequal-
ity, and Lemma 2.2, we obtain

‖β̂(k)
m − β(k)‖p

=
∥∥∥

m∑

n=1

〈anCm, ek〉Zn
∥∥∥
p
≤

m∑

n=1

‖〈anCm, ek〉Zn‖p ≤
m∑

n=1

‖anCm‖K

≤ K√m
( m∑

n=1

‖anCm‖2
)1/2

= K
√
m · trace(Cm) ≤ K√r

√
m‖Cm‖ → 0.

Corollary 2.13. If limm→∞m‖A−1
m ‖ = 0, then for every wide sense

stationary noise sequence {Zn}, the LSE sequences are L2-consistent.

Table 1 below lists the results of our theorems for the case r = 1.

Proposition 2.14. Let r = 1 and an ≥ 0 for every n, and assume∑∞
n=1 a

2
n =∞. Then the following are equivalent :

(i) The LSE sequence is L2-consistent for every wide sense stationary
noise with mixing spectral measure.

(ii) The LSE sequence is L2-consistent for every wide sense stationary
noise with absolutely continuous spectral measure.

(iii) supm≥m0

∑m
k=1 ak/

∑m
k=1 a

2
k <∞.

Furthermore, the LSE sequence is L2-consistent for every wide sense sta-
tionary noise (with no restriction on the spectral measure) if and only if

lim
m→∞

∑m
k=1 ak∑m
k=1 a

2
k

= 0.
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Proof. By assumption and the triangle inequality, supt |
∑m
k=1 ake

ikt| =∑m
k=1 ak. Now use the appropriate results from Table 1.

Table 1. L2-consistency of the LSE in the model (2.1) when r = 1

Conditions on {an} with |am0 | > 0 Implication(s)
Consistency for all
noises with spectral
measure. . .

∞∑

n=1

|an|2 =∞ ⇐⇒ absolutely continuous
with bounded density

lim inf
m→∞

1
m1/p

m∑

n=1

|an|2 > 0, 1 < p ≤ 2 =⇒ absolutely continuous
with density in Lp(dt)

(i)
∞∑

n=1

|an|2 =∞

(ii) sup
m≥m0

∥∥∥∥
∑m
k=1 ake

ikt

∑m
k=1 |ak|2

∥∥∥∥
L2p/(p−1)(dt)

<∞
⇐⇒

absolutely continuous
with density in Lp(dt)
(1 < p <∞)

(i)
∞∑

n=1

|an|2 =∞

(ii) sup
m≥m0

sup
t∈[−π,π)

|∑m
k=1 ake

ikt|∑m
k=1 |ak|2

<∞
⇐⇒ absolutely continuous

(i)
∞∑

n=1

|an|2 =∞

(ii) sup
m≥m0

∑m
k=1 |ak|∑m
k=1 |ak|2

<∞
=⇒ mixing (i.e., µ̂(n)→0)

lim inf
m→∞

1
m

m∑

n=1

|an|2 > 0 =⇒ continuous (no atoms)

(i)
∑m
k=1 ake

ikt

∑m
k=1 |ak|2

→ 0 for all 0 6= t ∈ [−π, π)

(ii) sup
m≥m0

sup
t∈[−π,π)

|∑m
k=1 ake

ikt|∑m
k=1 |ak|2

<∞
⇐⇒ no atom at 0

(i)

∑m
k=1 ake

ikt

∑m
k=1 |ak|2

→ 0 for all t ∈ [−π, π)

(ii) sup
m≥m0

sup
t∈[−π,π)

|∑m
k=1 ake

ikt|∑m
k=1 |ak|2

<∞
⇐⇒ any spectral measure

(no restrictions)

lim
m→∞

1
m

m∑

n=1

|an|2 =∞ =⇒ any spectral measure
(no restrictions)
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3. Lp-consistency of the LSE when the noise is strict sense sta-
tionary. In this section we study Lp-consistency of the LSE of the regres-
sion coefficients, in the case of non-random regressors, under the assumption
that the noise is strict sense stationary with finite pth moment. For 1 ≤ p < 2
this means that second moment is not assumed, so the results of §2 cannot
be directly applied. For p > 2 we assume more than was assumed in §2, and
expect stronger convergence results.

Recall that a sequence {ûm} of estimators of a random variable u is
called (strongly) consistent if {ûm}m∈N converges to u in probability (resp.
almost surely) as m → ∞. If 1 ≤ p < ∞ and u is in Lp (i.e., has finite
absolute pth moment), the sequence of estimators is called Lp-consistent if
each ûm is in Lp, and

lim
m→∞

E(|ûm − u|p) = 0.

Clearly, Lp-consistency implies consistency, and also Lr-consistency for any
1 ≤ r < p.

Proposition 2.12 shows that when the regressor system in the model
(2.1) satisfies limm→∞m‖A−1

m ‖ = 0, we have Lp-consistency for any noise
sequence with supn ‖Zn‖p <∞. When we assume only lim supm→∞m‖A−1

m ‖
< ∞, Theorem 2.7 yields the L2-consistency of the LSE for every wide
sense stationary noise sequence Z with continuous spectral measure. Our
first result deals with Lp-consistency for p > 2 with the latter assumption
on the regressors. We use the notation of §2, in particular Cm = A−1

m .

Theorem 3.1. Let {a(k)}1≤k≤r be a system of regressors in the model
(2.1) satisfying

(3.1) lim sup
m→∞

m‖A−1
m ‖ <∞

and let ~βm := (β̂(1)
m , . . . , β̂

(r)
m ), defined by (2.2), be the m-th LSE for the

regression coefficients β(1), . . . , β(r). Then for every strict sense stationary
noise sequence {Zn} with E(|Z0|p) < ∞ for some 2 < p < ∞ and with
continuous spectral measure, the LSE sequence {~βm} is Lp-consistent.

Proof. We first prove the theorem when Z0 has a moment p + δ. Since
p > 2, the noise is also wide sense stationary, so L2-consistency follows from
Theorem 2.7, which means limm→∞ ‖∆(k)

m ‖2 = 0, where ∆(k)
m := β̂

(k)
m −β(k).

