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HAAR WAVELETS ON THE LEBESGUE SPACES OF LOCAL
FIELDS OF POSITIVE CHARACTERISTIC
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BISWARANJAN BEHERA (Kolkata)

Abstract. We construct the Haar wavelets on a local field K of positive character-
istic and show that the Haar wavelet system forms an unconditional basis for Lp(K),
1 < p < ∞. We also prove that this system, normalized in Lp(K), is a democratic basis of
Lp(K). This also proves that the Haar system is a greedy basis of Lp(K) for 1 < p < ∞.

1. Introduction. The concept of unconditional convergence is one of
the classical topics of analysis. Usually, wavelets with some smoothness prop-
erties form unconditional bases for the Lebesgue spaces. Meyer [16] proved
that wavelets with polynomial decay form unconditional bases for Lp(R).
Similar results with weaker hypotheses were proved in [9, 11, 25]. For the
proofs of the unconditionalilty of the Haar basis for Lp(T) and Lp(R) we
refer to [23] and [24], respectively.

The concept of wavelets can be generalized to many different setups.
Dahlke [8] introduced this concept on locally compact abelian groups. This
was generalized to abstract Hilbert spaces by Han, Larson, Papadakis and
Stavropoulos [10]. Lemarié [15] extended the original concept to stratified
Lie groups. J. Benedetto and R. Benedetto [6] developed a wavelet theory
for local fields and related groups.

A field K equipped with a topology is called a local field if both the
additive and multiplicative groups of K are locally compact abelian groups.
Local fields are essentially of two types (excluding the connected local fields
R and C). Local fields of characteristic zero include the p-adic field Qp.
Examples of local fields of positive characteristic are the Cantor dyadic
group and the Vilenkin p-groups. Even though the structures and metrics
of local fields of zero and positive characteristics are similar, their wavelet
and MRA (multiresolution analysis) theories are quite different.

In [14] Lang proved that if a wavelet ψ for the Cantor dyadic group G
satisfies the property |ψ(x)− ψ(y)| ≤ C|x− y| for some constant C and for
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all x, y ∈ G, then the corresponding wavelet basis is unconditional in Lp(G)
for 1 < p < ∞. Chuong and Duong [7] proved that the Haar system is an
unconditional basis for Lr(Qp), 1 < r <∞.

In this article, we construct the analogue of Haar wavelets on a local
field of positive characteristic. For some aspects of wavelet theory on such
fields, we refer to [1, 2, 3, 4, 5, 12].

The article is organized as follows. In Section 2, we recall some basic facts
about local fields and define a multiresolution analysis on a local field K of
positive characteristic. As an example, we construct the Haar wavelets. In
Section 3, we discuss the convergence properties of wavelet expansions with
respect to the Haar wavelets. In particular, we show that the projections
Pjf of f ∈ Lp(K) onto the resolution spaces Vj of the Haar MRA converge
to f in the Lp-norm. We also discuss pointwise convergence properties of
the projection operators. In Section 4, we prove that the Haar wavelets form
an unconditional basis for the Lebesgue spaces Lp(K), 1 < p < ∞. In the
last section, we show that the normalized Haar wavelet system is a greedy
basis of Lp(K) for 1 < p <∞.

2. Preliminaries on local fields. Let K be a field and a topological
space. Then K is called a locally compact field or a local field if both K+

and K∗ are locally compact abelian groups, where K+ and K∗ denote the
additive and multiplicative groups of K respectively.

If K is any field and is endowed with the discrete topology, then K is
a local field. Further, if K is connected, then K is either R or C. If K is
not connected, then it is totally disconnected. So, by a local field we mean
a field K which is locally compact, nondiscrete and totally disconnected.

We use the notation of the book [20] by Taibleson. Proofs of all the
results stated in this section can be found in [20] and [18].

Let K be a local field. Since K+ is a locally compact abelian group, we
choose a Haar measure dx for K+. If α 6= 0, α ∈ K, then d(αx) is also a
Haar measure. Let d(αx) = |α|dx. We call |α| the absolute value or valuation
of α. We also let |0| = 0.

The map x 7→ |x| has the following properties:

(a) |x| = 0 if and only if x = 0;
(b) |xy| = |x| |y| for all x, y ∈ K;
(c) |x+ y| ≤ max{|x|, |y|} for all x, y ∈ K.

Property (c) is called the ultrametric inequality. It follows that

(2.1) |x+ y| = max{|x|, |y|} if |x| 6= |y|.

The set D = {x ∈ K : |x| ≤ 1} is called the ring of integers in K. It is the
unique maximal compact subring of K. Define P = {x ∈ K : |x| < 1}. The
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set P is called the prime ideal in K. Since K is totally disconnected, the set
of values |x| as x varies over K is a discrete set of the form {sk : k ∈ Z}∪{0}
for some s > 0. Hence, there is an element of P of maximal absolute value.
Let p be a fixed element of maximum absolute value in P. Such an element
is called a prime element of K. Note that as an ideal in D,P = 〈p〉 = pD.

It can be proved that D is compact and open. Hence, P is compact and
open. Therefore, the residue space D/P is isomorphic to a finite field GF(q),
where q = pc for some prime p and c ∈ N. For a proof of this fact we refer
to [20].

For a measurable subset E of K, let |E| =
	
K χE(x) dx, where χE is the

characteristic function of E and dx is the Haar measure of K normalized so
that |D| = 1. Then it is easy to see that |P| = q−1 and |p| = q−1 (see [20]).
It follows that if x 6= 0, and x ∈ K, then |x| = qk for some k ∈ Z.

