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COUNTING OCCURRENCES IN ALMOST SURE LIMIT THEOREMS

BY

RITA GIULIANO-ANTONINI (Pisa) and MICHEL WEBER (Strasbourg)

Abstract. Let X,X1,X2, . . . be a sequence of i.i.d. random variables with X ∈ Lp,
0 < p ≤ 2. For n ≥ 1, let Sn = X1 + · · ·+Xn. Developing a preceding work concerning the
L2-case only, we compare, under strictly weaker conditions than those of the central limit
theorem, the deviation of the series

∑
n wn1{Sn<sn} with respect to

∑
n wnP{Sn < sn},

for suitable weights (wn) and arbitrary sequences (sn) of reals. Extensions to the case
0 < p < 2, and when the law of X belongs to the domain of attraction of a p-stable law,
are also obtained. We deduce strong versions of the a.s. central limit theorem.

1. Setting of the problem and main results. Let X = {X,Xn,
n ≥ 1} be a sequence of independent, identically distributed (i.i.d.) random
variables defined on a probability space (Ω,B,P), and let F denote the
distribution function of X, and Sn = X1 + · · ·+Xn, n ≥ 1, the partial sums
of X . Assume first, in order to introduce the problem under consideration
here, that EX2 <∞. Let s = {sk, k ≥ 0} be an arbitrary sequence of reals,
and consider the events A(s)

k = Ak =
{
Sk < sk

}
and a sequence of weights

w = {wk, k ≥ 1}. We study the following natural question: when is the
weighted deviation

(1.1) Dw(A) :=
∞∑

k=1

wk(1Ak −P(Ak)),

of the series
∑∞
k=1 wk1Ak with respect to its mean

∑∞
k=1 wkP(Ak), finite

almost surely?
Some partial results already exist. For any positive integer n, put

(1.2) Y (s)
n = Yn =

∑

2n≤k<2n+1

1
k

(1Ak −P(Ak)).

Then the series
∑
k≥1 ckYk converges P-almost surely, for a reasonable choice

of the reals {ck, k ≥ 1}. For instance, one can take ck = k−1/2(log k)−b with
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b > 3/2; then in view of Kronecker’s Lemma, (1.2) implies, with the choice
sk = xk‖X‖2

√
k + kEX,

(1.3) lim
n→∞

1
logn

n∑

k=1

1
k

[1{(Sk−kEX)/‖X‖2
√
k<xk}

−P{(Sk − kEX)/‖X‖2
√
k < xk}] a.s.= 0.

By using the CLT, and letting xk ≡ x in (1.3), one obtains the classical
Almost Sure Central Limit Theorem (ASCLT) [9]: P-almost surely, for every
real number x,

(1.4) lim
n→∞

1
logn

n∑

k=1

1
k

1{(Sk−kEX)/
√
k≤x} =

1√
2π

x�
−∞

e−u
2/2 du.

When (xk) are not constant, the stronger property (1.3) does not seem
connected to the CLT, although it is established in [5] under the CLT as-
sumptions. In this paper, we show that (1.3) in turn holds true under a
strictly weaker assumption.

Before stating the result, we have to recall the full formulation of (1.3),
and a useful notion ([8]) from the theory of orthogonal series. Let (T, C, τ) be
some probability space and consider a sequence (fn) of elements of L2(τ).
Let aj,k = �

T
fjfk dτ . If the quadratic form defined on `2 by (xn)n 7→∑

h,k ah,kxhxk is bounded, then the system of functions (fn) is said to be
quasi-orthogonal. Say also that a sequence c = (ck)k ∈ `2 is universal when
the series

∑
n cnψn converges almost everywhere for every orthonormal sys-

tem (ψn)n. According to Schur’s Theorem [10, p. 56], if c is universal, then
the series

∑
cnfn converges almost everywhere for any quasi-orthogonal sys-

tem of functions (fn). It follows from the Rademacher–Men’shov Theorem
that we can choose ck = k−1/2(log k)−b with b > 3/2. In [5, Theorem 1.1],
it is shown that for any sequence s of reals,

(1.5) the system (Y (s)
n , n ≥ 1) is quasi-orthogonal.

The result is originally stated under the conditions: EX = 0, EX2 = 1,
and with sk = xk

√
k where xk are arbitrary; this does not restrict the

validity of (1.5). We refer to [5] for extensions to independent, non-identically
distributed random variables, and to more general sequences of sets than
Ak = {Sk < sk}. Let 0 < p < ∞, and consider the class Fp of distribution
functions F satisfying

(Fp) max(F (−x), (1− F (x)) = O(x−p), x→ +∞.
When p ≥ 1, we moreover assume that F is centered : � ∞−∞ xF (dx) = 0. We
prove the following result:
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Theorem 1.1. Assume that F ∈ F2. Then property (1.5) holds true.
Further , for any sequence {xk, k ≥ 1} of reals,

lim
n→∞

1
logn

n∑

k=1

1
k

P
{
Sk√
k
≤ xk

}
= c ⇒ lim

n→∞
1

logn

n∑

k=1

1
k

1{Sk/
√
k≤xk}

a.s.= c.

Theorem 1.1 therefore shows the validity of property (1.5), independently
of the CLT property. Moreover, in the presence of the CLT property, (1.5)
implies the ASCLT in a very strong form.

We also prove results for the case F ∈ Fp, p < 2. In this case, more is
required on F . Let p > 0 and let Gp be the class of distribution functions
satisfying

(Gp) x−p = O(min(F (−x), (1− F (x)))), x→ +∞.
Theorem 1.2. Assume that F ∈ Fp ∩ Gp for some 0 < p < 2. Then

property (1.5) holds true.

This result, however, only reflects a part of a more general property.
Indeed, let 0 < p1 ≤ p2 < 2. There are easy examples of distribution func-
tions with a tail oscillating infinitely often between |x|−p2 and |x|−p1 , with
p1 < p2, as |x| tends to infinity. For any real h, let [h] denote the integer
part of h. Put r = p2/p1. Define, for an arbitrary sequence s = {sk, k ≥ 0}
of reals, the sequence of block sums

(1.6) Z(s)
n =

∑

vn≤k<vn+1

1
k log k

(1
A

(s)
k
−P(A(s)

k )),

where vn = [er
n

] for any integer n ≥ 1.