By strict sense stationarity, ‖Zn‖p+δ = ‖Z0‖p+δ for every n. The proof of
Proposition 2.12 yields ‖∆(k)

m ‖p+δ ≤ ‖Z0‖p+δ
√
r
√
m‖Cm‖, so by the as-

sumption on the regressors supm ‖∆(k)
m ‖p+δ < ∞. Put γ := 2δ/(p+ δ − 2).

Then 0 < γ < 2, and p + δ = 2(p− γ)/(2− γ). Hölder’s inequality (for
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2/γ > 1) yields

E(|∆(k)
m |p) = E(|∆(k)

m |γ · |∆(k)
m |p−γ)

≤ {E(|∆(k)
m |2)}γ/2 · {E(|∆(k)

m |2(p−γ)/(2−γ)}(2−γ)/2 −−−→
m→∞

0,

since the first factor converges to 0, and the second is ‖∆(k)
m ‖(p+δ)(2−γ)/2

p+δ ,
which is bounded in m.

We now prove the general case. By strict sense stationarity, Zn = TnZ0,
with T induced by a probability preserving transformation on (Z, ν) and
Z0 ∈ Lp. We now define on Lp the operator

R(k)
m :=

m∑

n=1

( r∑

j=1

a
(j)
n c(jk)

m

)
Tn.

By (2.3), for every noise sequence {T nf} with f ∈ Lp, the correspond-
ing LSE estimators will be β(k) + R

(k)
m f , and Lp-consistency is the Lp-

norm convergence to 0 of R(k)
m f as m → ∞, for 1 ≤ k ≤ r. By the

mean ergodic theorem for linear contractions in reflexive Banach spaces,
E(t)f := limm→∞m−1∑m

n=1 e
−intTnf exists in Lp-norm for every f ∈ Lp

and t ∈ [−π, π). Since p > 2, the convergence holds also in L2-norm, and
{Tnf} has continuous spectral measure if and only if E(t)f = 0 for every
t ∈ [−π, π). But E(t)f = 0 for every t is equivalent to f being orthog-
onal (in the complex L2) to the closed subspace of L2 generated by all
the eigenvectors of T , denoted by L. Note that all the eigenvalues are of
unit modulus, since T is an isometry. Let Σa be the sub-σ-algebra gener-
ated by the eigenvectors of T . Then L = L2(Σa) by Theorem 2.2 of Krengel
(1972). Let E be the conditional expectation with respect to Σa. Then E and
Q := I − E map Lp+δ into itself. Thus, if f ∈ Lp+δ, then Qf ∈ Lp+δ and
has continuous spectral measure. By the first part of the proof of the theo-
rem, we have Lp-consistency of the LSE for the noise {T nQf}, which means
limm→∞ ‖R(k)

m Qf‖p = 0. By the remarks following Corollary 2.8, condition
(3.1), which is the same as (2.12), implies (2.10), which shows that

(3.2) sup
m≥m0

‖R(k)
m ‖p ≤ sup

m≥m0

m∑

n=1

∣∣∣
r∑

j=1

a
(j)
n c(jk)

m

∣∣∣ <∞.

Let {fl} ⊂ Lp+δ and fl → Z0 in Lp-norm; then {Qfl} ⊂ Lp+δ, and
Qfl → Z0, since Z0 is orthogonal to L and Q projects on L⊥. Hence (3.2)
and limm→∞ ‖R(k)

m Qfl‖p = 0 yield limm→∞ ‖R(k)
m Z0‖p = 0, which proves

the theorem.

Definition. Let Z := {Zn} be a strictly stationary sequence with
E(|Z0|p) < ∞ for some (given) p ≥ 1. By the ergodic theorems, for every
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t ∈ [−π, π) the limit E(t)Z0 := limm→∞m−1∑m
n=1 e

−intZn exists almost
surely and in Lp-norm (also for p = 1). The set of t for which E(t)Z0 6≡ 0
is called the point spectrum of {Zn}, and is denoted by σΠ(Z). We say that
{Zn} has continuous spectrum if σΠ(Z) = ∅, i.e., for every t ∈ [−π, π) we
have limm→∞ ‖m−1∑m

n=1 e
−intZn‖p = 0; when p ≥ 2 this is equivalent to

{Zn} having a continuous spectral measure, but the definition is valid also
for p < 2.

Theorem 3.2. Let {a(k)}1≤k≤r be a system of regressors in the model
(2.1) satisfying (3.1), and let ~βm := (β̂(1)

m , . . . , β̂
(r)
m ), defined by (2.2), be

the m-th LSE for the regression coefficients β(1), . . . , β(r). Then for every
strict sense stationary noise sequence {Zn} with E(|Z0|p) < ∞ for some
1 ≤ p < ∞ and with continuous spectrum, the LSE sequence {~βm} is Lp-
consistent.

Proof. For p ≥ 2 the result is proved in the previous theorem. Fix p with
1 ≤ p < 2. By strict stationarity, Zn = TnZ0. When Z0 has finite second
moment, the Lp-norm convergence to 0 of m−1∑m

n=1 e
−intZn (which holds

since we assume continuous spectrum) implies weak-L2 convergence to 0,
and hence L2-norm convergence to 0—see the mean ergodic theorem on
p. 72 of Krengel (1985). Thus, if {Zn} has continuous spectrum and Z0

has finite second moment, then {Zn} has continuous spectral measure, and
Theorem 2.7 yields the L2-consistency, hence Lp-consistency. In the notation
of the previous proof, ‖R(k)

m f‖p → 0 if f ∈ L2 with continuous spectrum.
For f ∈ Lp, the sequence {Tnf} has continuous spectrum if and only if f
is an Lp-flight vector for T , i.e., Tnlf → 0 Lp-weakly for some subsequence
{nl} (Lin and Jones (1980), Corollary 4; see also Krengel (1985), §2.4). The
proof of Proposition 2.6 in Lin et al. (1999) shows that the L2-flight vectors
for T are Lp-dense in the space of Lp-flight vectors. The Lp-consistency for
the L2 flight vectors shown above and (3.2) (which holds for any p ≥ 1)
yield the theorem.

Remarks. 1. Theorems 3.1 and 3.2 clearly apply when the regressors
form an asymptotically non-degenerate A-system, i.e., limm→∞Am/m exists
and is invertible.

