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ON THE ASYMPTOTIC BEHAVIOR
OF SOME COUNTING FUNCTIONS

BY

MACIEJ RADZIEJEWSKI (Poznań) and WOLFGANG A. SCHMID (Graz)

Abstract. The investigation of certain counting functions of elements with given
factorization properties in the ring of integers of an algebraic number field gives rise
to combinatorial problems in the class group. In this paper a constant arising from the
investigation of the number of algebraic integers with factorizations of at most k different
lengths is investigated. It is shown that this constant is positive if k is greater than 1
and that it is also positive if k equals 1 and the class group satisfies some additional
conditions. These results imply that the corresponding counting function oscillates about
its main term. Moreover, some new results on half-factorial sets are obtained.

1. Introduction. We study a combinatorial problem arising from the
investigation of factorizations of distinct lengths in algebraic number fields
and in some more general settings. Let K be an algebraic number field, OK
its ring of integers and G its ideal class group. If a ∈ OK and a = u1 · · ·un
is a factorization of a into atoms (irreducibles), then n is called the length of
the factorization and L(a) = {n | a has a factorization of length n} is called
the set of lengths of a.

Let k be a positive integer and |G| ≥ 3. Then Gk = {(a) | |L(a)| ≤ k}
denotes the set of principal ideals generated by elements with factorizations
of at most k different lengths and

Gk(x) = |{(a) | N(a) ≤ x and |L(a)| ≤ k}|
the associated counting function. It is known (cf. [5]) that

Gk(x) ∼ Cx(log x)−1+µ(G)/|G|(log log x)ψk(G)

for a C > 0 and non-negative integers µ(G) and ψk(G) that depend on G
(respectively G and k) alone. The invariants µ(G) and ψk(G) are defined
in combinatorial terms for any finite abelian group G (cf. Section 2 for the
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definitions). They remain meaningful in the more general case of arithmeti-
cal Krull monoids or formations (cf. [12]). There is considerable literature
on µ(G) (cf. Section 5), but little is known about ψk(G).

The aim of this paper is to show the positivity of ψk(G) for various G
and k. The study of this specific problem is motivated by analytic investi-
gations of Gk(x) in [20]. There it was shown that ψk(G) > 0 implies the
existence of oscillations of Gk(x) about its main term (cf. Section 3 for a
detailed discussion).

We demonstrate that ψk(G) > 0 for all k ≥ 2 and G with at least three
elements (Theorem 6.1). For k = 1 we are able to prove the positivity for
various types of groups (Section 7). Moreover, we will obtain some results
on half-factorial sets (Propositions 5.2 and 5.4).

The investigation of the function Gk(x) was started by W. Narkiewicz
(cf. [15, 16, 17, 19]) who also stated the problem of evaluating µ(G) (cf. [18,

P 1142]). J. Śliwa (cf. [24, 25]) considered the counting functions associated
to the sets Gk = Gk \Gk−1 and demonstrated that

Gk(x) ∼ C ′x(log x)−A(k,G)(log log x)B(k,G)

for some positive C ′ = C ′(k,K) and A(k,G), and non-negative B(k,G).

Note that G1 = G1. J. Śliwa determinedB(k,G) for |G| ≤ 4 and conjectured
(cf. [25, P 1247]) that A(k,G) = 1 − µ(G)/|G| for all k and (B(k,G))∞k=1
is an arithmetic progression. A. Geroldinger (cf. [5]) showed that A(k,G) =
1−µ(G)/|G| for infinitely many k. It is relatively straightforward to see that

ψk(G) = max
l≤k,A(l,G)=1−µ(G)/|G|

B(l, G).

Thus the conjecture of J. Śliwa is equivalent to the statement that (ψk(G))∞k=1
is an arithmetic progression. In general it is only known that 0 ≤ ψ1(G)
≤ ψ2(G) ≤ · · · and limk→∞ ψk(G) = ∞. See also J. Kaczorowski [13]
for better asymptotic estimates of Gk(x), and F. Halter-Koch [10],
A. Geroldinger and J. Kaczorowski [8], and A. Geroldinger, F. Halter-Koch
and J. Kaczorowski [7] for investigations of the analogues of the sets Gk in
more general settings.

The first author would like to thank the Karl-Franzens-Universität for
support and excellent working conditions during his visit to Graz.

2. Preliminaries. Let N denote the set of positive integers, N0 the
non-negative integers and P the prime numbers. For n ∈ N let Cn denote
a cyclic group with n elements. Throughout the paper, G will denote an
additively written, finite abelian group.



COUNTING FUNCTIONS 183

For G0 ⊂ G we denote by 〈G0〉 ⊂ G the subgroup generated by G0 and
we call G0 a generating set if 〈G0〉 = G. A subset {e1, . . . , er} ⊂ G \ {0}
is called (or its elements are called) independent if

∑r
i=1miei = 0 with

mi ∈ Z implies miei = 0 for each i ∈ {1, . . . , r}. An independent generating
subset of G is called a basis. By r(G) we denote the rank and by exp(G) the
exponent of G.