Let D∗ = D \P = {x ∈ K : |x| = 1}. If x 6= 0, we can write x = pkx′,
with x′ ∈ D∗. Let Pk = pkD = {x ∈ K : |x| ≤ q−k}, k ∈ Z. These are called
fractional ideals. Each Pk is compact and open and is a subgroup of K+

(see [18]).
If K is a local field, then there is a nontrivial, unitary, continuous char-

acter χ on K+. It can be proved that K+ is self-dual (see [20]). Let χ be a
fixed character on K+ that is trivial on D but is nontrivial on P−1. We can
find such a character by starting with any nontrivial character and rescaling.
We will define such a character for a local field of positive characteristic. For
y ∈ K, we define χy(x) = χ(yx), x ∈ K.

Definition 2.1. If f ∈ L1(K), then the Fourier transform of f is the

function f̂ defined by
f̂(ξ) =

�

K

f(x)χξ(x) dx.

Similarly to the standard Fourier analysis on the real line, one can prove
the following results:

(a) The map f 7→ f̂ is a bounded linear transformation of L1(K) into

L∞(K), and ‖f̂‖∞ ≤ ‖f‖1.
(b) If f ∈ L1(K), then f̂ is uniformly continuous.

(c) If f ∈ L1(K) ∩ L2(K), then ‖f̂‖2 = ‖f‖2.
To define the Fourier transform of a function in L2(K), we introduce the

functions Φk. For k ∈ Z, let Φk be the characteristic function of Pk. For
f ∈ L2(K), let fk = fΦ−k and define

f̂(ξ) = lim
k→∞

f̂k(ξ) = lim
k→∞

�

|x|≤qk
f(x)χξ(x) dξ,

where the limit is taken in L2(K). It turns out that the Fourier transform
is unitary on L2(K) (see Theorem 2.3 in [20]).
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A set of the form h + Pk will be called a sphere with centre h and
radius q−k. It follows from the ultrametric inequality that if S and T are
two spheres in K, then either S and T are disjoint or one sphere contains
the other.

Let χu be any character on K+. Since D is a subgroup of K+, the
restriction χu|D is a character on D. Also, as characters on D, χu = χv if
and only if u − v ∈ D. That is, χu = χv if u + D = v + D and χu 6= χv if
(u+D)∩ (v+D) = ∅. Hence, if {u(n)}∞n=0 is a complete list of distinct coset
representatives of D in K+, then {χu(n)}∞n=0 is a list of distinct characters
on D. It is proved in [20] that this list is complete. That is, we have the
following proposition.

Proposition 2.2. Let {u(n)}∞n=0 be a complete list of (distinct) coset
representatives of D in K+. Then {χu(n)}∞n=0 is a complete list of (distinct)
characters on D. Moreover, it is a complete orthonormal system on D.

Given such a list of characters {χu(n)}∞n=0, we define the Fourier coeffi-

cients of f ∈ L1(D) as

f̂(u(n)) =
�

D

f(x)χu(n)(x) dx.

The series
∑∞

n=0 f̂(u(n))χu(n)(x) is called the Fourier series of f . From the

standard L2-theory for compact abelian groups we conclude that the Fourier
series of f converges to f in L2(D) and Parseval’s identity holds:

�

D

|f(x)|2 dx =
∞∑
n=0

|f̂(u(n))|2.

Also, if f ∈ L1(D) and f̂(u(n)) = 0 for all n = 0, 1, 2, . . . , then f = 0 a.e.

These results hold irrespective of the ordering of the characters. We now
proceed to impose a natural order on the sequence {u(n)}∞n=0.

Note that D/P is isomorphic to the finite field GF(q) and GF(q) is a
c-dimensional vector space over the field GF(p). We choose a set {1 = ε0,
ε1, ε2, . . . , εc−1} ⊂ D∗ such that span{εj}c−1j=0

∼= GF(q).

Let N0 = N ∪ {0}. For n ∈ N0 such that 0 ≤ n < q, we have

n = a0 + a1p+ · · ·+ ac−1p
c−1, 0 ≤ ak < p, k = 0, 1, . . . , c− 1.

Define

(2.2) u(n) = (a0 + a1ε1 + · · ·+ ac−1εc−1)p
−1.

Note that {u(n) : n = 0, 1, . . . , q−1} is a complete set of coset representatives
of D in P−1. Now, for n ∈ N0, write

n = b0 + b1q + b2q
2 + · · ·+ bsq

s, 0 ≤ bk < q, k = 0, 1, . . . , s,
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and set

(2.3) u(n) = u(b0) + u(b1)p
−1 + · · ·+ u(bs)p

−s.

This defines u(n) for all n ∈ N0. In general, it is not true that u(m + n) =
u(m) + u(n). But it follows that

u(rqk + s) = u(r)p−k + u(s) if r ≥ 0, k ≥ 0 and 0 ≤ s < qk.

In the following proposition we list some properties of {u(n) : n ∈ N0}
which will be used later. For a proof, we refer to [2].

Proposition 2.3. For n ∈ N0, let u(n) be defined as in (2.2) and (2.3).
Then:

(a) u(n) = 0 if and only if n = 0. If k ≥ 1, then |u(n)| = qk if and only
if qk−1 ≤ n < qk.

(b) {u(k) : k ∈ N0} = {−u(k) : k ∈ N0}.
(c) For a fixed l ∈ N0, we have {u(l)+u(k) : k ∈ N0} = {u(k) : k ∈ N0}.
For brevity, we will write χn = χu(n) for n ∈ N0. As mentioned before,

{χn : n ∈ N0} is a complete set of characters on D.
Let K be a local field of characteristic p > 0 and ε0, ε1, . . . , εc−1 be as

above. We define a character χ on K as follows (see [27]):

χ(εµp
−j) =

{
exp(2πi/p), µ = 0 and j = 1,

1, µ = 1, . . . , c− 1 or j 6= 1.

