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REGULAR STATISTICAL CONVERGENCE OF
DOUBLE SEQUENCES

BY

FERENC MÓRICZ (Szeged)

Abstract. The concepts of statistical convergence of single and double sequences of
complex numbers were introduced in [1] and [7], respectively. In this paper, we introduce
the concept indicated in the title. A double sequence {xjk : (j, k) ∈ N2} is said to be
regularly statistically convergent if (i) the double sequence {xjk} is statistically convergent
to some ξ ∈ C, (ii) the single sequence {xjk : k ∈ N} is statistically convergent to some
ξj ∈ C for each fixed j ∈ N \ S1, (iii) the single sequence {xjk : j ∈ N} is statistically
convergent to some ηk ∈ C for each fixed k ∈ N \ S2, where S1 and S2 are subsets of N
whose natural density is zero. We prove that under conditions (i)–(iii), both {ξj} and {ηk}
are statistically convergent to ξ. As an application, we prove that if f ∈ L log+ L(T2),
then the rectangular partial sums of its double Fourier series are regularly statistically
convergent to f(u, v) at almost every point (u, v) ∈ T2. Furthermore, if f ∈ C(T2), then
the regular statistical convergence of the rectangular partial sums of its double Fourier
series holds uniformly on T2.

1. Regular convergence of double sequences. Let {xjk : (j, k) ∈
N2}, N := {0, 1, 2, . . .}, be a double sequence of complex numbers. We recall
that {xjk} is said to be convergent in Pringsheim’s sense to some complex
number ξ if for every ε > 0 there exists n0 = n0(ε) ∈ N such that

|xjk − ξ| < ε if min{j, k} > n0.

If this is the case, we write limj,k→∞ xjk = ξ.
We present three examples which illustrate the weaknesses of the concept

of convergence in Pringsheim’s sense.

Example 1. Let

xjk :=
{

max{j, k} if min{j, k} = 0,

0 otherwise.
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Clearly,
lim

j,k→∞
xjk = 0, sup

(j,k)∈N2
|xjk| =∞.

This example shows that the convergence of a double sequence in Pring-
sheim’s sense does not imply the boundedness of its terms.

Example 2. Let

xjk :=
1

2 + min{j, k}+ (−1)j+k
, (j, k) ∈ N2.

Clearly, limj,k→∞ xjk = 0, but neither the single sequence {xjk : k ∈ N} nor
{xjk : j ∈ N} is convergent for any fixed j ∈ N or k ∈ N, respectively.

Example 3. The converse situation may also occur. Let

xjk :=
{

1 if j = k ∈ N,

0 otherwise.

Clearly, {xjk} is not convergent in Pringsheim’s sense, but the single se-
quences {xjk : k ∈ N} and {xjk : j ∈ N} are convergent to 0 for each fixed
j ∈ N and k ∈ N, respectively.

Following Hardy [3], a double sequence {xjk} is said to be regularly
convergent if {xjk} is convergent in Pringsheim’s sense and, in addition,
the single sequences {xjk : k ∈ N} and {xjk : j ∈ N} are convergent for
each fixed j ∈ N and k ∈ N, respectively. Clearly, the regular convergence
of a double sequence implies the boundedness of its terms. Furthermore,
Hardy proved that the limit of a regularly convergent double sequence {xjk}
can be computed as the iterated limit of the sequence of the limits of the
corresponding single sequences:

lim
j,k→∞

xjk = lim
j→∞

( lim
k→∞

xjk) = lim
k→∞

( lim
j→∞

xjk).

We note that the definition of regular convergence was introduced in
[3] only for double sequences, while for multiple sequences it can be found,
for example, in [4, p. 34]. Furthermore, the notion of regular convergence
was rediscovered by the present author in [5] and [6], where it was defined in
another but equivalent form (and called “convergence in a restricted sense”).

2. Statistical convergence of single and double sequences. From
now on, we allow that certain terms of a single sequence {xj : j ∈ N} in
question are not defined; or, in other words, one may set xj := ∗ for certain
j ∈ N, where “∗” indicates an unspecified symbol. Except these unspecified
terms, all the other terms of the sequence {xj} are assumed to be complex
numbers. The significance of this agreement will be clear in Section 3.
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We recall that such a sequence {xj : j ∈ N} is said to be statistically
convergent to some ξ ∈ C, in symbols: st-limj→∞ xj = ξ, if for every ε > 0,

lim
m→∞

1
m+ 1

|{j ≤ m : |xj − ξ| 6≤ ε}| = 0,

where by j ≤ m we mean that j = 0, 1, . . . ,m; by |xj − ξ| 6≤ ε we mean
that either xj = ∗ or xj is defined but |xj − ξ| > ε; and by |S| we mean
the cardinality of the set S ⊆ N. It is plain that if a sequence {xj} of
complex numbers is convergent in the ordinary sense, then it is statistically
convergent to the same limit. The converse implication is trivially not true.