Theorem 1.3. Let F ∈ Fp1 ∩ Gp2 . Then, for any sequence s = {sk,
k ≥ 0} of reals, the system {Z(s)

n , n ≥ 1} is quasi-orthogonal.

We also prove a similar result when F belongs to the domain of attraction
of a stable distribution G: there exist constants {an, n ≥ 1} and {bn, n ≥ 1}
such that the distribution of a−1

n Sn − bn tends to G. Apart from the case
α = 1, it is known [3: p. 315] that the centering constants {bn, n ≥ 1} are
unnecessary.

Theorem 1.4. Assume that F belongs to the domain of attraction of a
stable distribution G with exponent p ∈ ]0, 2], and EX = 0 when 1 < p ≤ 2.
Then property (1.5) holds true. In particular , P-almost surely , for every
continuity point x of G, we have

lim
n→∞

1
logn

n∑

k=1

1
k

1{Sk/ak≤x} = G(x).
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The last part of the statement expresses the form of the ASCLT for i.i.d.
random variables lying in the domain of attraction of a p-stable law. It is
already known, and we refer to [2] and [7] (see also references therein).

2. Proofs. The proofs rely upon two different sorts of estimates: first,
an estimate of E|Sn|α, where 0 < α ≤ 1; next, an upper bound for the
concentration function (see (2.5)) of Sn, for which Esseen’s inequality is
used. Concerning the moments of Sn, some results already exist, and we
refer the interested reader to the works of von Bahr and Esseen [1], and
Hall [6] (see also references therein). In [6], the knowledge of the precise
asymptotics of the distribution function F is needed, and thus the result
of [6] cannot be used if we only know that F ∈ Fp. It applies, however,
when F belongs to the domain of attraction of a stable law, but the com-
putations of E|Sn − med(Sn)| are only sketched in the discussion follow-
ing the main result (Theorem 1 of [6]). The proofs of our results require
precise estimates of E|Sn|α, and that is why we have displayed them in
Lemma 2.2 below. In [1], useful estimates are given, in the independent case
notably, under the assumption that E|Xi|α are finite. However, these esti-
mates do not apply here. Indeed, we need a bound for E|Sn|α knowing that
F ∈ Fp for 0 < α < p; and the bound should be expressed in terms of
α of course, but also p (see Lemma 2.2(b) below). This fact, which seems
inherent to the problem considered, thus also precludes the use of the esti-
mates of [1] in our study, since the bounds there are only expressed in terms
of α.

We use a notational convention: let C (resp. Cα,β,...) denote a constant
depending on F (resp. F, α, β, . . .) only, which may change its value at each
occurrence. We begin with some general lemmas. Let X = {X,Xn, n ≥ 1}
be a sequence of i.i.d. random variables on the basic probability space
(Ω,B,P).

Lemma 2.1. Let 0 < α ≤ 1. Assume that E|X|α < ∞. Let b = {bn,
n ≥ 1} be a sequence of positive reals. For any integer n,

E|Sn|α ≤ n
[
bαnP{|X| > bn}+ α

∞�
bn

P{|X| > v}vα−1 dv
]

+ nα|EX1{|X|≤bn}|α + nα/2{EX21{|X|≤bn}}α/2.
Proof. Write

E|Sn|α ≤ E
∣∣∣
n∑

k=1

Xk1{|Xk|≤bn}
∣∣∣
α

+ E
∣∣∣
n∑

k=1

Xk1{|Xk|>bn}
∣∣∣
α

.

Then
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E
∣∣∣
n∑

k=1

Xk1{|Xk|>bn}
∣∣∣
α

≤ nE|X|α1{|X|>bn}

= n
[
bαnP{|X| > bn}+ α

∞�
bn

P{|X| > v}vα−1 dv
]
,

E
∣∣∣
n∑

k=1

Xk1{|Xk|≤bn}
∣∣∣
α

≤ E
∣∣∣
n∑

k=1

(Xk1{|Xk|≤bn} −EX1{|X|≤bn})
∣∣∣
α

+ |nEX1{|X|≤bn}|α.
Now, by a routine symmetrization argument, letting ε = {εn, n ≥ 1} be a
Rademacher sequence independent of the sequence X , with corresponding
expectation symbol Eε, we have

E
∣∣∣
n∑

k=1

(Xk1{|Xk|≤bn} −EX1{|X|≤bn})
∣∣∣
α

≤ EEε

∣∣∣
n∑

k=1

εkXk1{|Xk|≤bn}
)∣∣∣
α

≤ E
{ n∑

k=1

X2
k1{|Xk|≤bn}

}α/2
≤
{

E
n∑

k=1

X2
k1{|Xk|≤bn}

}α/2

= nα/2{EX21{|X|≤bn}}α/2.
Combining both inequalities gives the claimed estimate.

Put

A1(n, α) = nbαnP{|X| > bn}, A2(n, α) = n

∞�
bn

P{|X| > v}vα−1 dv,

A3(n, α) = nα|EX1{|X|≤bn}|α, A4(n, α) = (nEX21{|X|≤bn})
α/2.

Lemma 2.2. (a) Assume that F ∈ Fp and bn ≥ n1/p. For any 0 < α <
p ≤ 2, there exists a constant Cα,p, depending on α, p only , such that for
any integer n large enough,

max(A1(n, α), A2(n, α), A3(n, α)) ≤ Cα,pbαn
and

A4(n, α) ≤ Cα,pbαn if 0 < p < 2.

(b) In particular ,

E|Sn|α ≤ Cα,pnα/p if 0 < α < p ≤ 1,

E|Sn| ≤ Cpn1/p if 1 < p < 2,

E|Sn| ≤ C(nEX21{|X|≤n1/2})
1/2 if p = 2 and EX2 =∞.