Note that χ is trivial on D but nontrivial on P−1.
The following result, proved in [1], will be used later.

Proposition 2.4. For 0 ≤ r, s ≤ q − 1,

1

q

q−1∑
t=0

χ
(
(u(r)− u(s))pu(t)

)
= δr,s.

In order to be able to define the concepts of multiresolution analysis
and wavelet on local fields, we need analogous notions of translation and
dilation. Since

⋃
j∈Z p

−jD = K, we can regard p−1 as the dilation (note

that |p−1| = q), and since the set Λ = {u(n) : n ∈ N0} is a complete list of
distinct coset representatives of D in K, it can be treated as the translation
set. Note that it follows from Proposition 2.3 that the translation set Λ is a
subgroup of K+ even though it is indexed by N0.

For f ∈ L2(K), j ∈ Z, and k ∈ N0, we define

fj,k(x) = qj/2f(p−jx− u(k)), j ∈ Z, k ∈ N0.

It is easy to see that

(fj,k)
∧(ξ) = q−j/2 χk(pjξ) f̂(pjξ).
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A finite set {ψm : m = 1, 2, . . . ,M} ⊂ L2(K) is called a set of basic
wavelets of L2(K) if the system {ψmj,k : 1 ≤ m ≤M, j ∈ Z, k ∈ N0} forms an

orthonormal basis for L2(K). Similarly to Rn, wavelets can be constructed
from a multiresolution analysis which we define below (see [12]).

Definition 2.5. Let K be a local field of characteristic p > 0, p be
a prime element of K and u(n), n ∈ N0, be as defined in (2.2) and (2.3).
A multiresolution analysis (MRA) of L2(K) is a sequence {Vj : j ∈ Z} of
closed subspaces of L2(K) satisfying the following properties:

(a) Vj ⊂ Vj+1 for all j ∈ Z;
(b)

⋃
j∈Z Vj is dense in L2(K);

(c)
⋂
j∈Z Vj = {0};

(d) f ∈ Vj if and only if f(p−1·) ∈ Vj+1 for all j ∈ Z;
(e) there is a function ϕ ∈ V0, called the scaling function, such that
{ϕ(· − u(k)) : k ∈ N0} forms an orthonormal basis for V0.

Given such an MRA, as in the case of Rn, we can find a set {ψl : 1 ≤
l ≤ q − 1} of basic wavelets consisising of q − 1 functions. These functions
are called the wavelets associated with the scaling function ϕ.

Example 2.6. Let ϕ = χD. Define Vj = span{ϕ
(
p−j · −u(k)

)
: k ∈ N0}.

Then {Vj : j ∈ Z} forms an MRA of L2(K). This will be called the Haar
MRA. Observe that

ϕ(x) =

q−1∑
k=0

ϕ(p−1x− u(k)) =

q−1∑
k=0

q−1/2ϕ1,k(x).

Taking Fourier transform, we get

ϕ̂(ξ) = q−1
q−1∑
k=0

χk(pξ) ϕ̂(pξ) = m0(pξ)ϕ̂(pξ),

where m0(ξ) = q−1
∑q−1

k=0 χk(ξ).

A function f on K is said to be integral-periodic if f(x+u(k)) = f(x) for
every k ∈ N0. It can easily be verified that m0 is integral-periodic. As in the
case of Rn, it can be shown that if we can find integral-periodic functions
mi, 1 ≤ i ≤ q − 1, such that the matrix

M(ξ) = [mi(ξ + pu(j))]q−1i,j=0

is unitary for a.e. ξ ∈ D, then {ψ1, . . . , ψq−1} forms a set of basic wavelets
for L2(K), where

ψ̂i(ξ) = mi(pξ)ϕ(pξ).
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We define

(2.4) ψi(x) =

q−1∑
j=0

aijϕ1,j(x), 1 ≤ i ≤ q − 1,

where A = (aij)
q−1
i,j=0 is an arbitrary unitary matrix such that a0j = q−1/2

for 0 ≤ j ≤ q − 1. Note that suppψi ⊆ D.
We claim that {ψ1, . . . , ψq−1} is a set of basic wavelets. Observe that we

can write
ψ̂i(ξ) = mi(pξ)ϕ(pξ),

where

mi(ξ) =

q−1∑
j=0

aijq
−1/2 χj(ξ).

To prove the claim, we need to show that M(ξ) is unitary for a.e. ξ ∈ D.
Let E(ξ) = (q−1/2χ0(ξ), q

−1/2χ1(ξ), . . . , q
−1/2χq−1(ξ)) and Xi denote the

ith row vector of the unitary matrix A. Then {X0, X1, . . . , Xq−1} is an or-
thonormal basis of Cq and mi(ξ) = 〈Xi, E(ξ)〉Cq . Therefore, the inner prod-
uct of the l1th and l2th columns of the matrix M(ξ) is

q−1∑
k=0

mk(ξ + pu(l1))mk(ξ + pu(l2))

=

q−1∑
k=0

〈Xk, E(ξ + pu(l1)) 〉〈Xk, E(ξ + pu(l1))〉

= 〈E(ξ + pu(l1)), E(ξ + pu(l1))〉

= q−1
q−1∑
k=0

χk(ξ + pu(l1))χk(ξ + pu(l2))

= q−1
q−1∑
k=0

|χk(ξ)|2χk(p(u(l1)− u(l2))

= q−1
q−1∑
k=0

χ
(
u(k)p(u(l1)− u(l2))

)
= δl1,l2 .