We recall the definition of block monoids and several related notions;
for a detailed description we refer to the survey articles [2, 11] in [1]. For a
subset G0 ⊂ G we denote by F(G0) the multiplicatively written, free abelian

monoid with basis G0. An element S =
∏l
i=1 gi ∈ F(G0) with l ∈ N0

and gi ∈ G0 is called a sequence in G0 and has a unique representation
S =

∏
g∈G g

vg(S) with vg(S) ∈ N0. By 1 ∈ F(G0) we denote the empty

sequence, i.e., the identity element of F(G0). If T |S (in F(G0)), then we
call T a subsequence of S and we denote by T−1S its co-divisor. We denote

by |S| = l the length, by k(S) =
∑l

i=1 1/ord(gi) the cross number and by

σ(S) =
∑l

i=1 gi the sum of S. Further K(G) = max{k(A) | A ∈ A(G)}
denotes the cross number of G. Note that σ(S) is used to denote the length
of the sequence in several of the articles we cite. The length, cross number
and sum define monoid homomorphisms from F(G0) to (N0,+), (Q≥0,+)
and G, respectively.

A sequence S∈F(G0) is called a zero-sum sequence (a block) if σ(S) = 0,
and it is called zero-sumfree if σ(T ) 6= 0 for every 1 6= T |S. The
set of all blocks, B(G0), is called the block monoid over G0. It is a Krull
monoid and its atoms, A(G0), are the minimal zero-sum sequences, i.e.,
zero-sum sequences such that no proper subsequence has sum zero. Let
B ∈ B(G0) and let B =

∏n
i=1 Ui with Ui ∈ A(G0) be a factorization of B

into atoms. Then we call n the length of the factorization. The set L(B) =
{n | B has a factorization of length n} is called the set of lengths of B and
is a finite subset of N0 (for B = 1 we have L(B) = {0}). For k ∈ N0 we set
Gk(G) = {B ∈ B(G) | |L(B)| ≤ k}. Note that G0(G) = ∅.

A subset G0 ⊂ G is called half-factorial if B(G0) is a half-factorial
monoid, i.e., |L(B)| = 1 for every B ∈ B(G0). Let

µ(G) = max {|G0| | G0 ⊂ G half-factorial}

denote the maximal cardinality of a half-factorial subset of G, an invariant
introduced in [24]. The main tool for investigations on half-factorial sets is
the following characterization (cf. [23, 24, 26] and for example [2, Proposition
5.4]): A set G0 ⊂ G is half-factorial if and only if k(A) = 1 for each A ∈
A(G0). In Section 5 we provide several further results on half-factorial sets,
which we will need in Section 7. A subset G0 ⊂ G is said to satisfy condition
(C0) if k(A) ∈ N for each A ∈ A(G0) (cf. [25] and [3, Section 4]).
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Let G0 ⊂ G and S ∈ F(G \G0). Then

Ω(G0, S) = SF(G0) ∩ B(G)

= {B ∈ B(G) | vg(B) = vg(S) for each g ∈ G \G0}.
Having these notations we are ready to recall the central definition of

this paper (cf. [5]).

Definition 2.1. Let G be a finite abelian group with at least three
elements and let k ∈ N. Then

ψk(G) = max{|S| | G0 ⊂ G half-factorial with |G0| = µ(G) and

S ∈ F(G \G0) with ∅ 6= Ω(G0, S) ⊂ Gk(G)}.

3. The counting function Gk(x). In this section we state the main
arithmetical results of this paper. We say that a real, piecewise continuous
function f(x) is subject to oscillations of lower logarithmic frequency γ and
size xθ−ε (for γ > 0, θ real) if there exists an increasing sequence (xn)∞n=1

of positive real numbers with limn→∞ xn =∞ such that:

(1) f(xn) 6= 0 for each n and the signs of f(xn) alternate.
(2) If V (Y ) denotes the number of terms of (xn) not exceeding Y , then

lim inf
Y→∞

V (Y )

log Y
= γ.

(3) If ε > 0, then for any Y sufficiently large the segment [Y 1−ε, Y ]
contains at least one element of (xn).

(4) We have

lim inf
n→∞

|f(xn)|
xθ−εn

=∞

for every ε > 0.

The function

Mk(x) =
1

2πi

�

C
ζ(s,Gk)

xs

s
ds, x ≥ 1,

where C is a contour starting at 1/2 − δ, for a small δ > 0, going closely
around [1/2, 1], counterclockwise, and back to 1/2 − δ, and ζ(s,Gk) is de-
fined by

ζ(s,Gk) =
∑

a∈Gk

1

N(a)s

for Re s > 1 and by analytic continuation in a larger area, is called the
main term of Gk(x) (cf. [13], [14, Theorem 3] and [20]), and the difference
is called the error term. For x < 1 we set Mk(x) = 0. In [20] it was proved
that the positivity of ψk(G) > 0 implies the existence of oscillations of
Gk(x)−Mk(x).
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Theorem 3.1 ([20]). Let K be an algebraic number field with ideal class
group G and let k be a positive integer. If |G| ≥ 3 and ψk(G) > 0, then
the error term Gk(x) −Mk(x) is subject to oscillations of positive lower
logarithmic frequency and size x1/2−ε.

Theorem 3.1 together with Theorem 6.1 now implies:

Theorem 3.2. Let K be an algebraic number field with ideal class group
G and let k ≥ 2 be a positive integer. If |G| ≥ 3, then the error term Gk(x)−
Mk(x) is subject to oscillations of positive lower logarithmic frequency and

size x1/2−ε.