We omitted the trivial case p = 2 with EX2 < ∞, for which E|Sn| ≤
Cn1/2.
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Proof. (a) We have A1(n, α) ≤ Cnbα−pn ≤ Cbαn, and for n large enough,

A2(n, α) ≤ Cn
∞�
bn

vα−1−p dv ≤ Cα,pnbα−pn ≤ Cα,pbαn.

If 0 < p < 1, we observe that for a > 0 sufficiently large,

nE|X|1{|X|≤bn} = n

bn�
0

P{|X| > t} dt ≤ na+ Cn

bn�
a

t−p dt

≤ na+ Cnb1−pn ≤ Cbn.
Thus A3(n, α) ≤ Cα,pbαn.

If 1 < p ≤ 2, then by centering,

|EX1{|X|≤bn}| = |EX1{|X|>bn}| ≤ E|X|1{|X|>bn}

= bnP{|X| > bn}+
∞�
bn

P{|X| > t} dt.

But nbnP{|X| > bn} ≤ Cnb1−pn ≤ Cbn, and � ∞
bn

P{|X| > t} dt ≤ C � ∞
bn
t−p dt

≤ Cpnb1−pn ≤ Cpbn. Therefore A3(n, α) ≤ Cα,pbαn.
If p = 1, since we assumed centering, we have EX1{|X|≤bn} = o(1). Thus

A3(n, α) ≤ Cnα ≤ Cbαn, since bn ≥ n1/p = n.
If 0 < p < 2, for a > 0 sufficiently large we have

nEX21{|X|≤bn} = 2n
bn�
0

uP{|X| > u} du ≤ 2na+ nC

bn�
a

u1−p du

≤ 2na+ Cnb2−pn ≤ Cb2n.
Hence, A4(n, α) ≤ Cαbαn. This proves the first part of the lemma.

(b) Consider first the case 0 < α < p ≤ 1. Then E|X|α < ∞, and we
can apply Lemma 2.1. Thus E|Sn|α ≤

∑4
i=1Ai(n, α), and the result follows

from (a) by choosing bn = n1/p. If 1 < p < 2, we proceed similarly to bound
E|Sn|. Finally, if p = 2 and EX2 = ∞, we apply again Lemma 2.1 and
the estimates of (a) with bn = n1/2. In this case, the largest contribution
is given by A4(n, α), since nEX21{|X|≤bn} ≥ n for n large enough. We find
E|Sn| ≤ C(nEX21{|X|≤n1/2})

1/2.

Lemma 2.3. Assume that F ∈ DA(G), where G is a stable distribution
with index 0 < p ≤ 2, and EX = 0 when 1 < p ≤ 2. Let 0 < α < p ≤ 2.
Then

E|Sn|α ≤ Cαaαn if 0 < α < p ≤ 1, E|Sn| ≤ Can if 1 < p ≤ 2.
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Proof. Since E|X|α <∞, by applying Lemma 2.1 with an = bn, we get

E|Sn|α ≤ n
[
aαnP{|X| > an}+ α

∞�
an

P{|X| > v}vα−1 dv
]

+ nα|EX1{|X|≤an}|α + nα/2{EX21{|X|≤an}}α/2.

• First we treat the case 0 < p < 2. Since F ∈ DA(G), by [3, Theorem 1,
p. 312 and relation (8.6), p. 313], one has EX21{|X|≤x} ∼ x2−pL(x) as
x→∞, where L : R+ → R is a slowly varying function and

1− F (x) + F (−x) ∼ 2− p
p

x−pL(x), x→∞.

From [3, p. 579], it also follows (for 0 < p ≤ 2) that

(2.1)
nL(an)
apn

→ c > 0.

Thus, we have immediately nEX21{|X|≤an} = O(a2
n), and nanP{|X| > an}

= O(an). Moreover, for any 0 < α < p,

n

∞�
an

P{|X| > v}vα−1 dv = n
∞∑

k=0

an2k+1�
an2k

P{|X| > v}vα−1 dv

≤ 2α − 1
α

n
∞∑

k=0

P{|X| > an2k}(an2k)α

≤ Cα,p
naαnL(an)

apn

∞∑

k=0

2k(α−p) L(an2k)
L(an)

≤ Cα,paαn
∞∑

k=0

2k(α−p) L(an2k)
L(an)

,

and Cα,p depends on α and p only. Since L(·) is slowly varying, it can be
represented ([12, Theorem 1.2]) as

L(x) = C(1 + o(1)) exp
{ x�

1

ε(u)
u

du

}
as x→∞,

where C > 0 and limu→∞ ε(u) = 0. Let 0 < ε < p−α. Then, for any n large
enough and every k,

L(an2k)
L(an)

≤ C exp
{ an2k�

an

ε(u)
u

du

}
≤ C exp{εk log 2} = C2εk,
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and ∞∑

k=0

2k(α−p) L(an2k)
L(an)

≤ C
∞∑

k=0

2k(α−p+ε) <∞.

This implies that

(2.2) n

∞�
an

P{|X| > v}vα−1 dv = O(aαn).

Assume first that 1 < p < 2, and apply this estimate with α = 1 to get
n � ∞

an
P{|X| > u} du = O(an), which proves the claim in this case. We have

used the fact that EX1{|X|≤bn} = −EX1{|X|>bn}, since EX = 0.
Assume now that 0 < p ≤ 1 and let 0 < α < p. By (2.1) and remarks

made at the beginning of the proof, nα/2{EX21{|X|≤an}}α/2 = O(aαn),
and naαnP{|X| > an} = O(aαn). Further, n � ∞

an
P{|X| > v}vα−1 dv is es-

timated by (2.2). It remains to treat the third term in Lemma 2.1, namely
nα|EX1{|X|≤an}|α. But E|X|1{|X|≤x}= � x0 P{|X|>t} dt, and EX21{|X|≤x}
= 2 � x0 tP{|X| > t} dt. By L’Hospital’s rule,

lim
x→∞

xE|X|1{|X|≤x}
EX21{|X|≤x}

= lim
x→∞

� x0 P{|X| > t} dt
2x−1 � x0 tP{|X| > t} dt

= lim
x→∞

P{|X| > x}
−x−2EX21{|X|≤x} + 2P{|X| > x} .