2. For p = 2 we can take {Zn} only wide sense stationary (with contin-
uous spectral measure), by Theorem 2.7 or Corollary 2.8.

We now study the consistency of the LSE when the spectral measure of
Z is allowed to have atoms. To obtain consistency, additional assumptions
on the regressors will be needed. In order to see what are reasonable as-
sumptions, we first look at the special case of asymptotic non-degeneracy
when r = 1. By (1.6), the LSE error in this case is
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∆m := β̂m − β =
1
m

∑m
n=1 anZn

1
m

∑m
n=1 |an|2

.

The non-degeneracy is the convergence of the denominator to a positive
limit. When we consider the stationary noise Zn = eintZ0, the consistency
is reduced to convergence to 0 of m−1∑m

n=1 ane
int.

Definition. A sequence a := {an : n ≥ 0} of complex numbers is
called a Hartman sequence if for every real t ∈ [−π, π) the limit c(t,a) :=
limmm

−1∑m
n=1 ane

−int exists. The spectrum σ(a) of a Hartman sequence
a is the set of t with c(t,a) 6= 0.

Kahane (1961) proved that if a given Hartman sequence a satisfies
supn n

−1∑n
k=1 |ak| < ∞, then its spectrum is countable (see Rosenblatt

(1994) for an elementary proof when supn n
−1∑n

k=1 |ak|2 <∞).
Thus, in our problem it is natural to assume that a is a Hartman se-

quence, and we have the consistency for the noise {eintZ0} if and only if
t 6∈ σ(a). For modulated ergodic theorems for Hartman sequences see Ap-
pendix B.

Theorem 3.3. Let {a(k)}1≤k≤r be a system of regressors in the model
(2.1) satisfying (3.1) and

(3.3) sup
m≥1

1
m
‖Am‖ <∞

such that each a(k) is a Hartman sequence, and set σ(~a) =
⋃r
k=1 σ(a(k)).

Let the noise Z be a wide sense stationary random sequence, and let ~βm :=
(β̂(1)
m , . . . , β̂

(r)
m ) be the m-th LSE for the regression coefficients, given by (2.2).

(i) The sequence {~βm} is L2-consistent if and only if

(3.4) σΠ(Z) ∩ σ(~a) = ∅.
(ii) When Z is also strict sense stationary , with E(|Z0|p) <∞ for some

2 ≤ p <∞, then {~βm} is Lp-consistent if and only if (3.4) holds.
(iii) When Z is also strict sense stationary , and each a(j) is also a good

modulating sequence for Z, then {~βm} is strongly consistent if and
only if (3.4) holds.

Proof. With the notation Dm := mCm = mA−1
m , we rewrite (2.3) in the

form

(3.5) ∆(k)
m = β̂(k)

m − β(k) =
r∑

j=1

d(jk)
m

(
1
m

m∑

n=1

Zna
(j)
n

)
.

Assumption (3.3) yields supm≥1 m
−1∑m

n=1 |a
(j)
n |2 < ∞ for each j, hence

a(j) ∈W2.
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Since each a(j) is Hartman by assumption, we apply Theorem B.2 (from
Appendix B) to Z, and obtain the L2-norm convergence

(3.6) lim
m→∞

(
1
m

m∑

n=1

Zna
(j)
n

)
= L(a(j),Z) =

∑

t∈[−π,π)

c(t,a(j))E(−t,Z).

By condition (3.1),

(3.7) sup
m>m0

max
1≤j,k≤r

|d(jk)
m | = C <∞.

(i) Assume that (3.4) holds. Then the limit in (3.6) is 0, since all terms
are 0. Substituting in (3.5), for m > m0 we get

(3.8) ‖∆(k)
m ‖2 ≤ C

r∑

j=1

∥∥∥ 1
m

m∑

n=1

Zna
(j)
n

∥∥∥
2
−−−→
m→∞

0.

Assume now that the LSE is L2-consistent for the given {Zn}. For
m > m0, (3.7) yields
∥∥∥∥d(jk)

m L(a(j),Z)− d(jk)
m

1
m

m∑

n=1

Zna
(j)
n

∥∥∥∥
2

≤ C
∥∥∥∥L(a(j),Z)− 1

m

m∑

n=1

Zna
(j)
n

∥∥∥∥
2
−−−→
m→∞

0

for every 1 ≤ j, k ≤ r. If we substitute this in (3.5), orthogonality of
{E(−t,Z)} and L2-consistency yield

∑

−t∈σΠ (Z)

∣∣∣
r∑

j=1

d(jk)
m c(t,a(j))

∣∣∣
2

=
∥∥∥

r∑

j=1

d(jk)
m L(a(j),Z)

∥∥∥
2

2
→ 0.

Thus, for fixed t with E(−t,Z) 6=0, the vector ~c(t) :=(c(t,a(1)), . . . , c(t,a(r)))
satisfies limm→∞ ‖~c(t)Dm‖ = 0, so ‖~c(t)‖ ≤ ‖~c(t)Dm‖·‖m−1Am‖ → 0, using
(3.3). Hence c(−t,a(j)) = 0 when E(−t,Z) 6= 0, which proves (3.4).

(ii) Since p ≥ 2, (3.4) yields L2-consistency, by (i). (3.4) and Theorem
B.3 yield Lp-norm convergence to 0 in (3.6). The proof of Lp-consistency is
obtained by taking Lp-norms in (3.8).

Since Lp-consistency implies L2-consistency, (3.4) is necessary by part (i).
(iii) When a(j) is a good modulating sequence, we have a.s. convergence

in (3.6), in addition to L2-convergence. Thus, if (3.4) holds, then the limit
in (3.6) is 0 (since it equals the L2 limit, shown above to be 0). The strong
consistency follows from (3.5) and (3.7), since

|∆(k)
m | ≤ C

r∑

j=1

∣∣∣∣
1
m

m∑

n=1

Zna
(j)
n

∣∣∣∣ −−−→m→∞
0.
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Conversely, if we have strong consistency, (3.5) yields

lim
m→∞

(
1
m

m∑

n=1

Znan

)
Dm = 0 a.s.,

where an = (a(1)
n , . . . , a

(r)
n ), as in §2. Hence (3.3) yields

∥∥∥∥
1
m

m∑

n=1

Znan

∥∥∥∥ ≤
∥∥∥∥
(

1
m

m∑

n=1

Znan

)
Dm

∥∥∥∥ ·
∥∥∥∥

1
m
Am

∥∥∥∥→ 0.