More precise results can be obtained for quadratic number fields.

Proposition 3.3 ([21]). Let K be a quadratic number field with ideal
class group G, |G| ≥ 3, and let k be a positive integer. If ψk(G) > 0 or there
exists a half-factorial set G0 ⊂ G with |G0| = µ(G) containing an element
g ∈ G0 of order other than 1, 2, 3, 4, 6, then the error term Gk(x)−Mk(x)
is subject to oscillations of positive lower logarithmic frequency and size
x1/2−ε.

In this case using our Proposition 7.2(2) we obtain:

Corollary 3.4. Let K be a quadratic number field with ideal class group
G, |G| ≥ 3, and suppose G is not isomorphic to Cr

2 ⊕Cs4 ⊕Ct3 for any non-
negative integers r, s, t ∈ N. Then the error term G1(x)−M1(x) is subject

to oscillations of positive lower logarithmic frequency and size x1/2−ε.

Therefore the problem of oscillations of G1(x) −M1(x) for quadratic
fields is reduced to the study of ψ1(G) for some special types of groups. We
further rule out some of the remaining cases in Theorem 7.1.

4. Auxiliary results. In this section we prove several results that are
needed in Sections 6 and 7. Parts of the results of this section have already
occurred (implicitly) in other articles (cf. [8, 24]).

Lemma 4.1. Let ∅ 6= G0 ⊂ G and S, S′ ∈ F(G \G0).

(1) Ω(G0, S) 6= ∅ if and only if σ(S) ∈ 〈G0〉.
(2) Ω(G0, S) ·Ω(G0, S

′) ⊂ Ω(G0, SS
′).

(3) Let k, l ∈ N0 be such that Ω(G0, S) 6⊂ Gk(G) and Ω(G0, S
′) 6⊂ Gl(G).

Then

Ω(G0, SS
′) 6⊂ Gk+l(G).

(4) If S |S′ and ∅ 6= Ω(G0, S
′) ⊂ Gk(G) for some k ∈ N0, then Ω(G0, S)

⊂ Gk(G).
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Proof. (1) and (2) follow immediately from the definition.
(3) Let B ∈ Ω(G0, S) with |L(B)| ≥ k + 1, and B′ ∈ Ω(G0, S

′) with
|L(B′)| ≥ l + 1. The assertion follows from the inequalities

|L(BB′)| ≥ |L(B) + L(B′)| ≥ |L(B)|+ |L(B′)| − 1.

(4) Suppose Ω(G0, S) 6⊂ Gk(G). Then σ(S) ∈ 〈G0〉 and σ(S−1S′) ∈ 〈G0〉,
so Ω(G0, S

−1S′) 6⊂ ∅ = G0(G) and we obtain a contradiction from (3) with
l = 0.

In the following lemma we investigate the effect of replacing an element
g1 + g2 occurring in an atom by the sequence g1g2.

Lemma 4.2. Let g1, g2 ∈ G, A ∈ A(G) with (g1 + g2) |A and B =
(g1 + g2)−1g1g2A ∈ B(G).

(1) L(B) ⊂ {1, 2}.
(2) If G = G1 ⊕ G2, gi ∈ Gi \ {0}, A = (g1 + g2)S1S2 with Si ∈ F(Gi)

for i ∈ {1, 2}, then L(B) = {2}. In particular , giSi ∈ A(Gi) for
i ∈ {1, 2}. Moreover , if S′i ∈ F(Gi) and giS

′
i ∈ A(Gi) for i ∈ {1, 2},

then (g1 + g2)S′1S
′
2 ∈ A(G).

Proof. (1) Suppose that L(B) 6⊂ {1, 2}. Then there exist B1, B2, B3

∈ B(G) \ {1} with B = B1B2B3. Without restriction assume g1 |B1 and
g1g2 |B1B2. Thus (g1g2)−1(g1 + g2)B1B2 |A, a contradiction.

(2) By (1) it suffices to show that B /∈ A(G). We have

0 = σ(B) = g1 + σ(S1) + g2 + σ(S2).

Thus gi+σ(Si) = 0 and giSi ∈ B(G) for i ∈ {1, 2}. To prove the “moreover”
part, it suffices to note that S ′1S

′
2 is zero-sumfree.

In the following lemma we investigate Ω(G0, S) for sequences S 6= 1 in
F(G \ G0) that are minimal with the property ∅ 6= Ω(G0, S). By Lemma
4.1(2) this means σ(S) ∈ 〈G0〉 and σ(S′) /∈ 〈G0〉 for every proper subse-
quence 1 6= S′ |S.

Lemma 4.3. Let G0 ⊂ G be half-factorial and S ∈ F(G \ G0) \ {1}
minimal such that Ω(G0, S) 6= ∅, and let k = |k(Ω(G0, S) ∩ A(G))|. Then
Ω(G0, S) ⊂ Gk(G) and there exists some Bk ∈ Ω(G0, S) with |L(Bk)| = k.