We recall that the natural (or asymptotic) density of a set S ⊆ N is
defined by

d1(S) := lim
m→∞

1
m+ 1

|{j ≤ m : j ∈ S}|,

provided that the limit on the right-hand side exists. Accordingly, the con-
cept of statistical convergence can be reformulated in terms of the natural
density as follows. A sequence {xj : j ∈ N} is statistically convergent to
some ξ ∈ C if and only if for every ε > 0,

(2.1) d1({j ∈ N : |xj − ξ| 6≤ ε}) = 0.

In particular, we have

d1({j ∈ N : xj is not defined}) = 0.

Clearly, (2.1) is equivalent to the following:

d1({j ∈ N : xj is defined and |xj − ξ| ≤ ε}) = 1.

Now, it is reasonable to define the natural density of a set S ⊆ N2 as
follows:

d2(S) := lim
m,n→∞

1
(m+ 1)(n+ 1)

|{j ≤ m and k ≤ n : xjk ∈ S}|,

provided that this limit exists in Pringsheim’s sense. We recall that a double
sequence {xjk : (j, k) ∈ N2}, certain terms of which may be undefined, while
all the others are complex numbers, is said to be statistically convergent to
some ξ ∈ C, if for every ε > 0,

(2.2) d2({(j, k) ∈ N2 : |xjk − ξ| 6≤ ε}) = 0.

If this is the case, we write st-limj,k→∞ xjk = ξ.
A few remarks and examples are appropriate here.
It is well known that the convergence in Pringsheim’s sense of a double

sequence does not imply the boundedness of its terms. On the other hand,
the statistical convergence of a double sequence {xjk} implies the statistical
boundedness of its terms in the sense that there exists a positive number B
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such that

(2.3) d2({(j, k) ∈ N2 : |xjk| 6≤ B}) = 0.

Indeed, by (2.2) the number B := |ξ|+ ε is suitable in (2.3) for any ε > 0.
It is plain that if a double sequence {xjk} of complex numbers is con-

vergent in Pringsheim’s sense, then it is statistically convergent to the same
limit. The converse implication is trivially not true.

Example 4. Let N+ := {1, 2, . . .} and

xjk :=





1 if k = `2j , ` ∈ N+, j ∈ N,

or j = `2k, ` ∈ N+, k ∈ N;

0 otherwise.
Clearly, st-limj,k→∞ xjk = 0, while st-limk→∞ xjk does not exist for any
fixed j ∈ N+ and st-limj→∞ xjk does not exist for any fixed k ∈ N+ :=
{1, 2, . . .}.

Example 5. The converse situation may also occur. Let

xjk :=





1 if k = j + 1, j + 2, . . . , 2j and j ∈ N+,

or j = k + 1, k + 2, . . . , 2k and k ∈ N+;

0 otherwise.
Clearly, st-limj,k→∞ xjk does not exist, while

st-lim
k→∞

xjk = st-lim
j→∞

xjk = 0 for every fixed j ∈ N and k ∈ N,

respectively.
We note that the term “statistical convergence” first appeared in the

paper [1] by Fast, where this concept was attributed to Steinhaus [9], who
used the term “asymptotic convergence”. However, it was Antoni Zygmund
who proved theorems on the statistical convergence of Fourier series in the
first edition of his book “Trigonometric Series” in 1935, where the term
“almost convergence” was used in place of “statistical convergence”. (See
[10, Vol. 2, pp. 181 and 188].)

Some basic properties of statistical convergence were proved by Schoen-
berg [8] in 1959 and by Fridy [2] in 1985 in the case of single sequences, and
by the present author in 2003 in the case of multiple sequences.

3. Regular statistical convergence of double sequences. Again
we consider a double sequence {xjk : (j, k) ∈ N2}, certain terms of which
may be undefined, while all the others are complex numbers. We say that
{xjk} is regularly statistically convergent to some ξ ∈ C (or alternatively, we
may say that the statistical convergence of {xjk} is regular) if the following
three conditions are satisfied:
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(i) the double sequence {xjk} is statistically convergent to ξ,
(ii) the single sequence {xjk : k ∈ N} is statistically convergent to some

ξj ∈ C for each fixed j ∈ N \ S1, where d1(S1) = 0,
(iii) the single sequence {xjk : j ∈ N} is statistically convergent to some

ηk ∈ C for each fixed k ∈ N \ S2, where d1(S2) = 0.