Now recall that

P{|X| > x} ∼ 2− p
p

x−pL(x) and EX21{|X|≤x} ∼ x2−pL(x)

as x→∞. We thus find that

lim
x→∞

xE|X|1{|X|≤x}
EX21{|X|≤x}

=
2−p
p

−1 + 2 · 2−p
p

=
2− p
4− 3p

.

Consequently,

2− p
4− 3p

= lim
n→∞

anE|X|1{|X|≤an}
EX21{|X|≤an}

= lim
n→∞

anE|X|1{|X|≤an}
a2−p
n L(an)

= lim
n→∞

nE|X|1{|X|≤an}
na1−p

n L(an)

=
1
c

lim
n→∞

nE|X|1{|X|≤an}
an

(by (2.1)).

The last two lines show that nE|X|1{|X|≤an} = O(an), which finishes the
estimate of E|Sn|α in this case.
• There are only minor changes for the case p = 2. Here U(x) =

EX21{|X|≤x} ∼ L(x) as x → ∞, where L is a slowly varying function, and
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x2P{|X| > x}/U(x) → 0 as x→∞. Plainly nEX21{|X|<an} = O(a2
n), and

nanP{|X| > an} = O(an). Let 0 < ε < 1. By using again Karamata’s rep-
resentation of slowly varying functions, we find that L(an2j)/L(an) ≤ 2εj if
n is sufficiently large, for any j.

In view of these observations and (2.1), it follows that

n

∞�
an

P{|X| > u} du ≤ n
∞∑

k=0

P{|X| > an2j}an2j

≤ C nL(an)
a2
n

an

∞∑

j=0

2−j
L(an2j)
L(an)

≤ Can.

This proves the estimate in this last case.

We now prove a preliminary bound concerning correlations. Let a =
{ak, k ≥ 1} be some increasing unbounded sequence of positive reals. Let
also f : R → R be bounded Lipschitz, with norm ‖f‖BL = ‖f‖L + ‖f‖∞
<∞, where ‖f‖∞ = supx∈R |f(x)| and

‖f‖L = sup
{ |f(x)− f(y)|

|x− y| : x, y ∈ R, x 6= y

}
.

We thus have the inequality |f(x)−f(y)| ≤ 2‖f‖BL(|x−y|∧1) for x, y ∈ R.
We now need a suitable version of the correlation inequality in [4].

Proposition 2.4. For any integers k ≤ l, for every Borel subset A of R
and every bounded Lipschitz function f , we have

(2.3)
∣∣∣∣Cov

(
1A

(
Sk
ak

)
, f

(
Sl
al

))∣∣∣∣ ≤ 4‖f‖BLE
( |Sk|
al
∧ 1
)
.

Proof. Without loss of generality we can assume H = {Sk/ak ∈ A} to be
not negligible. Let EH denote the expectation with respect to the conditional
probability P(·|H), and (X ′n)n an independent copy of the sequence (Xn)n.
Put

(2.4) Vl =
X ′1 + · · ·+X ′k +Xk+1 + · · ·+Xl

al
.

As EH [f(Vl)] = E[f(Sl/al)], it follows that
∣∣∣∣Cov

(
1A

(
Sk
ak

)
, f

(
Sl
al

))∣∣∣∣

=
∣∣∣∣

�
H

f

(
Sl
al

)
dP−P(H)

�
f

(
Sl
al

)
dP
∣∣∣∣ = P(H)

∣∣∣∣EHf

(
Sl
al

)
−Ef

(
Sl
al

)∣∣∣∣
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= P(H)
∣∣∣∣EHf

(
Sl
al

)
−EHf(Vl)

∣∣∣∣ ≤ 2‖f‖BLP(H)EH

(∣∣∣∣
Sl
al
− Vl

∣∣∣∣ ∧ 1
)

= 2‖f‖BLE
(∣∣∣∣
Sl
al
− Vl

∣∣∣∣ ∧ 1
)

= 2‖f‖BLE
( |Sk − S′k|

al
∧ 1
)

≤ 4‖f‖BLE
( |Sk|
al
∧ 1
)
,

since x 7→ x ∧ 1 is subadditive on R+. This establishes the proposition.

For any λ > 0, introduce the concentration function of Sn:

(2.5) Qn(λ) = sup
x∈R

P(x ≤ Sn ≤ x+ λ).

We shall now prove the following

Proposition 2.5. Let 0 < ε ≤ 1. For every Borel set A, any real x and
integers k ≤ l, we have

(2.6)
∣∣∣∣Cov

(
1A

(
Sk
ak

)
,1(−∞,x]

(
Sl
al

))∣∣∣∣ ≤
8
ε

E
( |Sk|
al
∧ 1
)

+ 2Ql(alε).

Proof. Let ε and x be fixed, and define the Lipschitz function fε as

fε(t) = 1(−∞,x](t) + gε(t) = 1(−∞,x](t) +
(

1 +
x− t
ε

)
1(x,x+ε)(t).

Then it is easily checked that ‖fε‖BL = 1 + 1/ε. Let H be the event
{Sk/ak ∈ A}; we can assume that H is not negligible. Let C be the condi-
tional probability P(·|H). Then we have∣∣∣∣Cov

(
1A

(
Sk
ak

)
,1(−∞,x]

(
Sl
al

))∣∣∣∣ = P(H)
∣∣∣∣C
(
Sl
al
≤ x

)
−P

(
Sl
al
≤ x

)∣∣∣∣.

But

(2.7) C
(
Sl
al
≤ x

)
−P

(
Sl
al
≤ x

)

= EC
[
(fε − gε)

(
Sl
al

)]
−EP

[
(fε − gε)

(
Sl
al

)]

= EC
[
(fε − gε)

(
Sl
al

)]
−EC[(fε − gε)(Vl)]

= EC
[
fε

(
Sl
al

)
− fε(Vl)

]
−EC

[
gε

(
Sl
al

)
− gε(Vl)

]
,

where Vl is the random variable defined in (2.4). By arguing as in the proof
of Proposition 2.4, we get

(2.8)
∣∣∣∣EC

[
fε

(
Sl
al

)
− fε(Vl)

]∣∣∣∣ ≤ 4(1 + 1/ε)
1

P(H)
E
( |Sk|
al
∧ 1
)
,
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while trivially

(2.9)
∣∣∣∣EC

[
gε

(
Sl
al

)
− gε(Vl)

]∣∣∣∣ ≤
2Ql(alε)
P(H)

.