Proof. Let B ∈ Ω(G0, S). We need to show that |L(B)| ≤ k. Let B =∏n
i=0 Ui be a factorization of B into atoms. Without restriction we assume

U0 /∈ A(G0). Thus there exists some 1 6= S ′ |S such that U0 = S′F with F ∈
F(G0). Due to the minimality of S we get S ′ = S. Consequently, Ui ∈ A(G0)
and k(Ui) = 1 for each i ∈ {1, . . . , n}. This implies that n = k(B) − k(U0)
and

|L(B)| ≤ |{k(A) | A ∈ Ω(G0, S) ∩ A(G)}| = k.
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Let {A1, . . . , Ak} ⊂ Ω(G0, S)∩A(G) be such that |k({A1, . . . , Ak})| = k.
By definition of S we have σ(S) ∈ 〈G0〉 and therefore there exists some

F ∈ F(G0) such that σ(F ) = (k − 1)σ(S). We set Bk = S−(k−1)F
∏k
i=1Ai.

Clearly, σ(Bk) = 0 and Bk ∈ Ω(G0, S). Moreover, Ai |Bk for each i ∈
{1, . . . , k}. Thus we get k(Bk) − k(Ai) + 1 ∈ L(Bk) for each i ∈ {1, . . . , k},
and |L(Bk)| ≥ k.

5. Results on half-factorial sets. In the proofs of our main results we
will make use of several results on µ(G) and half-factorial subsets of finite
abelian groups. In this section we summarize the known results we use and
establish some new. Further results on half-factorial sets and proofs, in the
present terminology, of most results we quote can be found in [3].

If G is a cyclic group, say G ∼= Cn, since every half-factorial set G0 ⊂ G
must also satisfy condition (C0), it follows that

G0 ⊂ {dg | 1 ≤ d |n}
for some g ∈ G with ord(g) = n ([3, Lemma 5.2]). Moreover, if G0 ⊂ G with
|G0| = µ(G), then 〈G0〉 = G (cf. [3, Proposition 3.5]). If n is a prime power,
possibly 1, then the set on the right-hand side is half-factorial. Thus, if G
is a cyclic group with prime power order, say |G| = pm, then µ(G) = m+ 1
and if G0 ⊂ G is a half-factorial set with |G0| = m+ 1, then G0 = {pig | i ∈
{0, . . . ,m}} for some g ∈ G with ord(g) = pm (cf. [23, 24, 26]).

If G is an elementary p-group with rank r(G) = r, then (cf. [8, Theo-
rem 8])

1 +

⌊
r

2

⌋
p+ 2

(
r

2
−
⌊
r

2

⌋)
≤ µ(G) ≤ 1 +

⌊
r

2
p

⌋
,

in particular if r is even, then µ(G) = 1 + rp/2. Moreover, it is known that
equality holds at the lower bound if p ≤ 7 (cf. [18, 22]), and no example is
known where equality does not hold.

The next lemma is essentially a reformulation of a result of L. Skula (cf.
[23, Proposition 3.2]).

Lemma 5.1. Let G be a finite abelian group and G0 ⊂ G a half-factorial
set with |G0| = µ(G). Then G0 is a subgroup if and only if |G| ≤ 2.

Proof. In [23, Proposition 3.2] it is proved that a finite abelian group G is
a half-factorial set if and only if |G| ≤ 2. This proves the “if” part. To obtain
the “only if” part, assume G0 ⊂ G is a subgroup and a half-factorial set with
maximal cardinality as well. We have to show that |G| ≤ 2. Again by [23,
Proposition 3.2], we get |G0| ≤ 2, and µ(G) ≤ 2. Now, G cannot contain any
two independent elements e1 and e2, since in this case {0, e1, e2} ⊂ G would
be a half-factorial subset of G with three elements, contradicting µ(G) ≤ 2.
Therefore, G is cyclic of prime power order. Since µ(Cpm) = m + 1 (cf.
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above), we get either µ(G) = 1 and |G| = 1, or µ(G) = 2 and |G| ∈ P.
In the latter case a subset with two elements cannot be a subgroup unless
|G| = 2.

The following proposition extends Corollary 6.4.3 of [3].

Proposition 5.2. Let p ∈ P, m ∈ N and G ∼= Cpm ⊕ Cpm. Further , let
{e1, e2} be a basis of G.

(1) G0 =
⋃m
i=0 p

i(e1 + 〈e2〉) is a half-factorial set with |G0| = µ(G), in
particular

µ(G) =
pm+1 − 1

p− 1
.

(2) ∅ 6= Ω(G0, g) ⊂ G1(G), with G0 as in (1), for every g ∈ 〈e2〉 \ {0}.
Proof. Let π1 : G→ 〈e1〉 denote the projection on the first coordinate.

(1) By [3, Corollary 6.4.3] we know that µ(G) ≤ pm+1−1
p−1 = |G0| and thus

it suffices to show that G0 is half-factorial. Let A ∈ A(G0); we will show
that k(A) = 1. For each g ∈ G0 we have ord(g) = ord(π1(g)). Therefore
k(A) = k(π1(A)) and, since π1(G0) = {pie1 | i ∈ {0, . . . ,m}} ⊂ 〈e1〉 is
half-factorial and π1(A) is a block, we have k(A) ∈ N. By the main result of
[6] we have k(A) ≤ K(G) = 2− 1/pm and thus k(A) = 1.