We conclude that the L2 limit in (3.6), which exists, is 0. Therefore (3.8)
holds and we have L2-consistency, which implies (3.4), by (i).

Remarks. 1. An asymptotically non-degenerate system satisfies all the
assumptions of the theorem (except the additional assumption in (iii)).

2. Theorem 3.3 generalizes a result in Tempelman (1975), where each
{a(k)} is 2-Besicovitch.

3. Theorem 3.1 is not a special case of Theorem 3.3, since for σΠ(Z) = ∅
Theorem 3.1 yields the consistency without assuming (3.3) and without
requiring the sequences {a(j)} to be Hartman.

Examples. 1. Let η = 1 or −1, both with probability 1/2. Let r = 1,
and for every n put an ≡ 1, Zn ≡ η; then σ(a) = σΠ(Z) = {0}, and the
LSE βm = η is not consistent.

2. Let 0 < ω < π, and r = 1. For an = cosωn and Zn ≡ η, the LSE βm
is consistent. The same is true when an ≡ 1 and Zn = η cosωn (with the
above η).

3. In the case of periodically missing observations, for example, an = 1
for n = kl, l = 1, 2, . . . , and an = 0 otherwise, let Zn = η cos 2π

k n; then the
LSE is not consistent.

Application. Amplitude estimation in sums of harmonic signals with
known frequencies.

We saw in §2 that when sampling the sum of r harmonic signals with
known frequencies and unknown phases and amplitudes, the regressors a(j)

n =
(eiωj )n satisfy m−1Am → Ir, so (3.1) and (3.3) are satisfied. Each a(j) is
a trigonometric polynomial, hence bounded Besicovitch (see Appendix A),
and therefore Hartman and L1-universally good (Theorem B.4 in Appendix
B). Clearly σ(~a) = {ω1, . . . , ωr}, so for any wide sense stationary noise satis-
fying (3.4), i.e., with no resonance with the signals, the amplitude estimates
satisfy limm→∞ ‖V̂j,m−Vj‖ = 0 by Theorem 3.3(i); if the noise is also strict
sense stationary, Theorem 3.3(iii) yields limm→∞ V̂j,m = Vj a.e.

4. Lp and strong consistency of the LSE when the regressors
are random. In this section we consider the multiple linear regression
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model (1.1), with observable random regressors a(j) + X(j), 1 ≤ j ≤ r,
unknown constant regression coefficients β(j), 1 ≤ j ≤ r, and observable re-
sponse Y. The values of a(j) + X(j) are observed, but the value of the pure
signal V :=

∑r
j=1 β

(j)(a(j) + X(j)) is observed with an additive random
noise Z which is assumed to be independent of the regressors, so actually
Y = V + Z is observed. We look at the regression model on the prod-
uct space (Ω,P ) = (X × Z, µ × ν), where the regressors are defined on a
probability space (X , µ), and (Z, ν) is the model for the noise Z. For each
realization ~x = (x(1), . . . ,x(r)) of the regressor random component we have
a random measurement Y(~x) = v + Z, where v =

∑r
j=1 β

(j)(a(j) + x(j)),

and the regression coefficients LSE ~βm(~x) := (β̂(1)
m (~x), . . . , β̂(r)

m (~x)) (which of
course depend also on Z) are computed by (2.2), if possible, for the system
{b(j)(~x) : 1 ≤ j ≤ r}, where b(j)(~x) = a(j) + x(j) for 1 ≤ j ≤ r. We use the
notation ~βm(~x,Z) to show the dependence on the noise Z.

In Theorem 4.1 below we study the consistency of the LSE for fixed
realizations a(j) + x(j) (1 ≤ j ≤ r) of the random regressors; we pro-
vide conditions for consistency of the LSE ~βm(~x,Z) as random variables
on (Z, ν). Such a situation may arise, for example, in the case where the
same random “message” is transmitted to various correspondents through
the same type of channel; the same realizations b(j)(~x) are transmitted re-
peatedly, and each time the realization of the noise does not depend on
the regressors. In the study of strong consistency, another point of view,
considered in Corollary 4.2, is also natural—to consider the LSE ~βm(~X,Z)
over the space (Ω,P ) = (X × Z, µ × ν); this is the situation in which
each measurement selects both a random value of ~X and a random value
of Z.

Theorem 4.1. Let {a(k)}1≤k≤r be an asymptotically non-degenerate A-
system of L2-universally good sequences. Let ~X = (X(1), . . . ,X(r)) be a
Cr-valued ergodic strict sense stationary sequence defined on (X , µ), with
E(|X(j)

0 |2) <∞, 1 ≤ j ≤ r, and set σΠ(~X) :=
⋃r
j=1 σΠ(X(j)). If

(4.1) σ(~a) ∩ σΠ(~X) = ∅

then there exists a set of realizations ~x = (x(1), . . . ,x(r)) of (X(1), . . . ,X(r)),
which has µ-probability 1, with the following properties:

(i) For every random noise sequence Z which is defined on (Z, ν) in-
dependently of ~X, the regression coefficients LSE ~βm(~x,Z) are well
defined (for large enough m).

(ii) For every wide sense stationary random sequence Z, which is defined
on (Z, ν) independently of ~X and satisfies
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(4.2) σΠ(Z) ∩ [σ(~a) ∪ σΠ(~X)] = ∅
the LSE sequence {~βm(~x,Z)} is L2(ν)-consistent.

(iii) If , in addition to the conditions in (ii), Z is also strict sense station-
ary , then the sequence {~βm(~x,Z)} is strongly consistent on (Z, ν).

(iv) If in addition to the conditions in (iii) we have E(|Z0|p) < ∞ for
a given p > 2, then the LSE sequence {~βm(~x,Z)} is also Lp(ν)-
consistent.

Proof. (i) The assumed convergence of m−1Am, say to G, implies that
each a(j) is in W2.