From (2.8) and (2.9), we deduce the claimed inequality by summing and
multiplying by P(H).

Proposition 2.6. Assume that F ∈ F2. Then there exist a constant C
and k0 > 0 such that for any Borel subset A of R, any real x, and integers
l ≥ k ≥ k0, we have

∣∣∣∣Cov
(

1A

(
Sk√
k

)
,1(−∞,x]

(
Sl√
l

))∣∣∣∣ ≤ C
(
k

l

)1/4

.

Proof. Let D(X̃, λ) = λ−2EX̃21|X̃|<λ + P{|X̃| ≥ λ} define the censored

variance of a symmetrized version X̃ of X. Since X is an i.i.d. sequence, in
view of Esseen’s inequality ([11, Theorem 3, p. 43]), there exists an absolute
constant C∗ such that Qn(λ) ≤ C∗[nD(X̃, λ)]−1/2 for any λ > 0. We apply
Proposition 2.5 with ak = k1/2 to obtain∣∣∣∣Cov

(
1A

(
Sk
ak

)
,1(−∞,x]

(
Sl
al

))∣∣∣∣ ≤
8
ε

E
( |Sk|
al
∧ 1
)

+ 2C∗[lD(X̃, alε)]−1/2

≤ 8
ε

E|Sk|
al

+
2C∗ε

(EX̃21{|X̃|≤l1/2ε})
1/2

.

Let X̃1, X̃2, . . . be i.i.d. copies of X̃, and consider the sequence of partial
sums S̃n = X̃1 + · · ·+ X̃n, n = 1, 2, . . .. Then, by centering, E|Sn| ≤ E|S̃n|.
Let F̃ be the distribution function of X̃. Then F ∈ F2 implies that F̃ ∈ F2.
Now, by Lemma 2.2, E|S̃n| ≤ C(nEX̃21{|X̃|≤n1/2})

1/2. We can thus continue
our estimates with

≤ C
(

1
ε

(
k

l

)1/2

(EX̃21{|X̃|≤k1/2})
1/2 +

ε

(EX̃21{|X̃|≤l1/2ε})
1/2

)
.

Choose ε = (k/l)1/4(EX̃21{|X̃|≤k1/2})
1/2, and observe that

l1/2ε = (kl)1/4(EX̃21{|X̃|≤k1/2})
1/2 ≥ k1/2

whenever k is large enough, say k ≥ k0. Then (EX̃21{|X̃|≤l1/2ε})
1/2 ≥

(EX̃21{|X̃|≤k1/2})
1/2 for k ≥ k0 and the above is thus

≤ C
(

1
ε

(
k

l

)1/2

(EX̃21{|X|≤k1/2})
1/2 +

ε

(EX̃21{|X̃|≤k1/2})
1/2

)

= 2C
(
k

l

)1/4

.
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Proof of Theorem 1.1. We combine Proposition 2.6 with Lemma 7.4.3
of [13] that we recall for convenience.

Lemma 2.7. Let H be a Hilbert space, and Φ = {fn, n ≥ 1} ⊂ H with
correlations aj,k = 〈fj , fk〉. In order that Φ be a quasi-orthogonal system, it
is enough that supj≥1

∑
k |aj,k| <∞.

Applying Proposition 2.6 with A = ]−∞, sk/
√
k], x = sl/

√
l, we get

|Cov(1{Sk<sk},1{Sl<sl})| ≤ C
(
k

l

)1/4

.

Thus for m ≥ n,

|Cov(Yn, Ym)| =
∣∣∣∣

∑

2n≤k<2n+1

2m≤l<2m+1

1
kl

Cov(1{Sk<sk},1{Sl<sl})
∣∣∣∣

≤ C
∑

2n≤k<2n+1

2m≤l<2m+1

1
kl

(
k

l

)1/4

= C
( ∑

2n≤k<2n+1

k−3/4
)( ∑

2m≤l<2m+1

l−5/4
)
≤ C2−(m−n)/4.

Therefore∑

m≥n
|Cov(Yn, Ym)| ≤ C

∑

m≥n
2−(m−n)/4 ≤ C

∑

u≥0

2−u/4 = C ′,

∑

m≤n
|Cov(Yn, Ym)| ≤ C

∑

m≤n
2−(n−m)/4 ≤ C ′.

We get supn
∑
m |Cov(Yn, Ym)| ≤ 2C ′. The result thus follows from Lemma

2.7.

To prove Theorem 1.2, we need a suitable estimate of Qn(ε).

Lemma 2.8. Assume that F ∈ Gp with p > 0. Then there exists λ0 such
that for any λ ≥ λ0,

Qn(λ) ≤ Cn−1/2λp/2.

Proof. We use again Esseen’s inequality, and the notation from the proof
of Proposition 2.6. Since X ∈ Gp and D(X̃, λ) ≥ 1

2P{|X| ≥ λ}, it follows
that D(X̃, λ) ≥ Cλ−p for λ sufficiently large, say λ ≥ λ0. This proves our
claim.

Proposition 2.9. Let F ∈ Gp. Assume that

(2.10) lim inf
k→∞

k1/2 min(k/apk, 1) =∞.
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Then there exists k0 > 0 and a constant C1 depending on the constant C of
Lemma 2.8 and p only , such that for any Borel subset A of R, any real x
and integers l ≥ k ≥ k0, we have

∣∣∣∣Cov
(

1A

(
Sk
ak

)
,1(−∞,x]

(
Sl
al

))∣∣∣∣ ≤ C
{

E
( |Sk|
l1/p
∧ al
l1/p

)} p
p+2

.