(2) Let g ∈ 〈e2〉\{0}. Since 〈G0〉 = G, it suffices to verify that Ω(G0, g) ⊂
G1(G). Let A ∈ Ω(G0, g) ∩ A(G). Then A = gF with F ∈ F(G0) zero-
sumfree and clearly F 6= 1. Since π1(F ) is a zero-sum sequence, we deduce
as in (1) that k(F ) = 1 and thus k(A) = 1/ord(g) + 1. By Lemma 4.3 this
implies the statement.

In Proposition 5.4 we will determine the structure of generating half-
factorial sets in Cr4 . First we recall two results, which we need in the proof
of this proposition.

In [4, Lemma 2.1] it is proved that if G ∼= Crpm with p ∈ P and m, r ∈ N,
then every generating subset G0 ⊂ G contains a basis G1 ⊂ G0.

The following lemma (cf. [3, Lemma 3.6]) provides results on half-
factorial sets that consist of independent elements of equal order and at
most two additional elements.

Lemma 5.3. Let G ∼= Crn with n, r ∈ N, {e1, . . . , er} a basis of G, and
a =

∑r
i=1 aiei, a

′ =
∑r

i=1 a
′
iei ∈ G distinct elements with ord(a) = ord(a′)

and ai, a
′
i ∈ {1, . . . , n} for each i ∈ {1, . . . , r}.

(1) If {a, e1, . . . , er} is a half-factorial set , then
∑r

i=1(n − ai) = n −
gcd{a1, . . . , ar, n}.

(2) If {a, a′, e1, . . . , er} is a half-factorial set and ai = a′i for some i ∈
{1, . . . , r}, then ord(aiei) < ord(a).
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Proposition 5.4. Let G ∼= Cr4 with r ∈ N and let G0 ⊂ G be a gen-
erating set. The set G0 is half-factorial if and only if there exists a basis
G1 = {e1, . . . , er}, s, t ∈ N0 with r = 3s+ t, and a map f from {1, . . . , t} to
itself such that

G0 ⊂ {0} ∪
t⋃

j=1

{ej, 2ej , 3ej + 2ef(j)}

∪
s−1⋃

i=0

{e3i+t+1, e3i+t+2, e3i+t+3, 3e3i+t+1 + 3e3i+t+2 + 3e3i+t+3}.

Proof. First we prove the “if” part. Let {e1, . . . , er} ⊂ G be a basis,
s, t ∈ N0 with 3s + t = r, and f a map from {1, . . . , t} to itself. For i ∈
{0, . . . , s− 1} we set

Hi = {e3i+t+1, e3i+t+2, e3i+t+3, 3e3i+t+1 + 3e3i+t+2 + 3e3i+t+3}
and we set F0 =

⋃t
j=1{ej , 2ej, 3ej + 2ef(j)}. We show that G′0 = {0} ∪ F0 ∪⋃s−1

i=0 Hi is half-factorial. Since A(G′0) = {0}∪A(F0)∪⋃s−1
i=0 A(Hi), it suffices

to show that Hi is half-factorial for each i ∈ {0, . . . , s − 1} and that F0 is
half-factorial. For i ∈ {0, . . . , s− 1} we have

A(Hi) = {h4 | h ∈ Hi} ∪
{

(3e3i+t+1 + 3e3i+t+2 + 3e3i+t+3)

3∏

l=1

e3i+t+l

}
,

thus each atom has cross number 1 and Hi is half-factorial.
Let A ∈ A(F0); we have to show that k(A) = 1. If (3ej + 2ef(j)) -A

for each j ∈ {1, . . . , t} with f(j) 6= j, then A ∈ A({el, 2el}) for some l ∈
{1, . . . , t} and it follows immediately that k(A) = 1. Thus assume without
restriction that f(1) 6= 1 and g = (3e1+2ef(1)) |A. We set n = f(1). Clearly,

vg(A) ≤ 4 and if vg(A) = 4, then A = g4 and k(A) = 1. We distinguish two
cases.

Case 1: vg(A) = 2. If e2
1 |A or (2e1) |A, it follows that A = e2

1g
2, respec-

tively A = (2e1)g2, and we are done. Thus assume e2
1 -A and (2e1) -A. Since

the sum of A is zero, there exists some l ∈ {2, . . . , t} such that f(l) = 1
and (3el + 2e1) |A with odd multiplicity. Therefore el |A and consequently
A = g2(3el + 2e1)el and k(A) = 1.

Case 2: vg(A) ∈ {1, 3}. It follows that e1 |A. If e2
n |A or (2en)|A, we

have A = ge1e
2
n, respectively A = ge1(2en), and we are done. Thus assume

there exists some m ∈ {2, . . . , t} \ {n} with f(m) = n and (3em + 2en) |A
with odd multiplicity. This implies that em |A and A = g(3em + 2en)e1em.