By (B.2) we have σ(x(j))=σΠ(X(j)) a.s. For a realization ~x, itsmth “nor-
malized” Gram matrix is [f (ij)

m (~x)] with f (ij)
m (~x)=m−1∑m

n=1 x
(i)
n x

(j)
n . As in

Appendix A, we define ϕi=X
(i)
0 . By (A.1), limm f

(ij)
m (~x)= � ϕiϕj dµ a.s.

Since each a(j) is L2-universally good, we have both L2(µ) and a.s. con-
vergence of 〈a(i),X(j)〉m as m→∞, and the limit is identified by (B.1) with

Z replaced by X
(j)

. Assumption (4.1) implies that the limit is 0 a.s.
We now fix a realization ~x with all the above properties, and define the

sequences b(j)(~x) = a(j) + x(j) for 1 ≤ j ≤ r. The mth “normalized” Gram
matrix Hm(~x) := [h(ij)

m (~x)] of the regressor system {b(j)(~x) : 1 ≤ j ≤ r} is
given by

(4.3) h(ij)
m (~x) = 〈a(i),a(j)〉m + 〈a(i),x(j)〉m + 〈x(i),a(j)〉m + f (ij)

m (~x).

Now the asymptotic non-degeneracy of the system {a(k) : 1 ≤ k ≤ r} yields

(4.4) lim
m→∞

h(ij)
m (~x) = g(ij) +

�
ϕiϕj dµ =: h(ij),

with G = [g(ij)] invertible. The matrix F := [ � ϕiϕj dµ] is clearly non-
negative definite. The limit matrix H = [h(ij)] is positive definite, since
H = G + F ≥ G and G is positive definite. Hence the system {b(j)(~x) :
1 ≤ j ≤ r} is asymptotically non-degenerate, so the LSE ~βm(~x,Z) is well
defined for any noise sequence Z independent of X.

(ii) For a.e. ξ, the sequences x(j) := X(j)(ξ) are Hartman by the Wiener–
Wintner Theorem, and belong to W2 (by the pointwise ergodic theorem). By
(B.2), we have σ(x(j)) = σΠ(X(j)) a.s. Hence, for almost every realization
~x, each b(j)(~x) is Hartman and in W1, with

σ(b(j)(~x)) ⊂ σ(a(j)) ∪ σ(x(j)) = σ(a(j)) ∪ σΠ(X(j)).

This and (4.2) show that condition (3.4) is satisfied by the asymtotically non-
degenerate system {b(j)(~x) : 1 ≤ j ≤ r}, to which we now apply Theorem
3.3(i).
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(iii) By Theorem B.5, for a.e. ξ the sequences x(j) are in fact L2-univer-
sally good modulating sequences, and the result follows from applying The-
orem 3.3(iii).

(iv) follows from Theorem 3.3(ii).

Remarks. 1. For parts (i) and (ii) of Theorem 4.1, the proof needs only
that each a(j) be Hartman and a good modulating sequence for each X(i),
rather than L2-universally good. With this modified statement, Theorem
3.3(i) becomes a special case of Theorem 4.1(ii) (with X(j) = 0 for each j).

2. Condition (4.1) is satisfied if each X(j) is centered and the probability
preserving transformation θ is weakly mixing (so σΠ(X(j)) = ∅ for each j). In
this case, also the condition σΠ(Z)∩σΠ(~X) = ∅ is satisfied. If also σΠ(Z) = ∅
(in particular if {Zn} are independent), all the spectral assumptions are
satisfied.

Corollary 4.2. Under the assumptions of Theorem 4.1 on {a(k)}1≤k≤r
and on ~X, for every strict sense stationary noise Z with finite variance
defined on (Z, ν) satisfying (4.2), the LSE sequence {~βm(~X,Z)} is strongly
consistent on (Ω,P ) = (X ×Z, µ× ν).

Proof. Apply Fubini’s theorem to part (iii) of Theorem 4.1.

Remark. Corollary 4.2 can be proved in a straightforward way. Unlike
the proof of part (iii) of Theorem 4.1, we do not need to appeal to Theorem
B.5 when we consider only one fixed noise sequence Z: the individual ergodic
theorem, applied to the Cartesian product of the transformations defining
Z and the X(j), implies that for a.e. realization ~x the sequences x(j) are
good modulating sequences for Z, which is what is needed for the proof.
However, the return times theorem used in the proof of Theorem 4.1 gives
more—it yields a “universal” set of realizations ~x of full µ-probability, which
can be chosen in advance, and will give strongly consistent LSE for every
possible observation Y(~x,Z) (i.e., for every possible noise Z which satisfies
the assumptions of the theorem).

Theorem 4.3. Let {a(k)}1≤k≤r be an A-system of L2-universally good
sequences. Let ~X = (X(1), . . . ,X(r)) be a Cr-valued ergodic strict sense sta-
tionary sequence defined on (X , µ), with E(|X(j)

1 |2) < ∞, 1 ≤ j ≤ r, such
that X(1)

1 , . . . ,X
(r)
1 are linearly independent. If (4.1) holds, then there ex-

ists a set of realizations ~x = (x(1), . . . ,x(r)) of (X(1), . . . ,X(r)), which has
probability 1, such that statements (i)—(iv) of Theorem 4.1 are true.

Proof. The proof proceeds as that of Theorem 4.1, up to (4.3). By as-
sumption, the convergence (4.4) holds, but the limit matrix G is no longer
assumed to be invertible. However, as shown in the Proposition of Ap-
pendix A, under the linear independence assumption of the theorem the
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matrix F = [ � ϕiϕj dµ]1≤i,j≤r is invertible, which yields the required invert-
ibility of the limit matrix H = G + F ≥ F . The remainder of the proof is
the same as before.

Remarks. 1. Theorem 4.3 applies when a(j) = 0 for every j. This cor-
responds to a model of a random pure signal V =

∑r
j=1 β

(j)X(j) with sta-
tionary ergodic linearly independent regressors, observed with an additive
stationary noise Z independent of the regressors.

Corollary 4.4. Under the assumptions of Theorem 4.3 on {a(k)}1≤k≤r
and on ~X, for every strict sense stationary noise Z with finite variance
defined on (Z, ν) satisfying (4.2), the LSE sequence {~βm(~X,Z)} is strongly
consistent on (Ω,P ) = (X ×Z, µ× ν).

We now consider the following model:

(4.5) Yn =
r∑

j=1

β(j)eiωjnX(j)
n + Zn.