Proof. In view of inequality (2.6) and Lemma 2.8,

(2.11)
∣∣∣∣Cov

(
1A

(
Sk
ak

)
,1(−∞,x]

(
Sl
al

))∣∣∣∣

≤ 8
ε

E
( |Sk|
al
∧ 1
)

+ 2Cl−1/2(alε)p/2,

for any Borel set A ⊂ R, any real x, any integers l ≥ k and 0 < ε ≤ 1,
provided that alε ≥ λ0. Choose

ε = l
1
p+2 a

− p
p+2

l

(
8
pC

) 2
p+2
(

E
( |Sk|
al
∧ 1
)) 2

p+2

.

Then

(2.12)

8
ε

E
( |Sk|
al
∧ 1
)

= 8
(
pC

8

) 2
p+2
{

E
( |Sk|
l1/p
∧ al
l1/p

)} p
p+2

,

2Cl−1/2(alε)p/2 = 2C
(

8
pC

) 2
p+2
{

E
( |Sk|
l1/p
∧ al
l1/p

)} p
p+2

.

It remains to verify the condition alε ≥ λ0. But

alε =
(

8
pC

) 2
p+2

l
1
p+2 a

2
p+2

l

(
E
( |Sk|
al
∧ 1
)) 2

p+2

,

so

(alε)
p+2

2 ≥
(

8k1/2

pC

)
E(|Sk| ∧ ak).

The required condition will be certainly satisfied if we show that

lim inf
k→∞

k1/2E(|Sk| ∧ ak) =∞.

But, by [11, Theorem 10, p. 50], and by using the Paley–Zygmund inequality
and independence,

E(|Sk| ∧ ak) =
ak�
0

P{|Sk| > t} dt ≥ akP{|Sk| > ak}

≥ 1
2

P{ k
max
j=1
|Sj | > ak} ≥

1
2
P{ k

max
j=1
|Xj| > 2ak}
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≥ 1
2

(
∑k
j=1 P{|Xj | > 2ak})2

∑k
j=1 P{|Xj | > 2ak}+ (

∑k
j=1 P{|Xj| > 2ak})2

≥ 1
4

min
( k∑

j=1

P{|Xj | > 2ak}, 1
)

≥ 1
4

min(kP{|X| > 2ak}, 1) ≥ 1
4

min
(
Ck

apk
, 1
)
.

Thus,

k1/2E(|Sk| ∧ ak) ≥ k1/2

4
min

(
Ck

apk
, 1
)
→∞

as k →∞ by assumption. This proves, for our choice of ε, that the condition
alε ≥ λ0 is satisfied as soon as k is large enough, say k ≥ k0. Combining
(2.11) with (2.12) then completes the proof.

The following statement corresponds to Proposition 2.6 for the case F ∈
Fp1 ∩ Gp2 with 0 < p1 ≤ p2 < 2:

Corollary 2.10. Assume that F ∈ Fp1 ∩Gp2 with 0 < p1 ≤ p2 < 2. Let
also 0 < α < p1 with the convention that α = 1 if 1 < p1 < 2. Then there
exists a constant Cα,p1 (depending on α, p1, F only) and k0 > 0 such that
for any Borel set A ⊂ R, any real x and integers l ≥ k ≥ k0, we have
∣∣∣∣Cov

(
1A

(
Sk
k1/p2

)
,1(−∞,x]

(
Sl
l1/p2

))∣∣∣∣

≤





C1,p1

(
kp2/p1

l
∧ 1
) 1
p2+2

if 1 < p1 < 2,

Cα,p1

(
kp2/p1

l
∧ 1
) α
p2+2

if 0 < α < p1 ≤ 1.

Proof. Case 1: 1 < p1 < 2. With the choice ak = k1/p2 , condition (2.10)
is satisfied. Next, by Lemma 2.2, E|Sn| ≤ Cp1n

1/p1 . The claimed inequality
thus follows directly from Proposition 2.9, since

∣∣∣∣Cov
(

1A

(
Sk
ak

)
,1(−∞,x]

(
Sl
al

))∣∣∣∣ ≤ Cp1

{
E
( |Sk|
l1/p2

∧ 1
)} p2

p2+2

≤ Cp1

(
kp2/p1

l

) 1
p2+2

.

Case 2: 0 < p1 ≤ 1. Let 0 < α < p1. By Lemma 2.2, E|Sn|α ≤
Cα,p1n

α/p1 . Again, we apply Proposition 2.9 with ak = k1/p2 to get
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∣∣∣∣Cov
(

1A

(
Sk
ak

)
,1(−∞,x]

(
Sl
al

))∣∣∣∣

≤ Cα,p1

{
E
( |Sk|
l1/p2

∧ 1
)} p2

p2+2

≤ Cα,p1

{
E
( |Sk|
l1/p2

∧ 1
)α} p2

p2+2

≤ Cα,p1

{
E |Sk|α
lα/p2

} p2
p2+2

≤ Cα,p1

(
k
p2
p1

l

) α
p2+2

.

Proof of Theorem 1.2. Applying Corollary 2.10 with p1 = p2 = p, A =
]−∞, sk/

√
k] and x = sl/

√
l gives

|Cov(1{Sk<sk},1{Sl<sl})| ≤
{
Cp(k/l)

1
p+2 if 1 < p < 2,

Cα,p(k/l)
α
p+2 if 0 < α < p ≤ 1.

Let m ≥ n. On the one hand, if 1 < p < 2, then

|Cov(Yn, Ym)| =
∣∣∣∣

∑

2n≤k<2n+1

2m≤l<2m+1

1
kl

Cov(1{Sk<sk},1{Sl<sl})
∣∣∣∣

≤ C
∑

2n≤k<2n+1

2m≤l<2m+1

1
kl

(
k

l

)1/(p+2)

≤ C2−(m−n)/(p+2),

implying that supn
∑
m |Cov(Yn, Ym)| ≤ 2C

∑∞
h=0 2−h/(p+2). On the other

hand, if 0 < α < p ≤ 1, then

|Cov(Yn, Ym)| =
∣∣∣∣

∑

2n≤k<2n+1

2m≤l<2m+1

1
kl

Cov(1{Sk<sk},1{Sl<sl})
∣∣∣∣

≤ Cα
∑

2n≤k<2n+1

2m≤l<2m+1

1
kl

(
k

l

)α/(p+2)

≤ Cα2−α(m−n)/(p+2),

leading to supn
∑
m |Cov(Yn, Ym)| ≤ 2Cα

∑∞
h=0 2−h/(p+2). The result thus

follows from Lemma 2.7.