The last equality follows from Proposition 2.4. This shows that the column
vectors of M(ξ) form an orthonormal basis of Cq. Hence, M(ξ) is unitary,
which proves the claim.

The wavelets constructed above are the analogue of the Haar wavelets
on Rn. We will call ϕ the Haar scaling function and the corresponding
wavelets will be called the Haar wavelets. We would like to point out that
the expression for the Haar wavelets given in [12] is not correct. In fact, they
are not even orthogonal to each other.
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An example of a unitary matrix A with a constant first row is the fol-
lowing. Let a0j = q−1/2 for 0 ≤ j ≤ q − 1. For 1 ≤ i ≤ q − 1, define

aij =


[(q − i)(q − i+ 1)]−1/2, j = 0, 1, . . . , q − i− 1,

−(q − i)[(q − i)(q − i+ 1)]−1/2, j = q − i,
0, j > q − i.

In the rest of the article, ϕ will denote the Haar scaling function and ψl,
1 ≤ l ≤ q − 1, the Haar wavelets.

3. Pointwise convergence of the wavelet expansions. We start
with an elementary lemma on the properties of the Haar scaling function ϕ
which will be useful in simplifying the expression for the projection operators
defined later.

Lemma 3.1. Let ϕ be the Haar scaling function. Then:

(a)
∑

k∈N0
ϕ(x− u(k))ϕ(y − u(k)) = ϕ(x− y) for every x, y ∈ K;

(b)
	
K q

jϕ(p−j(x− y)) dx = 1.

Proof. (a) Recall that {u(n) + D : n ∈ N0} is a disjoint collection. If
x, y ∈ u(k) + D for some k, then ϕ

(
x − u(k)

)
= 1 = ϕ

(
y − u(k)

)
and

ϕ
(
x − u(l)

)
= 0 = ϕ

(
y − u(l)

)
for all l 6= k. So the left side equals 1. We

have x = u(k) + z1 and y = u(k) + z2, where z1, z2 ∈ D. So |x − y| =
|z1 − z2| ≤ max{|z1|, |z2|} ≤ 1. Hence, the right side is also 1.

If x ∈ u(k) + D and y ∈ u(l) + D, where k 6= l, then the left side
is 0. Since x = u(k) + z1 and y = u(l) + z2 for some z1, z2 ∈ D, we have
x− y =

(
u(k)− u(l)

)
+ (z1 − z2) = u(m) + z for some m ∈ N0 and z ∈ D,

by Proposition 2.3. Since u(k) 6= u(l), we have u(m) 6= 0. Hence x− y 6∈ D
since {u(k) + D} is a disjoint collection. So the right side is also 0.

(b) Follows by a change of variables.

Let {Vj : j ∈ Z} be the Haar MRA. We define the projection operators
Pj : L2(K)→ Vj by

Pjf =
∑
k∈N0

〈f, ϕj,k〉ϕj,k.

We use Lemma 3.1 to get an integral representation of Pj as follows:

Pjf(x) =
∑
k∈N0

{ �

K

f(t)qj/2ϕ(p−jt− u(k)) dt
}
qj/2ϕ(p−jx− u(k))

=
�

K

qj
{∑
k∈N0

ϕ(p−jt− u(k)ϕ(p−jx− u(k))
}
f(t) dt

=
�

K

qjϕ(p−j(t− x))f(t) dt,
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by Lemma 3.1(a). The projection operators Qj onto the wavelet subspaces
Wj = Vj+1 	 Vj are defined by

Qjf(x) =

q−1∑
l=1

∑
k∈N0

〈f, ψlj,k〉ψlj,k(x).

Since Wj = Vj+1 	 Vj , it is clear that Qj = Pj+1 − Pj . The following
proposition shows that these operators are bounded on each Lp-space.

Proposition 3.2. Let 1 ≤ p ≤ ∞. For all f ∈ L2(K)∩Lp(K), we have

(a) ‖Pjf‖p ≤ ‖f‖p.
(b) ‖Qjf‖p ≤ 2‖f‖p.

Proof. We observe that

|Pjf(x)| ≤
�

K

qj |ϕ(p−j(x−y))| |f(y)| dy ≤ ‖f‖∞
�

K

qjϕ(p−j(x−y)) dy = ‖f‖∞.

Hence, ‖Pjf‖∞ ≤ ‖f‖∞. Now,

‖Pjf‖1 =
�

K

∣∣∣ �
K

qjϕ(p−j(x− y))f(y) dy
∣∣∣ dx

≤
�

K

|f(y)|
( �
K

qjϕ(p−j(x− y)) dx
)
dy =

�

K

|f(y)| dy = ‖f‖1.

Therefore, by the Riesz–Thorin interpolation theorem, ‖Pjf‖p ≤ ‖f‖p for
1 ≤ p ≤ ∞. Item (b) follows from (a) since Qj = Pj+1 − Pj .

Thus, Pj and Qj can be extended to Lp(K) for 1 ≤ p ≤ ∞. We now
prove the convergence of Pjf in Lp-norm.

Theorem 3.3.

(a) If 1 ≤ p <∞ and f ∈ Lp(K), then limj→∞ ‖Pjf − f‖p = 0.
(b) limj→∞ ‖Pjf − f‖∞ = 0 for all bounded uniformly continuous func-

tions f on K.