Theorem 4.5. Let ~X = (X(1), . . . ,X(r)) be a Cr-valued ergodic strict
sense stationary sequence defined on (X , µ) by a weakly mixing probabil-
ity preserving transformation θ, with 0 < E(|X(j)

1 |2) < ∞ for 1 ≤ j ≤ r.
Then there exists a set of realizations ~x = (x(1), . . . ,x(r)) of (X(1), . . . ,X(r)),
which has probability 1, such that for any different real numbers ω1, . . . , ωr ∈
[−π, π) and for every random noise sequence Z, defined on (Z, ν) indepen-
dently of ~X, the regression coefficients LSE ~βm(~x,Z) for the model (4.5)
are well defined (for large enough m); if {Zn} is strict sense stationary with
finite variance such that

(4.6) σΠ(Z) ∩ {ω1, . . . , ωr} = ∅,
then the LSE sequence {~βm(~x,Z)} is L2 and strongly consistent on (Z, ν).

Proof. For a.e. ξ ∈ X , all the sequences {eintX(j)
1 (θn−1ξ)}n≥1, for 1 ≤

j ≤ r and t ∈ [−π, π), are L2-universally good, by Proposition B.6 (in
Appendix B). By the Wiener–Wintner theorem, for a.e. ξ ∈ X we have

(4.7)

lim
m→∞

1
m

m∑

n=1

X
(j)
1 (θn−1ξ)e−int = 0,

lim
m→∞

1
m

m∑

n=1

(X(k)
1 X

(j)
1 )(θn−1ξ)e−int = 0

for every 0 6= t ∈ [−π, π), since θ is weakly mixing. We fix a ξ with all the
above properties, which defines the realization ~x, and put x(j)

n := X
(j)
n (ξ).
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We now define a(j)
n := eiωjnx

(j)
n . The (k, j)th term of the Gram matrix

Am is

[Am]k,j =
m∑

n=1

a(k)
n a

(j)
n =

m∑

n=1

ei(ωk−ωj)n
(
X

(k)
1 X

(j)
1

)
(θn−1ξ).

By (4.7), limm→∞m−1[Am]k,j = 0 for k 6= j. Since limmm
−1[Am]j,j =

E(|X(j)
1 |2) > 0, we see that m−1Am converges to an invertible diagonal

matrix. Hence the LSE ~βm(~x,Z) is well defined (for large enough m).
The above convergence of m−1Am implies (3.1) and (3.3). By definition

each a(j) := {a(j)
n } is L2-universally good (hence Hartman). Now we have

σ(a(j)) ⊂ {ωj}, since for t 6= ωj , (4.7) yields

lim
m→∞

1
m

m∑

n=1

a(j)
n e−int = lim

m→∞
1
m

m∑

n=1

eiωjnx(j)
n e−int = 0.

Hence (3.4) is satisfied by any strict sense stationary Z with finite vari-
ance satisfying (4.6), and the strong consistency of ~βm(x,Z), i.e., conver-
gence a.e. on (Z, ν) to (β(1), . . . , β(r)), follows from Theorem 3.3(iii); the
L2-consistency follows from Theorem 3.3(i).

Remarks. 1. When E(X(j)
1 ) = 0, we have σ(a(j)) = ∅. If this holds for

every 1 ≤ j ≤ r, then condition (4.6) is not needed.
2. When we deal with known fixed values ω1, . . . , ωr, the convergence of

m−1Am to a diagonal matrix requires only that for k 6= j, ei(ωk−ωj) is not an
eigenvalue of θ. If θ is not weakly mixing, then σ(a(j)) = σΠ(X(j)) +̇ ωj :=
{t + ωj mod (−π, π) : t ∈ σΠ(X(j))}. To obtain the result of the theorem,
(4.6) should be replaced by

σΠ(Z) ∩
r⋃

j=1

[σΠ(X(j)) +̇ ωj ] = ∅.

We now apply Theorem 4.5 to amplitude estimation in a sum of har-
monic signals with known frequencies and observable (in practice, accu-
rately estimable) stationary random phases. The jth signal is generated
with known frequency ωj , unknown constant amplitude Vj , and random
phase Φ(j)(t) ∈ [−π, π). We write Φ(j)

n := Φ(j)(n), so the observed signal at
time n is

(4.8) Yn =
r∑

j=1

Vje
i(ωjn+Φ(j)

n ) + Zn.

We assume that the phase vector sequence {~Φn = (Φ(1)
n , . . . , Φ

(r)
n )} is strict

sense stationary.
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Proposition 4.6. In the model (4.8) assume:

(1) The vector sequence ~Φ := {~Φn} is strict sense stationary , generated
by a weakly mixing probability preserving transformation θ on (X , µ).

(2) The sequence Z = {Zn} is defined on (Z, ν) independently of ~Φ =
{~Φn}, and is strict sense stationary with finite variance.

(3) σΠ(Z) ∩ {ω1, . . . , ωr} = ∅.
Then ~βm(~Φ,Z), the LSE for (V1, . . . , Vr) with the random regressors X̃(j)

n :=
ei(ωjn+Φ(j)

n ) (1 ≤ j ≤ r), is strongly consistent on (X ×Z, µ× ν).

Proof. We define X(j)
n = eiΦ

(j)
n on (X , µ), so (4.8) becomes (4.5), and

~βm(~Φ,Z) = ~βm(~X,Z). Theorem 4.5 now applies, and Fubini’s theorem
yields the strong consistency on (X × Z, µ× ν).

Remarks. 1. Assumption (1) holds when each sequence Φ(j) := {Φ(j)
n }

is strict sense stationary, generated by a weakly mixing probability preserv-
ing transformation θj on (Xj , µj), and the r sequences Φ(1), . . . ,Φ(r) are
stochastically independent. Put X :=

∏Xj and µ := µ1×. . .×µr. On (X , µ)
define θ := θ1× . . .×θr, which is weakly mixing as a product of weakly mix-
ing transformations (e.g., Krengel (1985), p. 98). For ~ξ := (ξ1, . . . , ξr) ∈ X
we put Φ̃(j)

n (~ξ ) = Φ
(j)
n (ξj), so Φ̃

(j)
n = Φ̃

(j)
1 ◦ θn−1. By independence, ~̃Φ is a

model for ~Φ, which is used in the proposition.
2. Condition (3) means that there is no resonance between the noise

and the signals. If the noise {Zn} has continuous spectral measure, then
condition (3) holds.