Our main result reads as follows.

Theorem 1. If a double sequence {xjk} is regularly statistically conver-
gent to some ξ ∈ C, then

(3.1) st-lim
j→∞

ξj = ξ and st-lim
k→∞

ηk = ξ.

Proof. By condition (i) of regular statistical convergence, for all ε > 0
and δ > 0 there exists m0 = m0(ε, δ) ∈ N such that

1
(m+ 1)(n+ 1)

|{j ≤ m and k ≤ n : |xjk − ξ| 6≤ ε/2}| < δ,

or equivalently,

(3.2)
1

(m+ 1)(n+ 1)

m∑

j=0

|{k ≤ n : |xjk − ξ| 6≤ ε/2}| < δ if m,n > m0.

Since d1(S1) = 0, for every δ > 0 there exists m1 = m1(δ) ∈ N such that

(3.3)
1

m+ 1
|{j ≤ m : j ∈ S1}| < δ if m > m1.

Also by (ii), for all j ∈ N\S1, ε > 0, and δ > 0 there exists nj = nj(ε, δ) ∈ N
such that

1
n+ 1

|{k ≤ n : |xjk − ξj | 6≤ ε/2}| < δ,

or equivalently,

(3.4) `j := |{k ≤ n : |xjk − ξj | ≤ ε/2}| > (1− δ)(n+ 1) if n > nj .

Without loss of generality, we may assume that 0 < δ ≤ 1/2. For the
time being, fix m ∈ N so that m > m̃0 := max{m0,m1}, and let

(3.5) n > ñ0 := max{m0, nj : j ∈ [0,m] \ S1}.
Now, assume that |ξj − ξ| > ε for some j ∈ [0,m] \ S1. If, in addition,

|xjk − ξj | ≤ ε/2 for some k ∈ N, then

|xjk − ξ| ≥ |ξj − ξ| − |xjk − ξj | > ε/2.

Taking into account (3.4), we find that

|{k ≤ n : |xjk − ξ| > ε/2}| ≥ `j if |ξj − ξ| > ε and n > nj .
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By this inequality and (3.5), we have

(3.6) |{j ∈ [0,m] \ S1 : |ξj − ξ| > ε}|

≤
∑

j∈[0,m]\S1

1
`j
|{k ≤ n : |xjk − ξ| > ε/2}| if n > ñ0.

Combining (3.2)–(3.4), (3.6) and the fact that δ ≤ 1/2 gives
1

m+ 1
|{j ≤ m : |ξj − ξ| 6≤ ε}| ≤

1
m+ 1

|{j ≤ m : j ∈ S1}|

+
1

m+ 1

∑

j∈[0,m]\S1

1
`j
|{k ≤ n : |xjk − ξ| > ε/2}|

< δ +
1

(1− δ)(m+ 1)(n+ 1)

m∑

j=0

|{k ≤ n : |xjk − ξ| 6≤ ε/2}|

< δ +
δ

1− δ ≤ 3δ if m > m̃0 and n > ñ0.

Now, letting m→∞ yields

lim sup
m→∞

1
m+ 1

|{j ≤ m : |ξj − ξ| 6≤ ε}| ≤ 3δ.

Since δ > 0 can be chosen as small as we want, it follows that

lim
m→∞

1
m+ 1

|{j ≤ m : |ξj − ξ| 6≤ ε}| = 0,

which is valid for every ε > 0. This proves the first equality in (3.1).
The second equality in (3.1) can be proved in an analogous way.

In Section 4, we shall use a version of Theorem 1 when the xjk : D → C
are functions for (j, k) ∈ N2 with a common domain D and exhibiting uni-
form statistical convergence in each of (i)–(iii) of the definition of regular
statistical convergence. For our purpose, it is enough to consider the partic-
ular case when the exceptional sets S1 and S2, indicated in the definition of
regular statistical convergence, are empty.

Theorem 1∗. Let {xjk : D → C} be a double sequence of functions such
that

(i) the double sequence {xjk} is statistically convergent to some func-
tion ξ : D → C uniformly on D;

(ii) the single sequence {xjk : k ∈ N} is statistically convergent to some
function ξj : D → C uniformly on D for each fixed j ∈ N;

(iii) the single sequence {xjk : j ∈ N} is statistically convergent to some
function ηk : D → C uniformly on D for each fixed k ∈ N.