Proof. (a) Suppose that 1 ≤ p <∞. Then

|Pjf(x)− f(x)| =
∣∣∣ �
K

qjϕ(p−j(x− y))f(y) dy − f(x)
∣∣∣

=
∣∣∣ �
K

qjϕ(p−j(x− y))(f(y)− f(x)) dy
∣∣∣

≤
�

K

qjϕ(p−j(x− y))|f(y)− f(x)| dy

=
�

K

ϕ(t)|f(x− pjt)− f(x)| dt.
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The second equality follows by Lemma 3.1(b). We now apply Minkowski’s
inequality for integrals to obtain

‖Pjf − f‖p ≤
[ �
K

∣∣∣ �
K

ϕ(t)|f(x− pjt)− f(x)| dt
∣∣∣p dx]1/p(3.1)

≤
[ �
K

( �
K

ϕ(t)|f(x− pjt)− f(x)| dt
)p
dx
]1/p

≤
�

K

[ �
K

|ϕ(t)|p|f(x− pjt)− f(x)|p dx
]1/p

dt

=
�

K

ϕ(t)‖f(· − pjt)− f‖p dt.

In a locally compact abelian group G, for 1≤p<∞, ‖f(·+ y)− f‖p→0
as y → 0 in G (see [19, Theorem 1.1.5]). Since |pjt| = q−j |t| → 0 as j →∞,
the integrand in (3.1) tends to zero as j → ∞. This integrand is domi-
nated by 2‖f‖pϕ, which is in L1(K). Hence, by the Lebesgue dominated
convergence theorem, we obtain the result.

To prove (b), let f ∈ L∞(K) be uniformly continuous. Then wj(t) =
supx∈K |f(x − pjt) − f(x)| → 0 as j → ∞ (uniformly in x). Therefore
|Pjf(x)− f(x)| ≤

	
K ϕ(t)wj(t) dt→ 0 as j →∞ (uniformly in x), again by

the dominated convergence theorem.

Theorem 3.4.

(a) If 1 ≤ p < ∞ and f ∈ Lp(K), then limj→−∞ Pjf(x) = 0 for every
x ∈ K.

(b) If f is locally integrable in K, then limj→∞ Pjf(x) = f(x) for a.e.
x ∈ K.

Proof. (a) Let p′ be the index conjugate to p. By Hölder’s inequality, we
have

|Pjf(x)| ≤
�

K

qjϕ(p−j(x− y))|f(y)| dy

≤ qj
( �
K

|ϕ(p−j(x− y))|p′ dy
)1/p′( �

K

|f(y)|p dy
)1/p

= qjq−j/p
′‖f‖p (by Lemma 3.1(b))

= qj/p‖f‖p → 0 as j → −∞.

(b) Let f be locally integrable in K. Then it follows from the Lebesgue
differentiation theorem (see [20, Theorem 1.14, p. 29]) that for a.e. x ∈ K,



HAAR WAVELETS ON LOCAL FIELDS 159

we have

lim
j→∞

Pjf(x) = lim
j→∞

�

K

qjϕ(p−j(x− y))f(y) dy

= lim
j→∞

qj
�

|x−y|≤q−j

f(y) dy = f(x).

4. Unconditionality of the Haar wavelets on Lp(K). We first recall
some basic facts on unconditional bases on a Banach space. We refer to
Chapter 5 of [11] for the details.

Let X be a Banach space. A series
∑

n∈N xn in X is said to converge
unconditionally to y in X if

∑
n∈N xσ(n) converges to y in X for every per-

mutation σ of N.

A sequence {xn : n ∈ N} is called a Schauder basis of X if for each
x ∈ X there exists a unique sequence {αn(x) : n ∈ N} of scalars such that
x =

∑
n∈N αn(x)xn in X. If this convergence is unconditional, then the basis

is said to be an unconditional basis.

Let {xn : n ∈ N} be a Schauder basis for a Banach space X, so that for
every x ∈ X, there is a unique sequence {fn(x) : n ∈ N} of scalars such that
x =

∑
n∈N fn(x)xn. Given a sequence β = {βn : n ∈ N} of scalars, we define

the operator Tβ : X → X by

Tβ(x) =
∑
n∈N

βnfn(x)xn.

There are many ways to verify whether a basis is unconditional. We will
use the following criterion. We refer to [11] for its proof.

Theorem 4.1. For a basis {xn : n ∈ N} of a Banach space X, the
following statements are equivalent:

(a) {xn : n ∈ N} is an unconditional basis for X.
(b) There exists a constant C > 0 such that ‖Tβ(x)‖ ≤ C‖x‖ for all

β = {βn : n ∈ N} with |βn| ≤ 1 for all n.
(c) There exists a constant C > 0 such that ‖Tβ(x)‖ ≤ C‖x‖ for all

β = {βn : n ∈ N} with βn = ±1 for all n.
(d) There exists a constant C > 0 such that ‖Tβ(x)‖ ≤ C‖x‖ for all

finitely nonzero sequences β = {βn : n ∈ N} with βn = 1 or 0 for
all n.

Note that Lp(K)∩L2(K) is dense in Lp(K) for 1 < p <∞ and the system
of Haar wavelets is an orthonormal basis for L2(K). Hence, it follows from
the above theorem that to show that {ψlj,k : 1 ≤ l ≤ q − 1, j ∈ Z, k ∈ N0}
forms an unconditional basis for Lp(K), it is enough to show the uniform
boundedness of the operators Tβ on Lp(K), where
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Tβf =

q−1∑
l=1

∑
j∈Z

∑
k∈N0

βlj,k〈f, ψlj,k〉ψlj,k

for all sequences β = {βlj,k} with the property that βlj,k = 1 for a finite

number of indices and βlj,k = 0 for the remaining indices.

In other words, {ψlj,k : 1 ≤ l ≤ q − 1, j ∈ Z, k ∈ N0} forms an uncon-
ditional basis for Lp(K) if and only if the operators TF : Lp(K) → Lp(K)
defined by

(4.1) TF f =
∑

(l,j,k)∈F

〈f, ψlj,k〉ψlj,k

are uniformly bounded on Lp(K) where F varies over finite subsets of
{1, . . . , q − 1} × Z× N0.