3. Under the commonly used assumption that Φ(j)
1 = ϕj +Ψ

(j)
1 with Ψ (j)

1
uniformly distributed in [−π, π), (4.8) becomes

(4.9) Yn =
r∑

j=1

Vje
iϕjei(ωjn+Ψ (j)

n ) + Zn.

We now estimate Vjeiϕj by the LSE β̂
(j)
m (~Ψ,Z); since E(eiΨ

(j)
1 ) = 0, con-

dition (3) is not needed anymore for consistency (see Remark 1 following
Theorem 4.5). The amplitude Vj is then estimated by |β̂(j)

m (~Ψ,Z)|.

Appendix A. Averageable families of sequences. The convergence
of m−1Am, discussed in this paper, means that m−1∑m

n=1 a
(i)
n a

(j)
n converges

as m→∞, for each pair 1 ≤ i, j ≤ r. This is the property we look at in this
Appendix.

For any two infinite sequences a,b of complex numbers and any inte-
ger m > 0 we define 〈a,b〉m = m−1∑m

n=1 anbn (which is equivalent to
the Cm inner product on the first m coordinates), with the norm ‖a‖m =
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[〈a,a〉m]1/2. For a finite system of sequences {a(i), 1 ≤ i ≤ r} let g(ij)
m =

〈a(i),a(j)〉m; the r×r matrix Gm = [g(ij)
m ] is the “normalized” Gram matrix

of the first m coordinates of the system.
For 1 ≤ p < ∞ the set of infinite sequences a = {ak} satisfying

supmm
−1∑m

k=1 |ak|p <∞ will be denoted by Wp, and for a ∈Wp we define
‖a‖Wp := (lim supn n

−1∑n
k=1 |ak|p)1/p. Then ‖ · ‖Wp is a seminorm on Wp;

we say that two sequences a and b in Wp are equivalent if ‖a− b‖Wp = 0.
The set of equivalence classes in Wp is a Banach space with the norm ‖ ·‖Wp

(for the completeness, see the discussion in Lin et al. (1999)). It is easy to
check that Wp1 ⊂Wp2 if p1 > p2; in particular, we have Wp ⊂W1 for p > 1.
In what follows we write ‖ · ‖ instead of ‖ · ‖W2 .

Definition. A family of sequences A will be called an averageable family
(briefly, A-family) if for each pair a,b ∈ A the following inner product is
well defined:

〈a,b〉 := lim
m→∞

〈a,b〉m.

It is clear that each A-family is a subset of W2, and ‖a‖ := ‖a‖W2 =
[〈a,a〉]1/2.

If some sequences form an A-family, then the union of their W2-equiva-
lence classes is also an A-family. It is easy to see that the W2-closed linear
span of an A-family is an A-family, too, and its equivalence classes form a
Hilbert space with respect to the inner product 〈a,b〉.

A finite A-family will be called an A-system. For an A-system {a(i), 1 ≤
i ≤ r} we can define its asymptotic Gram matrix G = limm→∞Gm; it is a
non-negative definite matrix.

Definition. An A-system of sequences {a(i), 1 ≤ i ≤ r} is said to be
asymptotically non-degenerate if its asymptotic Gram matrix is non-singular.

Evidently, asymptotic non-degeneracy means that the equivalence classes
of the sequences a(i), 1 ≤ i ≤ r, form a linearly independent system in W2.
In particular, none of these sequences belongs to the null-class.

Below we consider two large A-families of sequences, important in various
applications.

1. Besicovitch almost periodic sequences. Sequences {ak} with coordi-
nates of the form ak =

∑
n αne

iktn with tn ∈ [−π, π) (a finite sum), called
trigonometric polynomials, are the simplest almost periodic sequences. The
well known uniform almost periodic sequences are uniform limits of trigono-
metric polynomials. The p-Besicovitch almost periodic sequences (where
1 ≤ p <∞) are the limits of trigonometric polynomials in the Wp-seminorm.
A bounded 1-Besicovitch almost periodic sequence is p-Besicovitch for any p.
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It is clear that any uniform almost periodic sequence is a bounded Besicov-
itch almost periodic sequence. The subspace B2 of all 2-Besicovitch almost
periodic sequences is an A-family.

2. Realizations of strict sense stationary random sequences. Let ~Xn =
(X(1)

n , . . . ,X
(r)
n ), n = 0, 1, 2, . . . , be an ergodic vector-valued strict sense

stationary random sequence over a Lebesgue probability space (X , µ). We
assume that the coordinates of this sequence have finite second moments.
Put ϕi(ξ) = X

(i)
0 (ξ) and ψi,j(ξ) = ϕi(ξ)ϕj(ξ), 1 ≤ i, j ≤ r. It is clear that

ψi,j ∈ L1(µ). The assumptions of ergodicity and strict stationarity of ~X
imply (e.g., Doob (1953)) that there is an ergodic probability preserving θ
such that for each j (1≤ j ≤ r) we have X(j)

n (ξ) = ϕj(θnξ) for n ≥ 1. Then

X
(i)
n X

(j)
n = ψij(θnξ)). Therefore Birkhoff’s ergodic theorem yields

〈X(i),X(j)〉m =
1
m

m∑

n=1

ψij(θnξ)(A.1)

a.s.−−−→
m→∞

�
ϕiϕj dµ = E(X(i)

0 X
(j)
0 ) =: f (ij).

Thus for µ-almost all realizations ~x of the random sequence ~X we find
that {~x(1), . . . , ~x(r)} is an A-system and G = [f (ij)] is its asymptotic Gram
matrix. Clearly the “asymptotic non-degeneracy” condition can be easily
checked; it means that the random variables X(i)

0 , 1 ≤ i ≤ r, are linearly
independent in L2(µ) (see Davis (1975), p. 178).