Then we have (3.1) uniformly on D.
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Proof. It goes along the same lines as the proof of Theorem 1. In particu-
lar, the proof of the first equality in (3.1) hinges on the fact that inequalities
(3.2) and (3.4) hold uniformly on D.

4. An application to double Fourier series. Let f = f(u, v) be a
periodic function in each variable and integrable in Lebesgue’s sense on the
two-dimensional torus T2 := [−π, π) × [−π, π). We recall that the double
Fourier series of f is defined by

(4.1) f(u, v) ∼
∑∑

(j,k)∈Z2

f̂(j, k)ei(ju+kv),

where Z := {. . . ,−1, 0, 1, 2, . . .} and the Fourier coefficients f̂(j, k) are de-
fined by

(4.2) f̂(j, k) :=
1

4π2

���

T2

f(u, v)e−i(ju+kv) du dv, (j, k) ∈ Z2.

We consider the (symmetric) rectangular partial sums

smn(f, u, v) :=
∑

|j|≤m

∑

|k|≤n
f̂(j, k)ei(ju+kv), (m,n) ∈ N2,

of the series in (4.1). The reader is referred to [10, Vol. 2, Ch. 17] for more
details.

We proved in [7] that if
���

T2

|f(u, v)|(log+ |f(u, v)|) du dv <∞,

in symbols,

f ∈ L log+ L(T2), where log+ |f | := max{0, log |f |},
then

(4.3) st-lim
m,n→∞

smn(f, u, v) = f(u, v) if (u, v) ∈ T2 \W1,

where λ2(W1) = 0 and λ2(·) denotes the Lebesgue measure on the real
plane R2. Furthermore, we also proved in [7] that if f ∈ C(T2), then (4.3)
holds uniformly on T2.

Now, we shall prove that stronger conclusions are valid under the same
conditions.

Theorem 2. (i) If f ∈ L log+ L(T2), then the statistical convergence in
(4.3) is regular at almost every point (u, v) ∈ T2.

(ii) If f ∈ C(T2), then the statistical convergence in (4.3) is regular
uniformly on T2.
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Proof. According to what we have said just before stating Theorem 2, it
remains to check conditions (ii) and (iii) in the definition of regular statistical
convergence. To this end, we fix m ∈ N and consider the single series

(4.4) smn(f, u, v) =
∑

|j|≤m
eiju

∑

|k|≤n
f̂(j, k)eikv, n ∈ N.

The statistical convergence of this sequence as n→∞ for each fixed m ∈ N
follows from the statistical convergence of the single sequence

(4.5)
∑

|k|≤n
f̂(j, k)eikv, n ∈ N,

for each fixed j ∈ Z.
By (4.2) and Fubini’s theorem, we observe that

f̂(j, k) =
1

2π

�

T

(
1

2π

�

T
f(u, v)e−iju du

)
e−ikv dv = f̂j(k), j, k ∈ Z,

where

(4.6) fj(v) :=
1

2π

�

T
f(u, v)e−iju du, j ∈ Z, v ∈ T.

Again by Fubini’s theorem, we have
�

T
|fj(v)| dv ≤ 1

2π

�

T

( �

T
|f(u, v)| du

)
dv =

� �

T2

|f(u, v)| du dv <∞.

That is, fj ∈ L(T) and its Fourier series is of the form

(4.7) fj(v) ∼
∑

k∈Z
f̂(j, k)eikv, j ∈ Z.

Consequently, the sums in (4.5) are the (symmetric) partial sums of the
Fourier series occurring in (4.7). Making use of [7, Theorem 3] gives

(4.8) st-lim
n→∞

∑

|k|≤n
f̂(j, k)eikv = fj(v) if v ∈ T \ Vj ,

where λ1(Vj) = 0 for each j ∈ Z and λ1(·) denotes the Lebesgue measure
on R. Taking into account the relation between (4.4) and (4.5) explained
above, we conclude that

(4.9) st-lim
n→∞

smn(f, u, v) =
∑

|j|≤m
fj(v)eiju if (u, v) ∈ T2 \W2,

for each fixed m ∈ N, where

W2 := T×
⋃

j∈Z
Vj .
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Clearly, we have λ2(W2) = 0. Thus, condition (ii) in the definition of regular
statistical convergence is satisfied.

The fulfillment of condition (iii) there can be checked in an analogous
way. This time, let

(4.10) gk(u) :=
1

2π

�

T
f(u, v)e−ikv dv, k ∈ Z, u ∈ T.