The main ingredient needed to show this is a local field version of
Calderón–Zygmund decomposition proved by Phillips [17]. We refer to [20,
p. 148] for the proof of the following theorem.

Theorem 4.2 (Calderón–Zygmunddecomposition for localfields). Given
f ∈ L1(K) with f ≥ 0 and α > 0, there exists a countable collection of
mutually disjoint spheres {Sk} and a decomposition f = g + b, with b =∑

k bk, such that

(a) |Ω| =
∑

k |Sk| <
1
α‖f‖1, where Ω = ∪kSk;

(b) |f(x)| ≤ α for a.e. x 6∈ Ω;
(c) g(x) = f(x), x 6∈ Ω;
(d) |g(x)| ≤ qα for a.e. x ∈ Ω;
(e) b(x) = 0, x 6∈ Ω;
(f) supp bk ⊂ Sk and

	
Sk
bk(x) dx =

	
Sk
b(x) dx = 0 for all k.

The proof of Calderón–Zygmund decomposition also implies the follow-
ing useful facts:

(1) b ∈ L1(K) and ‖b‖1 ≤ 2‖f‖1;
(2) g ∈ L1(K) and ‖g‖1 = ‖f‖1;
(3) g ∈ L∞(K) and ‖g‖∞ ≤ qα;
(4) g ∈ L2(K) and ‖g‖2 ≤ (qα‖f‖1)1/2.

We are now ready to state and prove the main result of this section.

Theorem 4.3. Let 1 < p < ∞ and ψl, 1 ≤ l ≤ q − 1, be the Haar
wavelets. Then {ψlj,k : 1 ≤ l ≤ q− 1, j ∈ Z, k ∈ N0} forms an unconditional
basis for Lp(K).

Proof. As we discussed earlier, to prove this theorem it is enough to show
that the operators TF are uniformly bounded on each Lp(K), 1 < p < ∞,
where TF is defined in (4.1).
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We first show that TF is of weak type (1, 1). That is, we have to show
that there exists a constant C > 0 such that

|{x ∈ K : |TF f(x)| > α}| ≤ C

α
‖f‖1 for all α > 0 and f ∈ L1(K).

Without loss of generality, we can assume that f ≥ 0. Applying Calderón–
Zygmund decomposition, we have

|{x ∈ K : |TF f(x)| > α}| ≤ |{x ∈ K : |TF g(x)| > α/2}|
+ |{x ∈ K : |TF b(x)| > α/2}|

= I + II, say.

We first estimate I. We have

I =
�

{x∈K: |TF g(x)|>α/2}

dx ≤ 4

α2

�

K

|TF g(x)|2 dx(4.2)

≤ 4

α2

�

K

|g(x)|2 dx ≤ 4q

α
‖f‖1,

since ‖g‖22 ≤ qα‖f‖1.
To estimate II, we first show that TF b(x) = 0 for all x 6∈ Ω =

⋃
k Sk. For

such an x, we have

TF bi(x) =
∑

(l,j,k)∈F

〈bi, ψlj,k〉ψlj,k(x) =
∑

(l,j,k)∈F

[ �
K

bi(y)ψlj,k(y) dy
]
ψlj,k(x)

=
∑

(l,j,k)∈F

[ �
Si

bi(y)ψlj,k(y) dy
]
ψlj,k(x).

Note that supp bi ⊆ Si = hi + Pmi = hi + pmiD for some integer mi. Since
suppψl ⊆ D, it follows that suppψlj,k ⊆ pj(u(k) + D) = Sj,k, say. Observe

that |Si| = q−mi and |Sj,k| = q−j .

We deduce from the ultrametric inequality that in a local field, any two
spheres are either disjoint or one sphere contains the other. In view of this
we consider three cases.

Case 1. If Si∩Sj,k = ∅, then TF bi(x) = 0. So, TF b(x) =
∑

i TF bi(x) = 0.

Case 2. If Sj,k ⊂ Si, then x 6∈ Sj,k since x 6∈ Si. Hence, ψlj,k(x) = 0. So
TF b(x) = 0.

Case 3. If Si ⊂ Sj,k, then we can assume that Si 6= Sj,k (otherwise we
can apply Case 2 to conclude ψlj,k(x) = 0). We claim that ψlj,k is constant



162 B. BEHERA

on Si. Note that

ψlj,k(x) = qj/2
q−1∑
m=0

almq
1/2ϕ

(
p−1(p−jx− u(k))− u(m)

)
= q(j+1)/2

q−1∑
m=0

almχEm(x),

where Em = pj+1D + pju(k) + pj+1u(m). To prove the claim, it is enough
to show that Si is contained entirely in Em for some m = 1, . . . , q − 1. We
assume that this is not the case and get a contradiction.

First, we note that since Si ⊂ Sj,k and Si 6= Sj,k, it follows that |Si| <
|Sj,k|. That is, q−mi < q−j .