Proposition. In the model (1.1) let a(j)
n = 0 for every n > 0 and

1 ≤ j ≤ r, and let the random regressor sequences {X(1)
n }, . . . , {X(r)

n } be
ergodic strict sense stationary on a Lebesgue space, with finite second mo-
ment. If X(1)

0 , . . . ,X
(r)
0 are linearly independent in L2, then for almost every

realization the regressor system is asymptotically non-degenerate.

Appendix B. Modulated ergodic theorems for stationary se-
quences. General modulated ergodic theorems have recently been studied
by Lin et al. (1999), where earlier references are given. Below we summa-
rize the special cases which we shall use, restated in terms of stationary
sequences.

We first note that if X := {Xk : k ≥ 0} is a wide sense complex-
valued stationary sequence (see Doob (1953), Section X.1), then so also is
{e−iktXk}, for every t ∈ [−π, π). By the mean ergodic theorem,

E(t,X) := lim
n→∞

1
n

n∑

k=1

e−iktXk exists in L2-norm.



LSE IN LINEAR REGRESSION 67

The set of t ∈ [−π, π) for which E(t,X) is not zero is called the point spec-
trum of X, and is denoted by σΠ(X). When E(t,X) is not 0, it is an eigenvec-
tor of the shift isometry associated with X, with corresponding eigenvalue
eit—see Doob (1953). The family {E(t,X) : t ∈ σΠ(X)} is therefore orthog-
onal, and since the shift isometry is defined on a separable space, σΠ(X)
is always countable; it is precisely the set of atoms of the spectral measure
of X.

Theorem B.1. Let {an} be a sequence of complex numbers such that for
some p > 1, supn n

−1∑n
k=1 |ak|p <∞. Then for every wide sense stationary

sequence Z = {Zn} with σΠ(Z) = ∅ (i.e., with continuous spectral measure)
we have limn→∞ ‖n−1∑n

k=1 akZk‖ = 0.

The proof follows from the second part of the proof of Theorem 4.1 of
Çömez et al. (1998). The special case p = 2, which is the one of interest for
us, follows also from carrying out the computation in the proof of Theorem
2.7 for r = 1.

Any Besicovitch almost periodic sequence is a Hartman sequence, but
there are Hartman sequences which are not Besicovitch (e.g., Lin et al.
(1999)). It is easy to construct a bounded sequence consisting of 0’s and 1’s
which is not Hartman.

If we want n−1∑n
k=1 akZk to converge for every wide sense stationary

sequence Z, then {an} must be Hartman (since for t ∈ [−π, π) the sequence
{eiktZ0} with E(Z0) = 0 is wide sense stationary). The following two theo-
rems are proved in Lin et al. (1999).

Theorem B.2. Let a = {ak} be a Hartman sequence satisfying
supn n

−1∑n
k=1 |ak| < ∞. Then for every wide sense stationary sequence

Z the limit L(a,Z) := limn→∞ n−1∑n
k=1 akZk exists in L2-norm, and

(B.1) L(a,Z) =
∑

t∈[−π,π)

c(t,a)E(−t,Z)

with L2-norm convergence (and countably many non-zero terms) on the
right-hand side.

Theorem B.3. Let a = {ak} be a Hartman sequence satisfying
supn n

−1∑n
k=1 |ak| < ∞. Then for every strict sense stationary sequence

Z with finite p-th moment , the limit L(a,Z) = limn→∞ n−1∑n
k=1 akZk ex-

ists in Lp-norm. For p ≥ 2 the limit is given by (B.1).

Definition. A sequence a := {an} of complex numbers is a good mod-
ulating sequence for a strict sense stationary sequence Z if the sequence
n−1∑n

k=1 akZk converges almost surely. The sequence a is called Lp-univer-
sally good if it is a good modulating sequence for every strict sense stationary
sequence Z with finite pth moment (1 ≤ p <∞).
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By considering rotations of the unit circle, we see that any Lp-universally
good modulating sequence is a Hartman sequence. However, a bounded Hart-
man sequence need not be Lp-universally good for any 1 ≤ p <∞.

Theorem B.4. (1) Fix 1 < p <∞ with dual index q. Any q-Besicovitch
almost periodic sequence is Lp-universally good.

(2) Any bounded Besicovitch almost periodic sequence is L1-universally
good.

The first part of this theorem was proved by Tempelman (1974) and the
second one was proved by Ryll-Nardzewski (1975).

The theorem of Wiener and Wintner (1941) shows that almost all real-
izations of strict sense ergodic stationary sequences with finite first moment
are Hartman sequences. The following Return Times Theorem of Bourgain
et al. (1989) makes a considerably stronger statement.

Theorem B.5. Fix 1 ≤ p < ∞ with dual index q. Let X = {Xk} be an
ergodic strict sense stationary sequence with finite q-th moment. Then X is
almost surely an Lp-universally good sequence (and is in Wq).

By the mean ergodic theorem, E(t,X) is well defined for any strict sense
stationary sequence X with finite first moment. When X is ergodic, the proof
of Wiener and Wintner shows that for almost every realization x = {xk} we
have

(B.2) σ(x) = σΠ(X), with c(t,x) = E(t,X) for t ∈ σΠ(X).

Proposition B.6. Fix 1 ≤ p < ∞ with dual index q. Let X = {Xk} be
an ergodic strict sense stationary sequence with finite q-th moment. Then
for almost every realization x = {xk}, for every t ∈ [−π, π) the sequence
{eiktxk} is an Lp-universally good sequence (and is in Wq).

The proof combines Theorem B.5 with the following lemma.

Lemma B.7. If {ak} is Lp-universally good , then for every t ∈ [−π, π)
the sequence {eiktak} is Lp-universally good.

Proof. Fix t ∈ [−π, π) and Z strict sense stationary with finite pth mo-
ment, generated by the probability preserving τ on (Z, ν). On the unit circle
Γ with Lebesgue’s measure dγ let % be the rotation through the angle t (i.e.,
%γ := eitγ), and take g(γ) = γ. Then Z̃n := g ◦ %n ⊗ Zn is strict sense sta-
tionary on (Γ ×Z, dγ × ν). Hence

1
n

n∑

k=1

eiktakZk = γ
1
n

n∑

k=1

akZ̃k

converges a.e. on Γ × Z, and choosing an appropriate γ ∈ Γ yields conver-
gence of n−1∑n

k=1 akZ̃k for a.e. ζ ∈ Z.
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