Proof of Theorem 1.3. Recall that

Z(s)
n =

∑

vn≤k<vn+1

1
k log k

(1
A

(s)
k
−P(A(s)

k )),

where we have defined vn = [er
n

] for any integer n ≥ 1, and note that
∑

vn≤k<vn+1

1
k log k

= O(1).
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Let n ≤ m. Applying once again Corollary 2.10 with A = ]−∞, sk/k1/p2 ]
and x = sl/l

1/p2 gives, for 1 < p1 < 2,

|Cov(Z(s)
n , Z(s)

m )| =
∣∣∣∣

∑

vn≤k<vn+1
vm≤l<vm+1

1
(k log k)(l log l)

Cov(1{Sk<sk},1{Sl<sl})
∣∣∣∣

≤ C1,p1

∑

vn≤k<vn+1
vm≤l<vm+1

1
(k log k)(l log l)

(
kr

l

) 1
p2+2

≤ C1,p1e
(rn+1−rm)/(p2+2).

As e(rn+1−rm)/(p2+2) ≤ e−rm(1−r−1)/(p2+2) if m ≥ n+ 2, it follows that

sup
n

∑

m

|Cov(Zn, Zm)| ≤ 2C ′1,p1

(
1 +

∞∑

h=0

e−r
h(1−r−1)/(p2+2)

)
.

Now if 0 < p1 ≤ 1, let 0 < α < p1. By Corollary 2.10 again, with the same
choices of A and x,

|Cov(Z(s)
n , Z(s)

m )| =
∣∣∣∣

∑

vn≤k<vn+1
vm≤l<vm+1

1
(k log k)(l log l)

Cov(1{Sk<sk},1{Sl<sl})
∣∣∣∣

≤ Cα,p1

∑

vn≤k<vn+1
vm≤l<vm+1

1
(k log k)(l log l)

(
kr

l

) α
p2+2

≤ Cα,p1e
(rn+1−rm)α/(p2+2).

As e(rn+1−rm)α/(p2+2) ≤ e−rm(1−r−1)α/(p2+2) if m ≥ n+ 2, it follows that

sup
n

∑

m

|Cov(Zn, Zm)| ≤ 2Cα,p1

(
1 +

∞∑

h=0

e−r
h(1−r−1)α/(p2+2)

)
.

One concludes by applying Lemma 2.7.

Proof of Theorem 1.4. By (2.1), nL(an)/apn ∼ c > 0, where L(·) is
slowly varying. We use the following fact (see [3, p. 579]). We may define
an = inf{x : nx−2L(x) ≤ c}. This definition easily implies that (an) is
non-decreasing. By Lemma 2.3 and Proposition 2.5,

∣∣∣∣Cov
(

1A

(
Sk
ak

)
,1(−∞,x]

(
Sl
al

))∣∣∣∣ ≤
8
ε

E
( |Sk|
al
∧ 1
)

+ 2Ql(alε).

Choose ε = (ak/al)
2
p+2 . Then alε = a

p
p+2

l a
2
p+2

k (≥ ak). We use the notation
from the proof of Lemma 2.3 and the properties of F mentioned therein.
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Then D(X̃, λ) ≥ CL(λ)λ−p for any λ ≥ λ0, where λ0 depends on F only.
And by Esseen’s estimate, for λ ≥ λ0,

(2.10) Ql(λ) ≤ C[lD(X̃, λ)]−1/2 ≤ C
(

λp

lL(λ)

)1/2

.

Choose k0 sufficiently large to have ak0 ≥ λ0. Applying (2.10) with λ = alε
gives

Ql(alε) ≤ C
a

p2

2(p+2)

l a
p
p+2

k

l1/2L(alε)1/2
≤ C

(
ak
al

) p
p+2
(

apl
lL(al)

)1/2(
L(al)
L(alε)

)1/2

for l ≥ k ≥ k0, where k0 depends on F only. Let 0 < η < p. By using again
Karamata’s representation of slowly varying functions, we find that

L(al)
L(alε)

≤ C exp
{
η log

1
ε

}
= C exp

{
η · −2

p+ 2
log

ak
al

}
(2.11)

= C

(
ak
al

)−η· 2
p+2

,

assuming k large enough, say k ≥ kη. By using this with relation (2.1), we
obtain: there exists a constant Cη, depending on F and η only, and kη <∞
such that for any integers l ≥ k ≥ kη,

(2.12) Ql(alε) ≤ Cη
(
ak
al

) p−η
p+2

.

• If 1 < p ≤ 2, then by Lemma 2.3, E|Sk| ≤ Cak, and so
∣∣∣∣Cov

(
1A

(
Sk
ak

)
,1(−∞,x]

(
Sl
al

))∣∣∣∣ ≤ C
{

1
ε

(
ak
al

)
+Ql(alε)

}
.

By substituting estimate (2.12) into that inequality, we get

(2.13)
∣∣∣∣Cov

(
1A

(
Sk
ak

)
,1(−∞,x]

(
Sl
al

))∣∣∣∣

≤ C
(
ak
al

) p
p+2

+ Cη

(
ak
al

) (1+η)p
p+2

≤ Cη
(
ak
al

) p
p+2

.

One then deduces Theorem 1.4 from the combination of (2.13) with Lemma
2.7 in that case.
• If 0 < p ≤ 1, let p/(p+ 2) < α < p. Then, by Lemma 2.3,

E
( |Sk|
al
∧ 1
)
≤ E

( |Sk|
al
∧ 1
)α
≤ E|Sk|α

aαl
≤ Cα

(
ak
al

)α
,
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and so ∣∣∣∣Cov
(

1A

(
Sk
ak

)
,1(−∞,x]

(
Sl
al

))∣∣∣∣ ≤
1
ε
Cα

(
ak
al

)α
+ 2Ql(alε).