Next we prove the “only if” part. Let G0 ⊂ G be a generating half-
factorial set. Then there exists a basis G1 = {e1, . . . , er} ⊂ G0. For g ∈
G0 \ G1 it follows by Lemma 5.3 that either g = 0, g = 2ei, g = 3ei + 2ej,
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or g = 3ei + 3ej + 3el for distinct i, j, l ∈ {1, . . . , r}. Moreover, for each
i ∈ {1, . . . , r} there exists at most one element gi ∈ G0 such that gi =
3ei +

∑r
j=1, j 6=i bjej with bj ∈ {0, 1, 2, 3}. Thus it remains to show that if

g = 3ei + 3ej + 3el ∈ G0 with distinct i, j, l ∈ {1, . . . , r}, then there is no
h = 2ei+

∑r
ν=1, ν 6=i b

′
νeν ∈ G0 with b′ν ∈ {0, 3}. Assume to the contrary that

such an element exists. We consider the atom A = g2h
∏r
ν=1, ν 6=i e

cν
ν with

cν ∈ {0, 1, 2, 3} uniquely determined by independence. We have cj ≡ 2− b′j
(mod 4) and cl ≡ 2 − b′l (mod 4), hence the cross number of A is greater
than 1, a contradiction.

In particular, this proposition shows that the maximal cardinality of a
generating half-factorial set in Cr

4 with r ≥ 2 is 1 + 3r. Thus for pm = 4 and
r ≥ 2 the upper bound derived in [3, Proposition 3.7] for the cardinality of
a generating half-factorial set in Cr

pm is sharp.

6. Positivity of ψk(G) for k ≥ 2. In this section we show that the
invariants ψk(G) for k ≥ 2 are all positive.

Theorem 6.1. Let G be a finite abelian group with |G| ≥ 3 and let k ≥ 2
be an integer. Then ψk(G) > 0.

Proof. From the definition of ψk(G) it follows that ψk+1(G) ≥ ψk(G) for
every k ∈ N. Therefore it is enough to consider the case k = 2. Let G0 ⊂ G
be half-factorial with |G0| = µ(G). By Lemma 5.1 there exist g1, g2 ∈ G0

(possibly g1 = g2) such that g1 + g2 /∈ G0. Clearly, g1 + g2 ∈ 〈G0〉 and
Lemma 4.1 shows that Ω(G0, g1 + g2) 6= ∅. We assert that

Ω(G0, g1 + g2) ⊂ G2(G).

By Lemma 4.3 it suffices to prove that |k(Ω(G0, g1 + g2) ∩ A(G))| ≤ 2. Let
A ∈ Ω(G0, g1 + g2) ∩ A(G). We show that

k(A) ∈
{
j − 1

ord(g1)
− 1

ord(g2)
+

1

ord(g1 + g2)

∣∣∣∣ j ∈ {1, 2}
}
.

We consider the block B = (g1 + g2)−1g1g2A ∈ B(G0). Clearly,

k(B) = k(A) +
1

ord(g1)
+

1

ord(g2)
− 1

ord(g1 + g2)

and by Lemma 4.2 we have L(B) ⊂ {1, 2}. Since G0 is half-factorial, this
implies k(B) ∈ {1, 2}. Consequently, ∅ 6= Ω(G0, g1 + g2) ⊂ G2(G) and
ψ2(G) > 0.

7. Positivity of ψ1(G). In this section we establish results on the posi-
tivity of ψ1(G). If µ(G) and some half-factorial set G0 ⊂ G with |G0| = µ(G)
are known, then it is usually not difficult to give an example of a sequence
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S ∈ F(G \ G0) \ {1} such that ∅ 6= Ω(G0, S) ⊂ G1(G), and thus to ob-
tain ψ1(G) > 0. Since for most groups µ(G) is not known, we are not able
to prove ψ1(G) > 0 in general. But we will prove the positivity in several
special cases.

Theorem 7.1. We have ψ1(G) > 0 for every finite abelian group G with
|G| ≥ 3 satisfying at least one of the following conditions:

(1) G ∼= Cpm for p ∈ P and m ∈ N.
(2) G ∼= Cpmqn for p, q ∈ P and m,n ∈ N.
(3) G ∼= Cpm ⊕ Cpm for p ∈ P and m ∈ N.
(4) G is an elementary p-group with even rank.

(5) G is an elementary p-group with odd rank and µ(G) = 2 + r(G)−1
2 p.

(6) G is an elementary p-group and r(G) > rp for some rp ∈ N0.
(7) G is an elementary p-group with exponent p ≤ 7.
(8) G ∼= Cr4 for r ∈ N.
(9) |G| ≤ 95.

Before proving this theorem, we prove the positivity of ψ1(G) assum-
ing different properties for some half-factorial set with maximal cardinality
(Proposition 7.2). Many groups for which µ(G) is known have some half-
factorial subset with maximal cardinality satisfying one of the conditions of
Proposition 7.2, and this will be used in the proof of Theorem 7.1.

Proposition 7.2. Let G0 ⊂ G be a half-factorial set with |G0| = µ(G).

(1) If there exist {0} ( G′0, G
′′
0 ⊂ G0 such that G0 = G′0 ∪ G′′0 and

〈G0〉 = 〈G′0〉 ⊕ 〈G′′0〉, then ψ1(G) > 0.
(2) If there exists some g ∈ G0 such that 〈G0\{g}〉 6= G, then ψ1(G) > 0.

In particular , if 〈G0〉 6= G, then ψ1(G) > 0.

Proof. (1) Let g′ ∈ G′0 \ {0} and g′′ ∈ G′′0 \ {0}. By Lemma 4.2(2) we
have ∅ 6= Ω(G0, g

′ + g′′) ⊂ G1(G) and the statement follows.
(2) Suppose g ∈ G0 with 〈G0 \ {g}〉 6= G. We consider two cases.