Now, suppose that there exist y1, y2 ∈ Si such that y1 ∈ Em and y2 ∈ En
so that y1 = pj+1d1+pju(k)+pj+1u(m) and y2 = pj+1d2+pju(k)+pj+1u(n)
for some d1, d2 ∈ D. Hence,

y1 − y2 = pj+1(d1 − d2) + pj+1(u(m)− u(n)) = pj+1(d1 − d2) + pj+1u(r)

for some integer r > 0. Now, |pj+1(d1 − d2)| = |pj+1| |d1 − d2| ≤ q−j−1

and |pj+1u(r)| = q−j−1|u(r)| ≥ q−j since |u(r)| ≥ q if r ≥ 1 (see Proposi-
tion 2.3(a)). By (2.1), it follows that

|y1 − y2| = max{|pj+1(d1 − d2)|, |pj+1u(m)|} ≥ q−j .
On the other hand, since y1, y2 ∈ Si, we can write y1 = hi + pmiv1 and
y2 = hi+pmiv2 for some v1, v2 ∈ D. Hence |y1−y2| = |pmi(v1−v2)| ≤ q−mi .
From these two calculations we obtain q−j ≤ q−mi . This contradicts the fact
that q−mi < q−j . So the claim that ψlj,k is constant on Si is proved. Hence,

�

Si

bi(y)ψlj,k(y) dy = C
�

Si

bi(y) dy = 0,

by Theorem 4.2(f). This shows that TF b(x) = 0 for all x 6∈ Ω. By Theo-
rem 4.2(a), we have

(4.3) II = |{x ∈ K : |TF b(x)| > α/2}| ≤ |Ω| ≤ 1
α‖f‖1.

Combining (4.2) and (4.3), we get |{x ∈ K : |TF f(x)| > α}| ≤ C
α ‖f‖1, where

C = 4q + 1. Note that C is independent of F . This completes the proof of
the fact that TF is of weak type (1, 1).

Since {ψlj,k : 1 ≤ l ≤ q − 1, j ∈ Z, k ∈ N0} forms an orthonormal basis

for L2(K), we have ‖TF f‖2 ≤ ‖f‖2, f ∈ L2(K). So TF is of strong type
(2, 2). Hence, by the Marcinkiewicz interpolation theorem, it follows that
‖TF f‖p ≤ C‖f‖p, f ∈ Lp(K), for 1 < p ≤ 2. Since the operator TF is its
own adjoint, it follows from duality that ‖TF f‖p ≤ C‖f‖p, f ∈ Lp(K), for
2 ≤ p <∞. This completes the proof of Theorem 4.3.
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We now state a lemma which is just the quantitative information con-
tained in the unconditionality of a basis for an Lp-space. The proof follows
from Khinchin’s inequality (see, e.g., Corollary 7.11 in [24]).

Lemma 4.4. Let {fn : n ∈ N} be an unconditional basis for Lp(X, dµ),
where µ is a σ-finite positive measure on X. Then there exist constants c1
and c2 with 0 < c1 ≤ c2 <∞ such that

c1

∥∥∥∑
n∈N

anfn

∥∥∥
p
≤
∥∥∥(∑

n∈N
|an|2|fn|2

)1/2∥∥∥
p
≤ c2

∥∥∥∑
n∈N

anfn

∥∥∥
p

for every scalar sequence {an : n ∈ N}.
Applying this lemma to the unconditional basis {ψlj,k : 1≤ l ≤q−1, j∈Z,

k ∈ N0} of Lp(K), we get the following result.

Theorem 4.5. For each p, 1 < p <∞, there exist constants cp and Cp
with 0 < cp ≤ Cp <∞ such that

cp‖f‖p ≤
∥∥∥(q−1∑

l=1

∑
j∈Z

∑
k∈N0

|〈f, ψlj,k〉|2|ψlj,k|2
)1/2∥∥∥

p
≤ Cp‖f‖p

for all f ∈ Lp(K).

The above theorem tells us that

f ∈ Lp(K) if and only if
(q−1∑
l=1

∑
j∈Z

∑
k∈N0

|〈f, ψlj,k〉|2|ψlj,k|2
)1/2

∈ Lp(K).

So it can be viewed as a characterization of Lp(K) in terms of the wavelet
coefficients 〈f, ψlj,k〉.

5. Greedy basis property in Lp(K). In this section we will show
that the normalized Haar wavelets form a greedy basis of Lp(K) for 1 < p
<∞. The concept of greedy basis originated from the study of best m-term
approximation in Banach spaces.

Let X be a Banach space and B = {xn : n ∈ N} be a normalized
Schauder basis of X, so that for each x ∈ X, there is a unique sequence
{cn(x) : n ∈ N} of scalars such that x =

∑
n∈N cn(x)xn.

The best m-term approximation of x ∈ X with respect to the basis B is
defined to be

σm(x) := inf
∥∥∥x−∑

k∈Λ
ckxk

∥∥∥
X
,

where the infimum is taken over scalars ck and sets of indices Λ with cardi-
nality m.

A computationally efficient method to obtain m-term approximations is
the so-called greedy algorithm. For x ∈ X, let ρ be a permutation of N such
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that

|cρ(1)| ≥ |cρ(2)| ≥ · · · .
Themth greedy approximation of x with respect to the basis B corresponding
to the permutation ρ is defined to be

Gm(x, ρ) :=

m∑
n=1

cρ(n)(x)xρ(n).

It is clear that σm(x) ≤ ‖x − Gm(x, ρ)‖X . A basis B is called a greedy
basis if the reverse inequality holds up to a constant, that is, there exists a
permutation ρ of N such that

‖x−Gm(x, ρ)‖X ≤ Cσm(x)

for some constant C independent of x and m.

We will need the notion of another type of basis. A normalized basis
{xn : n ∈ N} in a Banach space X is called a democratic basis of X if there
exists a constant C such that∥∥∥∑

n∈A
xn

∥∥∥
X
≤ C

∥∥∥∑
n∈B

xn

∥∥∥
X

for any finite subsets A and B with the same cardinality.

It was proved by Konyagin and Temlyakov in [13] that a basis in a Banach
space is greedy if and only if it is unconditional and democratic. In the same
paper, it was also shown that the last two properties are independent of each
other. For a detailed account of this subject we refer to the book [22].