Using (2.12) gives

(2.14)
∣∣∣∣Cov

(
1A

(
Sk
ak

)
,1(−∞,x]

(
Sl
al

))∣∣∣∣

≤ Cα
(
ak
al

) 2
p+2 +α−1

+ Cη

(
ak
al

) (1+η)p
p+2

.

Note that 2
p+2 + α− 1 > 0. Summarizing, from (2.13) and (2.14) we have

(2.15)
∣∣∣∣Cov

(
1A

(
Sk
ak

)
,1(−∞,x]

(
Sl
al

))∣∣∣∣ ≤ Cτ
(
ak
al

)τ
,

where τ > 0 is some constant. We have already used the fact that L can be
represented, as x→∞, as

L(x) = C(1 + o(1)) exp
{ x�

1

ε(u)
u

du

}
,

where C > 0 and limx→∞ ε(u) = 0. Let 0 < ε < 1. Then, for some kε < ∞
and every l ≥ k ≥ kε,

L(ak)
L(al)

≤ C ′ exp
{
−

al�
ak

ε(u)
u

du

}
≤ C ′ exp

{ al�
ak

|ε(u)|
u

du

}

≤ C ′ exp{ε log(al/ak)} = C ′(al/ak)ε,

and invoking this time (2.1) we obtain

ak
al
≤ (1 + ε)

k1/pL1/p(ak)
l1/pL1/p(al)

.

Combining both estimates gives

ak
al
≤ C ′(1 + ε)

(
k

l

)1/p(
al
ak

)ε/p

and so

(2.16)
(
ak
al

)1+ε/p

≤ C ′(1 + ε)
(
k

l

)1/p

.

From (2.15) and (2.16) it follows that

(2.17)
∣∣∣∣Cov

(
1A

(
Sk
ak

)
,1(−∞,x]

(
Sl
al

))∣∣∣∣

≤ Cτ
(
ak
al

)τ
≤ Cτ,ε

(
k

l

)τ/p(1+ε/p)

.
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Put τ ′ = τ/p(1 + ε/p), Cτ ′ = Cτ,ε. Applying (2.17) with A = ]−∞, sk/ak]
and x = sl/al gives

|Cov(1{Sk<sk},1{Sl<sl})| ≤ Cτ ′
(
k

l

)τ ′
.

Thus for m ≥ n,

|Cov(Yn, Ym)| =
∣∣∣∣

∑

2n≤k<2n+1

2m≤l<2m+1

1
kl

Cov(1{Sk<sk},1{Sl<sl})
∣∣∣∣

≤ Cτ ′
∑

2n≤k<2n+1

2m≤l<2m+1

1
kl

(
k

l

)τ ′
≤ C ′τ ′2−τ

′(m−n).

Therefore∑

m≥n
|Cov(Yn, Ym)| ≤ C ′τ ′

∑

m≥n
2−τ

′(m−n) ≤ C ′τ ′
∑

u≥0

2−τ
′u,

∑

m≤n
|Cov(Yn, Ym)| ≤ C ′τ ′

∑

m≤n
2−(n−m)/2 ≤ C ′τ ′

∑

u≥0

2−τ
′u.

We get supn
∑
m |Cov(Yn, Ym)| ≤ 2C ′τ ′

∑
u≥0 2−τ

′u. The result thus follows
from Lemma 2.7.

3. Concluding remarks. It is also possible, by using Proposition 2.6
or Corollary 2.10 for instance, to obtain results concerning the weighted
series

∑∞
k=1 wk(1Ak −P(Ak)). When the sequence of weights is sufficiently

regular, one can indeed directly control the convergence almost everywhere
of the above series, by invoking some classical theorems from the theory of
orthogonal series, like the Rademacher–Men’shov Theorem. The attentive
reader will have observed, in many of the situations considered here, for
instance, that the conditions

∑
k wkk

−α < ∞, for a suitable α > 0, and∑
k w

2
k log2 k < ∞ are enough to get the convergence. The statements are

however less satisfactory than those obtained with the sequence of blocks
Yn, where we could work with universal sequences, via the notion of quasi-
orthogonal systems of functions.

Acknowledgements. We thank the referee for useful comments.

REFERENCES

[1] B. von Bahr and C. G. Esseen, Inequalities for the r-th absolute moment of a sum
of random variables, 1 ≤ r ≤ 2, Ann. Math. Statist. 36 (1965), 299–303.



290 R. GIULIANO-ANTONINI AND M. WEBER

[2] I. Berkes and H. Dehling, Some limit theorems in log-density, Ann. Probab. 21
(1993), 1640–1670.

[3] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, Wiley,
1971.

[4] R. Giuliano-Antonini, On the Rosenblatt coefficient for normalized sums of real
random variables, Rend. Acc. Naz. Sci. XL Mem. Mat. Appl. 24 (2000), 111–120.

[5] R. Giuliano-Antonini and M. Weber, The intersective ASCLT, Stochastic Anal.
Appl. 22 (2004), 1009–1025.

[6] P. Hall, Order of magnitude of moments of sums of random variables, J. London
Math. Soc. 24 (1981), 562–568.

[7] I. A. Ibragimov and M. A. Lifshits, On almost sure limit theorems, Theor. Probab.
Appl. 44 (2000), 245–272.

[8] M. Kac, R. Salem and A. Zygmund, A gap theorem, Trans. Amer. Math. Soc. 63
(1948), 235–243.

[9] M. Lacey and W. Philipp, A note on the almost sure central limit theorem, Statist.
Probab. Lett. 9 (1990), 201–205.

[10] A. M. Olevskii, Fourier Series with Respect to General Orthogonal Systems, Ergeb.
Math. Grenzgeb. 86, Springer, 1975.

[11] V. V. Petrov, Sums of Independent Random Variables, Springer, 1975.
[12] E. Seneta, Regularly Varying Functions, Lecture Notes in Math. 506, Springer, 1976.
[13] M. Weber, Entropie métrique et convergence presque partout, Travaux en Cours 58,

Hermann, Paris, 1998.

Dipartimento di Matematica
Università di Pisa
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