Case 1: g ∈ 〈G0 \ {g}〉. Since 〈G0〉 = 〈G0 \ {g}〉 6= G, there exists some
h ∈ G \ 〈G0〉. We have −h ∈ G \ 〈G0〉 and, since σ(−hh) = 0, we have
−hh ∈ Ω(G0,−hh). Moreover, Ω(G0,−hh) ∩ A(G) = {−hh} and applying
Lemma 4.3 we get ∅ 6= Ω(G0,−hh) ⊂ G1(G) and ψ1(G) ≥ |−hh| > 0.

Case 2: g /∈ 〈G0\{g}〉. Clearly, −g /∈ 〈G0\{g}〉, and −g = g if and only
if ord(g) = 2. If −g = g, then 〈G0〉 = 〈g〉⊕ 〈G0 \{g}〉 and ψ1(G) > 0 by (1).
Thus we assume −g 6= g. Then −g /∈ G0 and Ω(G0,−g) ∩ A(G) = {−gg}.
By Lemma 4.3 we have ∅ 6= Ω(G0,−g) ⊂ G1(G).

Since G0 6= ∅, the “in particular” statement is obvious.

There are examples of groups that have a half-factorial subset with max-
imal cardinality that does not generate the group (cf. [3, Corollary 6.5]) and
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thus Proposition 7.2(2) can be used to obtain further examples of groups
with ψ1(G) > 0.

Proposition 7.2(1) implies ψ1(G) > 0 for all groups G = G′ ⊕ G′′ with
µ(G) = µ(G′)+µ(G′′)−1, sinceG0 = G′0∪G′′0, whereG′0 ⊂ G′ is half-factorial
with |G′0| = µ(G′), and G′′0 ⊂ G′′ is half-factorial with |G′′0| = µ(G′′), fulfills
the conditions.

The following corollary provides equivalent conditions for ψ1(G) = 0.

Corollary 7.3. Let G be a finite abelian group. The following state-
ments are equivalent :

(1) ψ1(G) = 0.
(2) For every half-factorial G0 ⊂ G with |G0| = µ(G) and for every

S ∈ F(G \G0) \ {1} we have Ω(G0, S) 6⊂ G1(G).
(3) For every half-factorial G0 ⊂ G with |G0| = µ(G) and for every

g ∈ G \G0 we have Ω(G0, g) 6⊂ G1(G).
(4) For every half-factorial G0 ⊂ G with |G0| = µ(G) and for every

g ∈ G \G0 we have |k(Ω(G0, g) ∩ A(G))| > 1.

Proof. We can assume that 〈G0〉 = G for every half-factorial G0 ⊂ G
with |G0| = µ(G), since otherwise statement (1) is false by Proposition 7.2
and (2)–(4) are obviously false as well.

Hence, Ω(G0, S) 6= ∅ for every S ∈ F(G\G0) by Lemma 4.1. Statements
(1) and (2) are equivalent by definition of ψ1(G). (3) and (4) are equivalent
by Lemma 4.3. Statement (3) is a special case of (2). Thus it remains to
show that (3) implies (2). Let G0 ⊂ G be half-factorial with |G0| = µ(G).
Further, let S ∈ F(G \ G0) \ {1} and let g |S. By assumption we have
Ω(G0, g) 6⊂ G1(G) and Ω(G0, S) 6= ∅, so Ω(G0, S) 6⊂ G1(G) by Lemma 4.1.

We proceed to prove the main result of this section. We make use of the
results on half-factorial sets given in Section 5 without further reference.

Proof of Theorem 7.1. (1) Let G ∼= Cpm with p ∈ P and m ∈ N. Further
let G0 ⊂ G be half-factorial with |G0| = µ(G). Then G0 = {pig | i ∈
{0, . . . ,m}} for some g ∈ G with ord(g) = pm. Thus G0 fulfills the conditions
of Proposition 7.2(2) and we are done.

(2) Let G ∼= Cpmqn with p, q ∈ P, p < q and m,n ∈ N. Let G0 ⊂ G be
half-factorial with |G0| = µ(G). Then 〈G0〉 = G and there exists a generating
element g of G such that

G0 ⊂
{
dg
∣∣ 1 ≤ d | pmqn

}
= G′0.

First we show that |k(Ω(G′0, 2p
mg) ∩ A(G))| ≤ 1. Let A ∈ Ω(G′0, 2p

mg) be
an atom and B = (pmg)2(2pmg)−1A. Since B ∈ B(G′0), B 6= 1, and G′0
satisfies condition (C0), we have k(B) = l for a positive integer l. Hence
k(A) = k(B)− 1/qn = l− 1/qn. On the other hand, k(A) ≤ K(G) and by [9,
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Theorem 2] we know that

K(G) =
pm − 1

pm
+
qn − 1

qn
+

1

pmqn
.

Thus k(A) = 1− 1/qn. Since G0 ⊂ G′0, it follows that Ω(G0, S) ⊂ Ω(G′0, S)
and thus clearly |k(Ω(G0, 2p

mg) ∩ A(G))| ≤ 1. This implies Ω(G0, 2p
mg) ⊂

G1(G) by Lemma 4.3. Since 〈G0〉 = G, we have Ω(G0, 2p
mg) 6= ∅ and the

result follows.
(3) Let G ∼= Cpm ⊕ Cpm with p ∈ P and m ∈ N. By Proposition 5.2

there exists a half-factorial subset G0 ⊂ G with maximal cardinality and an
element g ∈ G \ G0 such that ∅ 6= Ω(G0, g) ⊂ G1(G). Thus the statement
follows immediately.