Then gk ∈ L(T) for each k ∈ Z and the symmetric counterpart of (4.8) reads
as follows:

(4.11) st-lim
m→∞

∑

|j|≤m
f̂(j, k)eiju = gk(u) if u ∈ T \ Uk,

where λ1(Uk) = 0 for each k ∈ Z. It follows that

(4.12) st-lim
m→∞

smn(f, u, v) =
∑

|k|≤n
gk(u)eikv if (u, v) ∈ T2 \W3,

for each fixed n ∈ N, where

W3 :=
( ⋃

k∈Z
Uk

)
× T.

Clearly, λ2(W3) = 0.
Taking into account (4.3), (4.9) and (4.12) proves part (i) of Theorem 2.
In order to prove Theorem 2(ii), it is enough to notice that if f ∈ C(T2),

then fj defined in (4.6) and gk defined in (4.10) are in C(T) for each j ∈ Z
and k ∈ Z, respectively. By [7, Theorem 3], the statistical convergence in
(4.8) and (4.11) is uniform on T for each j ∈ Z and k ∈ Z, respectively; and
the rest of the proof is the same as in the case of (i).

The following corollary of Theorems 1 and 2 is worth formulating.

Corollary. (i) If f ∈ L log+ L(T2), then

st-lim
m,n→∞

smn(f, u, v) = st-lim
m→∞

(st-lim
n→∞

smn(f, u, v))(4.13)

= st-lim
n→∞

(st-lim
m→∞

smn(f, u, v))

= f(u, v) if (u, v) ∈ T2 \W,
where λ2(W ) = 0.

(ii) If f ∈ C(T2), then each of the five statistical limits in (4.13) exists
uniformly on T2.

Proof. (i) In case f ∈ L log+ L(T2), (4.13) follows from Theorem 1, by
making use of (4.8), (4.9), (4.11) and (4.12), and setting W := W1∪W2∪W3.

(ii) In case f ∈ C(T2), the uniform existence of the first (double) statis-
tical limit in (4.13) was proved in [7, Theorem 3]. The uniform existence of
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the second and third inner (single) statistical limits is obvious from (4.8),
(4.9), (4.11) and (4.12). Finally, the uniform existence of the second and
third outer (single) statistical limits is guaranteed by Theorem 1∗.

5. Regular statistical convergence of double series. We consider
double series

(5.1)
∞∑

j=0

∞∑

k=0

xjk

of complex numbers with rectangular partial sums

smn :=
m∑

j=0

n∑

k=0

xjk, (m,n) ∈ N2.

The definition of smn evidently excludes the case when certain terms xjk of
the double series are undefined. That is, this time the case xjk = ∗ cannot
occur for any (j, k) ∈ N2.

It is easy to see that the regular convergence of the double sequence
{smn} is equivalent to the following three conditions:

(i) the double sequence {smn} is convergent in Pringsheim’s sense,
(ii) the “row series”

∑∞
k=1 xjk is convergent for each fixed j ∈ N,

(iii) the “column series”
∑∞
j=1 xjk is convergent for each fixed k ∈ N.

Now, if these conditions (i)–(iii) are satisfied, we say that series (5.1)
is regularly convergent. It is plain that every absolutely convergent double
series is regularly convergent. The converse implication is not true, as the
following example shows.

Example 6. Let

xjk :=
(−1)j+k

1 + max{j, k} , (j, k) ∈ N2.

Then series (5.1) is regularly convergent, but not absolutely.

We proved in [5] that series (5.1) is regularly convergent if and only if
for every ε > 0 there exists m0 = m0(ε) such that

(5.2)
∣∣∣
b1∑

j=a1

b2∑

k=a2

xjk

∣∣∣ < ε if max{a1, a2} > m0,

where 0 ≤ a1 ≤ b1 and 0 ≤ a2 ≤ b2 are arbitrary integers. Roughly speaking,
condition (5.2) says that any “remaining sum of rectangular shape” is as
small as we want whenever the lower left corner of the rectangle [a1, b1] ×
[a2, b2] is far enough from the origin in the coordinate system of the lattice
points (j, k) ∈ N2.
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We raise the following

Problem. Characterize the regular statistical convergence of double se-
ries of complex numbers in a way analogous to (5.2) which characterizes the
regular convergence of double series.
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6720 Szeged, Hungary
E-mail: moricz@math.u-szeged.hu

Received 2 September 2004;
revised 29 November 2004 (4495)