Temlyakov [21] proved that the Haar basis (and any wavelet system
Lp-equivalent to it) is greedy in the Lebesgue spaces Lp(Rn) for 1 < p <∞.
On the other hand, Wojtaszczyk [26] proved that the Haar system is not
greedy in rearrangement invariant spaces other than Lp.

We now consider the Haar wavelets ψlj,k, 1≤ l≤q−1, j∈Z, k∈N0, defined

in Example 2.6. Let hlj,k = ψlj,k/‖ψlj,k‖p be the Haar wavelets normalized
in Lp(K).

Theorem 5.1. For each p, 1 < p < ∞, the normalized Haar wavelets
{hlj,k : 1 ≤ l ≤ q − 1, j ∈ Z, k ∈ N0} form a greedy basis of Lp(K).

Proof. Since we have already proved that the Haar wavelets form an
unconditional basis of Lp(K), we just have to show that the system of nor-
malized Haar wavelets is a democratic basis of Lp(K).

Suppose that A and B are two finite subsets of {1, . . . , q − 1} × Z× N0

such that |A| = |B|. Let

f =
∑

(l,j,k)∈A

hlj,k and g =
∑

(l,j,k)∈B

hlj,k.
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Note that if (l, j, k) 6∈ A, then 〈f, ψlj,k〉 = 0. If (l, j, k) ∈ A, then

〈f, ψlj,k〉ψlj,k = 〈hlj,k, ψlj,k〉ψlj,k = ‖ψlj,k‖−1p ψlj,k = hlj,k.

Hence, by Theorem 4.5, we have

(5.1) cp‖f‖p ≤
∥∥∥( ∑

(l,j,k)∈A

|hlj,k|2
)1/2∥∥∥

p
≤ Cp‖f‖p.

Similarly,

(5.2) cp‖g‖p ≤
∥∥∥( ∑

(l,j,k)∈B

|hlj,k|2
)1/2∥∥∥

p
≤ Cp‖g‖p.

Let αl =
∑q−1

m=0 |alm|p. Then a simple calculation shows that ‖ψljk‖p =

q(j+1)(1/2−1/p)α
1/p
l . Hence,

hlj,k =

(
qj+1

αl

)1/p q−1∑
m=0

almχEmjk
,

where Emjk = pj+1(D + p−1u(k) + u(m)) so that supp hlj,k =
⋃q−1
m=0Emjk

= Cjk, say. Note that Cjk is contained in the sphere Pj + pju(k). Observe

that for each x ∈ K, |hlj,k(x)| is either 0 or (qj+1/αl)
1/p|alm| for some m ∈

{0, 1, . . . , q − 1}.
Let C =

⋃
(l,j,k)∈ACjk. For x ∈ C, let

max
(l,j,k)∈A

|hlj,k(x)| =
(
qj(x)+1

αl(x)

)1/p

|al(x),m(x)|.

Since two spheres in a local field are either disjoint or one contains the
other, it follows that Cj1,k1 and Cj2,k2 are disjoint if j1 = j2 as they are
of same size. So the above maximum occurs for a unique j(x) such that
(l, j(x), k) ∈ A. Hence, for any other (l, j, k) ∈ A, |hlj,k(x)|p is either 0 or

of the form (qr+1/αl)|alm|p for some l and r, where r < j(x). Moreover,
each such positive value of |hlj,k(x)| can be obtained at most once. Since the
indices l and m vary over finite sets, we can find a constant C independent
of l and m such that

qr+1

αl
|alm|p ≤ C

qr+1

αl(x)
|al(x),m(x)|p.

For any x ∈ C, we now have∑
(l,j,k)∈A

|hlj,k(x)|p ≤ C q
j(x)+1

αl(x)
|al(x),m(x)|p(1 + q−1 + q−2 + q−3 + · · · )

= C
q

q − 1
max

(l,j,k)∈A
|hlj,k(x)|p.
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Hence,( ∑
(l,j,k)∈A

|hlj,k(x)|2
)p/2

≥ max
(l,j,k)∈A

|hlj,k(x)|p ≥ q − 1

Cq

∑
(l,j,k)∈A

|hlj,k(x)|p.

Therefore,[ �
K

( ∑
(l,j,k)∈A

|hlj,k(x)|2
)p/2

dx
]1/p
≥
(
q − 1

Cq

)1/p( ∑
(l,j,k)∈A

�

K

|hlj,k(x)|p dx
)1/p

=

(
q − 1

Cq

)1/p

|A|1/p,

since ‖hlj,k‖p = 1. Substituting in (5.1), we get

(5.3)

(
Cq

q − 1

)1/p

Cp‖f‖p ≥ |A|1/p.

Arguing as above, for each x ∈ C, we have∑
(l,j,k)∈B

|hlj,k(x)|2 ≤ C(q) max
(l,j,k)∈B

|hlj,k(x)|2.

Hence, ( ∑
(l,j,k)∈B

|hlj,k(x)|2
)p/2

≤ C(q)p/2 max
(l,j,k)∈B

|hlj,k(x)|p

≤ C(q)p/2
∑

(l,j,k)∈B

|hlj,k(x)|p.

Therefore,[ �
K

( ∑
(l,j,k)∈B

|hlj,k(x)|2
)p/2

dx
]1/p
≤
[ �
K

C(q)p/2
∑

(l,j,k)∈B

|hlj,k(x)|p dx
]1/p

= C(q)p/2|B|1/p.
Substituting in (5.2), we get

(5.4) ‖g‖p ≤ c−1p C(q)p/2|B|1/p.
Since |A| = |B|, from (5.3) and (5.4), we have ‖g‖p ≤ Kp‖f‖p. This

completes the proof of Theorem 5.1.
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