(4) Let G be an elementary p-group with even rank. If r(G) = 2, then the
result follows by (3). Suppose r(G) ≥ 4. Then there exist subgroups G′, G′′

such that G = G′ ⊕G′′ and µ(G) = µ(G′) + µ(G′′)− 1. Thus the statement
follows by Proposition 7.2(1).

(5) Let G be an elementary p-group with odd rank and µ(G) = 2 +
r(G)−1

2 p. If r(G) = 1, then the statement follows by (1). Suppose r(G) ≥ 3.
Then G = G′⊕G′′ with r(G′) = 1. By assumption µ(G) = µ(G′)+µ(G′′)−1
and the statement follows by Proposition 7.2(1).

(6) For s ∈ N0 let δ(s) = µ(C2s+1
p ) − 2 − sp ∈ Z. We know δ(s) ∈

{0, . . . , (p− 1)/2} and δ(·) is a non-decreasing function. Let sp ∈ N be such
that δ(sp) = max{δ(s) | s ∈ N0}; then δ(s) = δ(sp) for every s ≥ sp. We
set rp = 2sp + 1. Let r(G) = r > rp. If r is even, the assertion is already
proved in (4). Suppose r is odd. Let G = G′ ⊕ G′′ with r(G′) = r − rp and
r(G′′) = rp. Then µ(G) = µ(G′) + µ(G′′)− 1 and thus by Proposition 7.2(1)
the statement follows.

(7) Let G be an elementary p-group with p ≤ 7. If r(G) is even, then
the statement follows by (4). If r(G) is odd, then µ(G) = 2 + r−1

2 p, which
implies the assertion by (5).

(8) Let G ∼= Cr4 with r ∈ N. For r = 1 the statement follows by (1) and
for r = 2 by (3). Suppose r ≥ 3. If µ(G) > 1 + 3r, it follows by Proposition
5.4 that a half-factorial set with maximal cardinality does not generate G,
and the statement follows by 7.2(2).

Assume µ(G) = 1 + 3r. If r ≥ 4, there exist s, t ≥ 2 and two subgroups
G′ ∼= Cs4 , G′′ ∼= Ct4 of G such that G = G′ ⊕G′′. It follows that

1 + 3r = µ(G) ≥ µ(G′) + µ(G′′)− 1 ≥ 1 + 3(s+ t) = 1 + 3r.

Thus the statement follows by 7.2(1). It remains to consider r = 3. Let
{e1, e2, e3} ⊂ G be a basis. Further let G0 = {0, e1, e2, e3, 2e1, 2e2, 2e3, 3e1 +
2e2, 3e2 + 2e3, 3e3 + 2e1}. By Proposition 5.4 this set is half-factorial and by
our assumption on µ(G) it has maximal cardinality. Let g = 2e1 +2e2 +2e3.
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We assert that ∅ 6= Ω(G0, g) ⊂ G1(G), which implies the statement immedi-
ately. Clearly, Ω(G0, g) is non-empty and by Lemma 4.3 it suffices to show
that each atom in it has the same cross number. Let A ∈ Ω(G0, g) ∩ A(G).
We assert that k(A) = 2. We observe that if e2

i |A, then A′ = (2ei)e
−2
i A

has the same cross number as A and is a zero-sum sequence. Since every
factorization of A′ yields a factorization of A, it follows that A′ is an atom.
Similarly, if (3ei + 2ej)

2 |A or ei(3ei + 2ej) |A, then (2ei)(3ei + 2ej)
−2A, re-

spectively (2ej)e
−1
i (3ei + 2ej)

−1A, is an atom with the same cross number.
Note that vei(A) ≡ v3ei+2ej (A) (mod 2) for each i ∈ {1, 2, 3} and j

such that 3ei + 2ej ∈ G0. Thus by repeated application of these replace-
ments, we obtain an atom A∗ ∈ Ω(G0, g) such that k(A) = k(A∗) and
none of {e1, e2, e3, 3e1 + 2e2, 3e2 + 2e3, 3e3 + 2e1} divides A∗. Thus A∗ =
g(2e1)(2e2)(2e3) and k(A) = k(A∗) = 2.

(9) The proof uses computational methods. First we determine all half-
factorial subsets G0 with maximal cardinality. This is done by examining the
atoms in F(G′0), where G′0 ⊂ G is a subset satisfying condition (C0). Then
we pick one such subset G0, find all the zero-sumfree sequences in F(G0),
and check whether there exists a g ∈ G \ G0 such that all zero-sumfree S
with σ(S) = −g have the same cross number. If we can find such a g for at
least one G0, the assertion ψ1(G) > 0 is proved. The details can be found
at http://www.amu.edu.pl/∼maciejr.

Addendum. Recently, A. Plagne and the second author proved that
µ(Crp) = 2+ r−1

2 p for p ∈ P and r odd. Thus, every elementary p-group with
odd rank fulfils condition (5) of Theorem 7.1, and consequently ψ1(G) > 0
if G is an elementary p-group.
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